On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions
Annales de l'Institut Fourier, Volume 44 (1994) no. 2, p. 433-463

In this paper, we show that if M 1 and M 2 are algebraic real hypersurfaces in (possibly different) complex spaces of dimension at least two and if f is a holomorphic mapping defined near a neighborhood of M 1 so that f(M 1 )M 2 , then f is also algebraic. Our proof is based on a careful analysis on the invariant varieties and reduces to the consideration of many cases. After a slight modification, the argument is also used to prove a reflection principle, which allows our main result to be stated for mappings that are holomorphic on one side and C k+1 smooth up to M 1 where k is the codimension.

Dans cet article nous montrons que si M 1 et M 2 sont des hypersurfaces algébriques réelles dans deux espaces complexes de dimension 2 et si f est une fonction holomorphe, définie dans un voisinage de M 1 , de manière à ce que f(M 1 )M 2 , alors f est aussi algébrique. Notre preuve est basée sur une analyse précise des variétés invariantes et se réduit à la considération de nombreux cas. Après une légère modification, notre argument est aussi utilisé pour prouver un principe de réflexion, qui permet une extension de notre théorème principal aux fonctions holomorphes d’un côté de M 1 et de classe C k+1 , où k est la codimension.

@article{AIF_1994__44_2_433_0,
     author = {Huang, Xiaojun},
     title = {On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {44},
     number = {2},
     year = {1994},
     pages = {433-463},
     doi = {10.5802/aif.1405},
     zbl = {0803.32011},
     mrnumber = {95i:32030},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1994__44_2_433_0}
}
Huang, Xiaojun. On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions. Annales de l'Institut Fourier, Volume 44 (1994) no. 2, pp. 433-463. doi : 10.5802/aif.1405. http://www.numdam.org/item/AIF_1994__44_2_433_0/

[Al] H. Alexander, Holomorphic mappings from ball and polydisc, Math. Ann., 209 (1974), 245-256. | MR 50 #5018 | Zbl 0272.32006

[BBR] S. Baouendi, S. Bell, and L. Rothschild, Mappings of three-dimensional CR manifolds and their holomorphic extension, Duke Math. J., 56 (1988), 503-530. | MR 90a:32035 | Zbl 0655.32015

[BR] S. Baouendi and L. Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math., 93 (1988), 481-500. | MR 90a:32036 | Zbl 0653.32020

[Be] E. Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. | MR 85b:32041 | Zbl 0534.32009

[BN] S. Bell and R. Narasimhan, Proper holomorphic mappings of complex spaces, EMS 69, Several Complex Variables VI (edited by W. Barth and R. Narasimhan), Springer-Verlag, 1990. | MR 92m:32046 | Zbl 0733.32021

[BM] S. Bochner and W. T. Martin, Several Complex Variables, Princeton University Press, 1948. | MR 10,366a | Zbl 0041.05205

[CS1] J. Cima and T. J. Suffrige, A reflection principle with applications to proper holomorphic mappings, Math Ann., 265 (1983), 489-500. | MR 84m:32033 | Zbl 0525.32021

[CKS] J. Cima, S. Krantz, and T. J. Suffrige, A reflection principle for proper holomorphic mappings of strictly pseudoconvex domains and applications, Math. Z., 186 (1984), 1-8. | Zbl 0518.32009

[DF1] K. Diederich and E. Fornaess, Proper holomorphic mappings between real-analytic domains in Cn, Math. Ann., 282 (1988), 681-700. | Zbl 0661.32025

[DF2] K. Diederich and E. Fornaess, Applications holomorphes propres entre domaines à bord analytique réel, C.R.A.S., Ser.I-Math., 307, No7 (1988), 321-324. | MR 89i:32052 | Zbl 0656.32013

[Fa1] J. Faran, A reflection principle for proper holomorphic mappings and geometric invariants, Math. Z., 203 (1990), 363-377. | MR 90k:32082 | Zbl 0664.32021

[Fa2] J. Faran, Maps from the two ball to the three ball, Invent Math., 68 (1982), 441-475. | MR 83k:32038 | Zbl 0519.32016

[Fe] C. Fefferman, The Bergman kernel and biholomorphic mappings pseudo-convex domains, Invent. Math., 26 (1974), 1-65. | MR 50 #2562 | Zbl 0289.32012

[Fr1] F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math., 95 (1989), 31-62. | MR 89j:32033 | Zbl 0633.32017

[Fr2] F. Forstneric, A survey on proper holomorphic mappings, Proceeding of Year in SCVs at Mittag-Leffler Institute, Math. Notes 38, Princeton, NJ : Princeton University Press, 1992.

[Le] H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz., Lincei, 3 (1977), 1-8.

[Kr] S. Krantz, Function Theory of Several Complex Variables, 2nd Ed., Wadsworth Publishing, Belmont, 1992. | MR 93c:32001 | Zbl 0776.32001

[Pi] Pinchuk, On analytic continuation of biholomorphic mappings, Mat. USSR Sb., 105 (1978), 574-593.

[Po] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Ren. Cire. Mat. Palermo, II. Ser. 23 (1907), 185-220. | JFM 38.0459.02

[Ta] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan, 14 (1962), 397-429. | MR 26 #3086 | Zbl 0113.06303

[We1] S. H. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math., 43 (1977), 53-68. | MR 57 #3431 | Zbl 0348.32005

[We2] S. H. Webster, On mappings an (n + 1)-ball in the complex space, Pac. J. Math., 81 (1979), 267-272. | MR 81h:32022 | Zbl 0379.32018