Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions  [ Étude numé\-rique du modèle 6-vertex avec des conditions aux limites sur les bords parois des domaines ]
Annales de l'Institut Fourier, Tome 55 (2005) no. 6, p. 1847-1869
Nous construisons un processus de Markov qui converge vers un état aléatoire du modèle 6- vertex. Ensuite, nous l’utilisons pour faire apparaître la création dans la phase antiferromagnétique d’une goutelette constituée de sommets de type c et dont la forme possède 4 pointes.
A Markov process converging to a random state of the 6-vertex model is constructed. It is used to show that a droplet of c-vertices is created in the antiferromagnetic phase and that the shape of this droplet has four cusps.
DOI : https://doi.org/10.5802/aif.2144
Classification:  82-08,  82B20,  82B23
Mots clés: 6-vertex, chaîne de Markov, échantillonnage aléatoire, Monte Carlo
@article{AIF_2005__55_6_1847_0,
     author = {Allison, David and Reshetikhin, Nicolai},
     title = {Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     pages = {1847-1869},
     doi = {10.5802/aif.2144},
     zbl = {02230060},
     mrnumber = {2187938},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2005__55_6_1847_0}
}
Allison, David; Reshetikhin, Nicolai. Numerical stu\-dy of the 6-vertex model with domain wall boundary conditions. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 1847-1869. doi : 10.5802/aif.2144. http://www.numdam.org/item/AIF_2005__55_6_1847_0/

[1] H. Cohn; M. Larsen; J. Propp The shape of a typical boxed plane partition, New York J. Math., Tome 4 (1998), pp. 137-165 | MR 1641839 | Zbl 0908.60083

[2] H. Cohn; N. Elkis; J. Propp Local statistics of random domino tilings of the Aztec diamons, Duke Math. J., Tome 85 (1996), pp. 117-166 | MR 1412441 | Zbl 0866.60018

[3] R.J. Baxter Exactly Solved Models in Statistical Mechanics, Academic Press, San Diego (1982) | MR 690578 | Zbl 0538.60093

[4] K. Eloranta Diamond Ice, J. Statist. Phys., Tome 96 (1999) no. 5-6, pp. 1091-1109 | MR 1722988 | Zbl 01404169

[5] A. Izergin Partition function of the 6-vertex model in a finite volume, Sov. Phys. Dokl., Tome 32 (1987), p. 878-879 | Zbl 0875.82015

[6] R. Kenyon An introduction to the dimer models (math.CO/0310326, http://arxiv.org/abs/math.CO/0310326) | Zbl 1076.82025

[7] V. Korepin; P. Zinn-Justin Thermodynamic limit of the six-vertex model withdomain wall boundary conditions (cond–mat/0004250, http://arxiv.org/abs/cond-mat/0004250) | Zbl 0956.82008

[8] V.E. Korepin Calculation of norms of Bethe wave functions, Comm. Math. Phys., Tome 86 (1982) no. 3, pp. 391-418 | Article | MR 677006 | Zbl 0531.60096

[9] G. Kuperberg Another proof of the alternating-sign matrix conjecture, Int. Math. Res. Notes, Tome 3 (1996), pp. 139-150 | MR 1383754 | Zbl 0859.05027

[10] E. Lieb; F. Wu; C. Domb And M.S. Green Two dimensional ferroelectric models, Phase transitions and critical phenomena, Academic Press (1972)

[11] R. Kenyon; A. Okounkov; S. Sheffield Dimers and amoebae (math–ph/0311005, http://arxiv.org/abs/math-ph/0311005) | Zbl 05051319

[12] A. Okounkov; N. Reshetikhin Random skew plane partitions and the Pearcey process (math.CO/0503508, http://arxiv.org/abs/math.CO/0503508)

[13] A. Okounkov; N. Reshetikhin Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc., Tome 16 (2003) no. 3, pp. 581-603 | Article | MR 1969205 | Zbl 1009.05134

[14] J. Propp; D. Wilson Coupling from the past: a user's guide, Microsurveys in Discrete Probability (Princeton, NJ, 1997), AMS (DIMACS Ser. Discrete Math. Theoret. Comp. Sci.) Tome 41 (1998), pp. 181-192 | Zbl 0916.65147

[15] A. Sinclair Algorithms for Random Generation and Counting, Birkhauser, Boston (1993) | MR 1201590 | Zbl 0780.68096

[16] O.F. Syljuasen; M.B. Zvonarev Directed-loop Monte Carlo simulations of vertex models (cond-mat/0401491)

[17] A.V. Razumov; Yu. Stroganov Combinatorial structure of the ground state of O(1) loop model (math.CO/0104216, http://arxiv.org/abs/math.CO/0104216)

[18] Asymptotic combinatorics withapplications to mathematical physics, Springer, (ed. by A.M. Vershik), Tome 1815 (2003) | Zbl 1014.00010

[19] P. Zinn-Justin Six-vertex model with domain wall boundary conditions and one-matrix model, Phys. Rev. E, Tome 62 (2000) no. 3, part A, pp. 3411-3418 | Article | MR 1788950

[20] J.-B. Zuber On the counting of fully packed loop configurations. Some new conjectures (math-ph/0309057, http://arxiv.org/abs/math-ph/0309057) | Zbl 1054.05011