We study spectral properties of transfer operators for diffeomorphisms on a Riemannian manifold . Suppose that is an isolated hyperbolic subset for , with a compact isolating neighborhood . We first introduce Banach spaces of distributions supported on , which are anisotropic versions of the usual space of functions and of the generalized Sobolev spaces , respectively. We then show that the transfer operators associated to and a smooth weight extend boundedly to these spaces, and we give bounds on the essential spectral radii of such extensions in terms of hyperbolicity exponents.
Nous étudions les propriétés spectrales des opérateurs de transfert associés aux difféomorphismes sur une variété riemannienne . Nous supposons qu’il existe un sous-ensemble hyperbolique pour , contenu dans un voisinage isolant compact . Nous introduisons d’abord des espaces de Banach de distributions, supportées sur , qui sont des versions anisotropes des espaces usuels de fonctions , d’une part, et des espaces de Sobolev généralisés , d’autre part. Nous montrons ensuite que les opérateurs de transfert associés à et à une fonction poids lisse s’étendent continûment à ces espaces, et nous donnons des bornes pour les rayons spectraux essentiels de ces extensions, en fonction d’exposants d’hyperbolicité.
Keywords: Hyperbolic dynamics, transfer operator, Ruelle operator, spectrum, axiom A, Anosov, Perron-Frobenius, quasi-compact
Mot clés : dynamique hyperbolique, opérateur de transfert, opérateur de Ruelle, spectre, Axiome A, Anosov, Perron-Frobenius, quasi-compacité
@article{AIF_2007__57_1_127_0, author = {Baladi, Viviane and Tsujii, Masato}, title = {Anisotropic {H\"older} and {Sobolev} spaces for hyperbolic diffeomorphisms}, journal = {Annales de l'Institut Fourier}, pages = {127--154}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {1}, year = {2007}, doi = {10.5802/aif.2253}, zbl = {1138.37011}, mrnumber = {2313087}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2253/} }
TY - JOUR AU - Baladi, Viviane AU - Tsujii, Masato TI - Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms JO - Annales de l'Institut Fourier PY - 2007 SP - 127 EP - 154 VL - 57 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2253/ DO - 10.5802/aif.2253 LA - en ID - AIF_2007__57_1_127_0 ER -
%0 Journal Article %A Baladi, Viviane %A Tsujii, Masato %T Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms %J Annales de l'Institut Fourier %D 2007 %P 127-154 %V 57 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2253/ %R 10.5802/aif.2253 %G en %F AIF_2007__57_1_127_0
Baladi, Viviane; Tsujii, Masato. Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Annales de l'Institut Fourier, Volume 57 (2007) no. 1, pp. 127-154. doi : 10.5802/aif.2253. http://www.numdam.org/articles/10.5802/aif.2253/
[1] Smoothness of solenoidal attractors, Discrete Cont. Dynam. Systems, Volume 15 (2006), pp. 21-35 | DOI | MR | Zbl
[2] Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, Volume 16, World Scientific, 2000 | MR | Zbl
[3] Anisotropic Sobolev spaces and dynamical transfer operators: foliations, S.Kolyada, Y.Manin and T.Ward, Eds., Algebraic and Topological Dynamics, Contemporary Mathematics, Amer. Math. Soc., 2005, pp. 123-136 | MR | Zbl
[4] Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, Volume 15 (2002), pp. 1905-1973 | DOI | MR | Zbl
[5] The flat-trace asymptotics of a uniform system of contractions, Ergodic Theory Dynam. Sys., Volume 15 (1995), pp. 1061-1073 | DOI | MR | Zbl
[6] Meromorphic zeta functions for analytic flows, Comm. Math. Phys., Volume 174 (1995), pp. 161-190 | DOI | MR | Zbl
[7] Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Sys., Volume 26 (2006), pp. 189-218 | DOI | MR | Zbl
[8] A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces, Ergodic Theory Dynam. Sys., Volume 23 (2003), pp. 175-191 | MR | Zbl
[9] Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 627-634 | MR | Zbl
[10] The analysis of linear partial differential operators. III. Pseudo-differential operators, Grundlehren der Mathematischen Wissenschaften, Volume 274, Springer-Verlag, Berlin, 1994 | MR | Zbl
[11] Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness, Nonlinearity, Volume 12 (1999), pp. 141-179 | DOI | MR | Zbl
[12] Theorems on Fourier series and power series, Proc. London Math. Soc., Volume 42 (1937), pp. 52-89 | DOI | Zbl
[13] The thermodynamic formalism for expanding maps, Comm. Math. Phys., Volume 125 (1989), pp. 239-262 | DOI | MR | Zbl
[14] The correlation spectrum for hyperbolic analytic maps, Nonlinearity, Volume 5 (1992), pp. 1237-1263 | DOI | MR | Zbl
[15] Pseudo differential operators, Lecture Notes in Math., Volume 416, Springer-Verlag, Berlin-New York, 1974 | MR | Zbl
[16] Pseudodifferential operators and nonlinear PDE, Progress in Math., Volume 100, Birkhäuser, Boston, 1991 | MR | Zbl
Cited by Sources: