The definition of the Kobayashi-Royden pseudo-metric for almost complex manifolds is similar to its definition for complex manifolds. We study the question of completeness of some domains for this metric. In particular, we study the completeness of the complement of submanifolds of co-dimension 1 or 2. The paper includes a discussion, with proofs, of basic facts in the theory of pseudo-holomorphic discs.
La pseudo-métrique de Kobayashi-Royden est définie pour les variétés presque complexes de façon similaire au cas complexe. Nous étudions quels domaines sont complets pour cette métrique, en particulier nous étudions le complément de sous variétés de co-dimension 1 ou 2. Le papier inclut une discussion, avec preuves, de faits à la base de la théorie des disques pseudo-holomorphes.
Keywords: Kobayashi-Royden pseudo-norm, almost complex manifolds, Schwarz Lemmas, complete hyperbolicity
Mot clés : pseudo-métrique de Kobayashi-Royden, variétés presque complexes, lemmes de Schwarz, hyperbolicité complète
@article{AIF_2004__54_7_2387_0, author = {Ivashkovich, Sergey and Rosay, Jean-Pierre}, title = {Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2387--2435}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {7}, year = {2004}, doi = {10.5802/aif.2084}, mrnumber = {2139698}, zbl = {1072.32007}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2084/} }
TY - JOUR AU - Ivashkovich, Sergey AU - Rosay, Jean-Pierre TI - Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds JO - Annales de l'Institut Fourier PY - 2004 SP - 2387 EP - 2435 VL - 54 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2084/ DO - 10.5802/aif.2084 LA - en ID - AIF_2004__54_7_2387_0 ER -
%0 Journal Article %A Ivashkovich, Sergey %A Rosay, Jean-Pierre %T Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds %J Annales de l'Institut Fourier %D 2004 %P 2387-2435 %V 54 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2084/ %R 10.5802/aif.2084 %G en %F AIF_2004__54_7_2387_0
Ivashkovich, Sergey; Rosay, Jean-Pierre. Schwarz-type lemmas for solutions of $\bar{\partial }$-inequalities and complete hyperbolicity of almost complex manifolds. Annales de l'Institut Fourier, Volume 54 (2004) no. 7, pp. 2387-2435. doi : 10.5802/aif.2084. http://www.numdam.org/articles/10.5802/aif.2084/
[B-M] Regular type of real hypersurfaces in (almost) complex manifolds (2003) (e-print, ArXiv:math.DG/0304146) | Zbl
[Ba] Existence of a complex line in tame almost complex tori, Duke Math. J, Volume 94 (1998) no. 1, pp. 29-40 | DOI | MR | Zbl
[Be] Characterization of models in by their automorphism groups, Int. J. Math, Volume 5 (1994), pp. 619-634 | DOI | MR | Zbl
[C-G] Complex Dynamics, UTM, Springer Verlag, 1993 | MR | Zbl
[D-I] Complete hyperbolic neighborhoods in almost complex surfaces, Int. J. Math, Volume 12 (2001), pp. 211-221 | DOI | MR | Zbl
[De-1] Kobayashi hyperbolicity of almost complex manifolds (1998) (e-print, math.CV/9805130)
[De-2] Variétés hyperboliques presque-complexes (2001) (Thèse, Université de Lille I)
[Do] Symplectic submanifolds and almost-complex geometry, J. Differential Geom, Volume 44 (1996) no. 4, pp. 666-705 | MR | Zbl
[Du] Un théorème de Green presque complexe (e-print, math.CV/0311299)
[G-S] Estimates of the Kobayashi metric on almost complex manifolds (to appear in Bull. SMF) | Numdam | Zbl
[Gr] Pseudoholomorphic curves in symplectic manifolds, Invent. Math, Volume 82 (1985), pp. 307-347 | DOI | EuDML | MR | Zbl
[Ha] Fonctions PSH sur une variété presque complexe, C. R. Acad. Sci. Paris, Sér. I, Volume 335 (2002), pp. 509-514 | MR | Zbl
[Hö] The Analysis of Linear Partial Differential Operators III, Grund. der math. Wis., 274, Springer-Verlag, Berlin Heidelberg, 1985 | MR | Zbl
[I-P-R] Upper semi-continuity of the Royden-Kobayashi pseudo-norm, a counterexample for Hölderian almost complex structures (to appear in Arkiv for Mat) | Zbl
[IS-1] Structure of the moduli space in a neighborhood of a cusp curve and meromorphic hulls, Invent. Math, Volume 136 (1999), pp. 571-602 | DOI | MR | Zbl
[IS-2] Complex Curves in Almost-Complex Manifolds and Meromorphic Hulls, Publication Series of Graduiertenkollegs "Geometrie und Mathematische Physik" of the Ruhr-University Bochum (1999) no. 36, pp. 1-186
[K] Existence of Close Pseudoholomorphic Disks for Almost Complex Manifolds and an Application to the Kobayashi-Royden Pseudonorm, Funct. Anal. and Appl, Volume 33 (1999), pp. 38-48 | DOI | MR | Zbl
[K-O] Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl, Volume 11 (1999), pp. 265-277 | DOI | MR | Zbl
[Ki] Hyperbolically Imbedded Spaces and Big Picard Theorem, Math. Ann, Volume 204 (1973), pp. 203-209 | DOI | EuDML | MR | Zbl
[M] Multidimensional Singular Equations and Integral Equations, Pergamon Press (1955)
[McD] Symplectic manifolds with contact type boundaries, Invent. Math, Volume 103 (1991), pp. 651-671 | DOI | EuDML | MR | Zbl
[McD-S] -holomorphic curves and quantum cohomology, Univ. Lect. Series AMS, Volume 6 (1994) | MR | Zbl
[N-W] Some integration problems in almost complex and complex manifolds, Ann. of Math, Volume 77 (1963), pp. 424-489 | DOI | MR | Zbl
[P] Fonctions plurisousharmoniques et courants positifs de type (1,1) sur une variété presque complexe (e-print, Math. DG/0402029) | Zbl
[R] The Extension of Regular Holomorphic Maps, Proc. A.M.S, Volume 43 (1974), pp. 306-310 | DOI | MR | Zbl
[Si] Some properties of holomorphic curves in almost complex manifolds, Holomorphic Curves in Symplectic Geometry (1994), pp. 351-361
[St] Singular Integrals and Differentiability Properties of Functions, Princeton U.P, 1970 | MR | Zbl
[Za] Picard's theorem and hyperbolicity, Siberian Math. J., Volume 24 (1983), pp. 858-867 | DOI | MR | Zbl
Cited by Sources: