Determinant formulae for some tiling problems and application to fully packed loops  [ Formules de déterminants pour quel\-ques problèmes de pavage et application aux modèles de boucles compactes ]
Annales de l'Institut Fourier, Tome 55 (2005) no. 6, p. 2025-2050
Quelques formules de déterminants sont données pour le dénombrement des pavages dans différents domaines, en relation avec les énumérations de matrices à signes alternés et de boucles compactes.
We present a number of determinant formulae for the number of tilings of various domains in relation with Alternating Sign Matrix and Fully Packed Loop enumeration.
DOI : https://doi.org/10.5802/aif.2150
Classification:  05A19,  52C20,  82B20
Mots clés: pavages, matrices à signes alternés, boucles compactes
@article{AIF_2005__55_6_2025_0,
     author = {Di Francesco, Philippe and Zinn-Justin, Paul and Zuber, Jean-Bernard},
     title = {Determinant formulae for some tiling problems and application to fully packed loops},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     pages = {2025-2050},
     doi = {10.5802/aif.2150},
     zbl = {1075.05007},
     mrnumber = {2187944},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_6_2025_0}
}
Di Francesco, Philippe; Zinn-Justin, Paul; Zuber, Jean-Bernard. Determinant formulae for some tiling problems and application to fully packed loops. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2025-2050. doi : 10.5802/aif.2150. http://www.numdam.org/item/AIF_2005__55_6_2025_0/

[1] M. Adler; P. Van Moerbeke Virasoro action on Schur function expansions, skew Young tableaux and random walks, Comm. Pure Appl. Math., Tome 58 (2005), pp. 362-408 | Article | MR 2116618 | Zbl 02136359

[2] M.T. Batchelor; J. De Gier; B. Nienhuis The quantum symmetric XXZ chain at Δ=-1 2, alternating sign matrices and plane partitions, J. Phys. A, Tome 34 (2001), p. L265-L270 | Article | MR 1836155 | Zbl 1028.82004

[3] D. Bressoud Proofs and confirmations. The story of the alternating sign matrix conjecture, Cambridge University Press (1999) | MR 1718370 | Zbl 0944.05001

[4] F. Caselli; C. Krattenthaler Proof of two conjectures of Zuber on fully packed loop configurations, J. Combin. Theory Ser. A, Tome 108 (2004), pp. 123-146 | Article | MR 2087309 | Zbl 1054.05005

[5] M. Ciucu; C. Krattenthaler Enumeration of lozenge tilings of hexagons with cut-off corners, J. Combin. Theory Ser. A, Tome 100 (2002), pp. 201-231 | Article | MR 1940333 | Zbl 1015.05006

[6] M. Ciucu; C. Krattenthaler; T. Eisenkölbl; D. Zare Enumeration of lozenge tilings of hexagons with a central triangular hole, J. Combin. Theory Ser. A, Tome 95 (2001), pp. 251-334 | Article | MR 1845144 | Zbl 0997.52010

[7] P. Di Francesco; P. Zinn-Justin; J.-B. Zuber A bijection between classes of fully packed loops and plane partitions, Electron. J. Combin., Tome 11 (2004) no. 1 | MR 2097330 | Zbl 1054.05010

[8] P. Di Francesco; J.-B. Zuber On FPL configurations with four sets of nested arches, JSTAT (2004) | Zbl 02131899

[9] J. De Gier Loops, matchings and alternating-sign matrices ((math.CO/0211285), http://arxiv.org/abs/math.CO/0211285) | Zbl 1070.05008

[10] J. Grassberger; A. King; P. Tirao On the homology of free 2-step nilpotent Lie algebras, J. Algebra, Tome 254 (2002), pp. 213-225 | Article | MR 1933866 | Zbl 1041.17024

[11] C. Krattenthaler Advanced determinant calculus, Séminaire Lotharingien Combin., Tome 42 (1999) | MR 1701596 | Zbl 0923.05007

[12] B. Lindström On the vector representations of induced matroids, Bull. London Math. Soc., Tome 5 (1973), pp. 85-90 | Article | MR 335313 | Zbl 0262.05018

[13] S. Mitra; B. Nienhuis Osculating random walks on cylinders, Discrete Mathematics and Computer Science Proceedings AC, pp. 259-264 in Discrete random walks, DRW'03 (2003) | MR 2042392 | Zbl 1035.82021

[14] S. Mitra; B. Nienhuis; J. De Gier; M.T. Batchelor Exact expressions for correlations in the ground state of the dense O(1) loop model, JSTAT (2004) | Zbl 02131934

[15] On-Line Encyclopedia of Integer Sequences (, http://www.research.att.com/~njas/sequences/Seis.html)

[16] P.A. Pearce; V. Rittenberg; J. De Gier Critical Q=1 Potts model and temperley-Lieb stochastic processes, Teor. Mat. Fiz., Tome 142 (2005), pp. 284-292

[17] A.V. Razumov; Yu.G. Stroganov Combinatorial nature of ground state vector of O(1) loop model, Theor. Math. Phys., Tome 138 (2004), pp. 333-337 | Article | MR 2077318 | Zbl 1178.82020

[18] B. Wieland A large dihedral symmetry of the set of alternating-sign matrices, Electron. J. Combin., Tome 7 (2000) | MR 1773294 | Zbl 0956.05015