Correspondence homomorphisms for singular varieties
Annales de l'Institut Fourier, Volume 44 (1994) no. 3, pp. 703-727.

We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.

Nous étudions la notion de correspondance géométrique entre des variétés algébriques (éventuellement singulières) et nous obtenons des résultats de comparaison entre plusieurs filtrations naturelles de l’homologie des variétés.

@article{AIF_1994__44_3_703_0,
     author = {Friedlander, Eric M. and Mazur, Barry},
     title = {Correspondence homomorphisms for singular varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {703--727},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {44},
     number = {3},
     year = {1994},
     doi = {10.5802/aif.1415},
     zbl = {0811.14007},
     mrnumber = {95j:14009},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1415/}
}
TY  - JOUR
AU  - Friedlander, Eric M.
AU  - Mazur, Barry
TI  - Correspondence homomorphisms for singular varieties
JO  - Annales de l'Institut Fourier
PY  - 1994
DA  - 1994///
SP  - 703
EP  - 727
VL  - 44
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1415/
UR  - https://zbmath.org/?q=an%3A0811.14007
UR  - https://www.ams.org/mathscinet-getitem?mr=95j:14009
UR  - https://doi.org/10.5802/aif.1415
DO  - 10.5802/aif.1415
LA  - en
ID  - AIF_1994__44_3_703_0
ER  - 
%0 Journal Article
%A Friedlander, Eric M.
%A Mazur, Barry
%T Correspondence homomorphisms for singular varieties
%J Annales de l'Institut Fourier
%D 1994
%P 703-727
%V 44
%N 3
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.1415
%R 10.5802/aif.1415
%G en
%F AIF_1994__44_3_703_0
Friedlander, Eric M.; Mazur, Barry. Correspondence homomorphisms for singular varieties. Annales de l'Institut Fourier, Volume 44 (1994) no. 3, pp. 703-727. doi : 10.5802/aif.1415. http://www.numdam.org/articles/10.5802/aif.1415/

[AF] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2) 69 (1959), 713-717. | MR | Zbl

[B] D. Barlet, Notes on the “Joint Theorem”, preprint, Institut Elie Cartan, Université Nancy, 1991.

[D] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. | MR | Zbl

[DT] A. Dold and R. Thom, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math., (2) 67 (1958), 239-281. | MR | Zbl

[F1] E. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Mathematica, 77 (1991), 55-93. | EuDML | Numdam | MR | Zbl

[F2] E. Friedlander, Filtrations on algebraic cycles and homology, to appear in Ann. Ec. Norm. Sup. | EuDML | Numdam | MR | Zbl

[FG] E. Friedlander and O. Gabber, Cycle spaces and intesection theory, in Topological Methods in Modern Mathematics, Publish or Perish 1993, 325-370. | MR | Zbl

[FL] E. Friedlander and H. B. Lawson, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. | MR | Zbl

[FM] E. Friedlander and B. Mazur, Filtrations on the homology of algebraic varieties, to appear as a Memoir of the A.M.S. | MR | Zbl

[G] A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology, 8 (1969), 299-303. | MR | Zbl

[H] H. Hironaka, Triangulation of algebraic sets, pp. 165-185, in Algebraic Geometry, Arcata 1974 : Proceedings of a Symposium in Pure Mathematics 29, A.M.S. Providence, 1975. | MR | Zbl

[L] H. B. Lawson, Algebraic cycles and homotopy theory, Annals of Math., 129 (1989), 253-291. | MR | Zbl

[LM] H. B. Lawson and M. L. Michelsohn, Algebraic cycles, Bott periodicity, and the Chern characteristic map, The Mathematical Heritage of Herman Weyl, AMS 1988, 241-264. | MR | Zbl

[LF] P. Lima-Filho, Completion and fibrations for topological monoids and excision for Lawson homology, Trans. A.M.S., 340, n° 1 (1993), 127-147. | MR | Zbl

[MS] D. Mcduff and G. Segal, Homology fibrations and the “group completion” theorem, Inventiones Math., 31 (1967), 279-284. | MR | Zbl

[M] J. Milnor, On spaces having the homotopy type of a CW complex, Trans. A.M.S., 90 (1959), 272-280. | MR | Zbl

[MM] J. Milnor and J. Moore, On the structure of Hopf algebras, Annals of Math., (2) 81 (1965), 211-264. | MR | Zbl

[V] V. Voevodsky, Harvard Ph. D Thesis, 1992.

Cited by Sources: