We study the preservation of the periodic orbits of an -monotone tree map in the class of all tree maps having a cycle with the same pattern as . We prove that there is a period-preserving injective map from the set of (almost all) periodic orbits of into the set of periodic orbits of each map in the class. Moreover, the relative positions of the corresponding orbits in the trees and (which need not be homeomorphic) are essentially preserved.
On étudie la préservation des orbites périodiques des applications -monotones sur les arbres , dans la classe de toutes les applications continues sur les arbres qui ont un cycle avec le même type d’orbite que . On démontre l’existence d’une application injective de l’ensemble de (presque toutes) les orbites périodiques de dans l’ensemble des orbites périodiques de chaque application dans la classe, préservant la période. De plus, la position relative des orbites correspondantes dans les arbres et (qui ne sont pas forcément homéomorphes) sont essentiellement les mêmes.
Classification: 37E25
Keywords: Tree maps, minimal dynamics
Keywords: Tree maps, minimal dynamics
@article{AIF_2005__55_7_2375_0, author = {Alsed\`a, Llu\'\i s and Juher, David and Mumbr\'u, Pere}, title = {On the preservation of combinatorial types for maps on trees}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {55}, number = {7}, year = {2005}, pages = {2375-2398}, doi = {10.5802/aif.2164}, zbl = {1085.37035}, mrnumber = {2207387}, language = {en}, url = {http://www.numdam.org/item/AIF_2005__55_7_2375_0} }
Alsedà, Lluís; Juher, David; Mumbrú, Pere. On the preservation of combinatorial types for maps on trees. Annales de l'Institut Fourier, Volume 55 (2005) no. 7, pp. 2375-2398. doi : 10.5802/aif.2164. http://www.numdam.org/item/AIF_2005__55_7_2375_0/
[1] Topological entropy, Trans. Am. Math. Soc., Tome 114 (1965), pp. 309-319 | Article | MR 175106 | Zbl 0127.13102
[2] Canonical representatives for patterns of tree maps, Topology, Tome 36 (1997), pp. 1123-1153 | Article | MR 1445556 | Zbl 0887.58012
[3] Patterns and minimal dynamics for graph maps (2002) (Prepublicacions UAB) | Zbl 1082.37041
[4] Periodic orbits of maps of Y, Trans. Amer. Math. Soc., Tome 313 (1989), pp. 475-538 | Article | MR 958882 | Zbl 0803.54032
[5] Combinatorial dynamics and entropy in dimension one, World Scientific, second edition, Advanced Series in Nonlinear Dynamics, Tome 5 (2002) | MR 1807264 | Zbl 0963.37001
[6] Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergod. Th. & Dynam. Sys., Tome 5 (1985), pp. 501-517 | Article | MR 829854 | Zbl 0592.54037
[7] Generalizations of a theorem of Sharkovskii on orbits on continuous real -valued functions, Discrete Math., Tome 67 (1987), pp. 111-127 | Article | MR 913178 | Zbl 0632.06005
[8] An extension of Sharkovskii's Theorem to the -od, Ergod. Th. & Dynam. Sys., Tome 11 (1991), pp. 249-271 | Article | MR 1116640 | Zbl 0741.58010
[9] Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc., Tome 94 (1991) no. 456 | MR 1086562 | Zbl 0745.58019
[10] A formula for the topological entropy of one-dimensional dynamics, Sci. Papers College Gen. Ed. Univ. Tokyo, Tome 30 (1980), pp. 11-22 | MR 581221 | Zbl 0465.58023