An arithmetic Riemann-Roch theorem in higher degrees
Annales de l'Institut Fourier, Volume 58 (2008) no. 6, p. 2169-2189

We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.

Nous démontrons un analogue du théorème de Grothendieck-Riemann-Roch en géométrie d’Arakelov.

DOI : https://doi.org/10.5802/aif.2410
Classification:  14G40,  14C40,  58J52
Keywords: Arakelov Geometry, Grothendieck-Riemann-Roch theorem, analytic torsion form, arithmetic intersection theory
@article{AIF_2008__58_6_2169_0,
     author = {Gillet, Henri and R\"ossler, Damian and Soul\'e, Christophe},
     title = {An arithmetic Riemann-Roch theorem in higher degrees},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     pages = {2169-2189},
     doi = {10.5802/aif.2410},
     mrnumber = {2473633},
     zbl = {1152.14023},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2008__58_6_2169_0}
}
Gillet, Henri; Rössler, Damian; Soulé, Christophe. An arithmetic Riemann-Roch theorem in higher degrees. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 2169-2189. doi : 10.5802/aif.2410. http://www.numdam.org/item/AIF_2008__58_6_2169_0/

[1] Arakelov, S. Ju. An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat., Tome 38 (1974), pp. 1179-1192 | MR 472815 | Zbl 0355.14002

[2] Berline, Nicole; Getzler, Ezra; Vergne, Michèle Heat kernels and Dirac operators, Springer-Verlag, Berlin, Grundlehren Text Editions (2004) (Corrected reprint of the 1992 original) | MR 2273508 | Zbl 1037.58015

[3] Berthelot, P.; Grothendieck, A.; Illusie, L. Théorie des intersections et théorème de Riemann-Roch, Springer-Verlag, Berlin (1971) (Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225) | MR 354655 | Zbl 0218.14001

[4] Bismut, J.-M.; Gillet, H.; Soulé, C. Bott-Chern currents and complex immersions, Duke Math. J., Tome 60 (1990) no. 1, pp. 255-284 | Article | MR 1047123 | Zbl 0697.58005

[5] Bismut, Jean-Michel Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) no. 244, pp. viii+275 | MR 1623496 | Zbl 0899.32013

[6] Bismut, Jean-Michel; Gillet, Henri; Soulé, Christophe Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys., Tome 115 (1988) no. 1, pp. 49-78 | Article | Zbl 0651.32017

[7] Bismut, Jean-Michel; Gillet, Henri; Soulé, Christophe Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys., Tome 115 (1988) no. 1, pp. 79-126 | Article | MR 929147 | Zbl 0651.32017

[8] Bismut, Jean-Michel; Gillet, Henri; Soulé, Christophe Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Tome 115 (1988) no. 2, pp. 301-351 | Article | MR 931666 | Zbl 0651.32017

[9] Bismut, Jean-Michel; Gillet, Henri; Soulé, Christophe Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 86 (1990), pp. 249-331 | MR 1086887 | Zbl 0744.14015

[10] Bismut, Jean-Michel; Köhler, Kai Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Tome 1 (1992) no. 4, pp. 647-684 | MR 1174905 | Zbl 0784.32023

[11] Bost, Jean-Benoît Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998) no. 8, pp. 427-435 | Article | MR 1628231 | Zbl 1048.14500

[12] Faltings, Gerd Calculus on arithmetic surfaces, Ann. of Math. (2), Tome 119 (1984) no. 2, pp. 387-424 | Article | MR 740897 | Zbl 0559.14005

[13] Faltings, Gerd Lectures on the arithmetic Riemann-Roch theorem, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 127 (1992) (Notes taken by Shouwu Zhang) | MR 1158661 | Zbl 0744.14016

[14] Fulton, William Intersection theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 2 (1984) | MR 732620 | Zbl 0541.14005

[15] Gillet, H.; Soulé, C. Analytic torsion and the arithmetic Todd genus, Topology, Tome 30 (1991) no. 1, pp. 21-54 (With an appendix by D. Zagier) | Article | MR 1081932 | Zbl 0787.14005

[16] Gillet, Henri; Soulé, Christophe Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990) no. 72, p. 93-174 (1991) | Numdam | MR 1087394 | Zbl 0741.14012

[17] Gillet, Henri; Soulé, Christophe Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2), Tome 131 (1990) no. 1, pp. 163-203 | Article | MR 1038362 | Zbl 0715.14018

[18] Gillet, Henri; Soulé, Christophe Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2), Tome 131 (1990) no. 2, pp. 205-238 | Article | MR 1043268 | Zbl 0715.14006

[19] Gillet, Henri; Soulé, Christophe An arithmetic Riemann-Roch theorem, Invent. Math., Tome 110 (1992) no. 3, pp. 473-543 | Article | MR 1189489 | Zbl 0777.14008

[20] Gubler, Walter Moving lemma for K 1 -chains, J. Reine Angew. Math., Tome 548 (2002), pp. 1-19 | Article | MR 1915208 | Zbl 1016.14002

[21] Lang, Serge Introduction to Arakelov theory, Springer-Verlag, New York (1988) | MR 969124 | Zbl 0667.14001

[22] Lelong, Pierre Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France, Tome 85 (1957), pp. 239-262 | Numdam | MR 95967 | Zbl 0079.30901

[23] Roessler, Damian An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J., Tome 96 (1999) no. 1, pp. 61-126 | Article | MR 1663919 | Zbl 0961.14006

[24] Soulé, C. Lectures on Arakelov geometry, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 33 (1992) (With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer) | MR 1208731 | Zbl 0812.14015

[25] Zha, Y. A General Arithmetic Riemann-Roch Theorem, Chicago University (1998) (Ph. D. Thesis)