Unités cyclotomiques, unités semi-locales et -extensions
Annales de l'Institut Fourier, Volume 29 (1979) no. 1, pp. 49-79.

Let K be a real abelian number field, a prime number which does not divide [K:Q] and K the Z -extension of K. This paper uses a conjecture of J. Coates and S. Lichtenbaum (or for =2 an analogous conjecture which is stated and discussed) to study the decomposition, with respect to the action of the Galois group of K/Q, of the -part of the analytical formula for the class number of any layer of K /K. For this purpose, let Φ be a -adic irreducible character, then we prove a formula about the Φ-part of the quotient of the group of semi-local units be a subgroup deduced from the group of cyclotomic units.

Soient K un corps abélien réel, un nombre premier, premier au degré de K/Q. Cet article utilise une conjecture de J. Coates et S. Lichtenbaum (ou une conjecture analogue pour =2, qu’il énonce et discute) pour étudier, pour chaque étage de la Z -extension de K, la décomposition de la -partie de la formule analytique du nombre de classes suivant l’action du groupe de Galois de K/Q. Pour cela, est établie une formule sur la Φ-composante (Φ-caractère -adique irréductible) du quotient du groupe des unités semi-locales par un sous-groupe déduit de celui des unités cyclotomiques.

@article{AIF_1979__29_1_49_0,
     author = {Gillard, Roland},
     title = {Unit\'es cyclotomiques, unit\'es semi-locales et ${\mathbb {Z}}_\ell $-extensions},
     journal = {Annales de l'Institut Fourier},
     pages = {49--79},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {29},
     number = {1},
     year = {1979},
     doi = {10.5802/aif.727},
     mrnumber = {81e:12005a},
     zbl = {0387.12002},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.727/}
}
TY  - JOUR
AU  - Gillard, Roland
TI  - Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions
JO  - Annales de l'Institut Fourier
PY  - 1979
SP  - 49
EP  - 79
VL  - 29
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.727/
DO  - 10.5802/aif.727
LA  - fr
ID  - AIF_1979__29_1_49_0
ER  - 
%0 Journal Article
%A Gillard, Roland
%T Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions
%J Annales de l'Institut Fourier
%D 1979
%P 49-79
%V 29
%N 1
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.727/
%R 10.5802/aif.727
%G fr
%F AIF_1979__29_1_49_0
Gillard, Roland. Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. Annales de l'Institut Fourier, Volume 29 (1979) no. 1, pp. 49-79. doi : 10.5802/aif.727. http://www.numdam.org/articles/10.5802/aif.727/

[1] J. Coates et S. Lichtenbaum, On l-adic zeta functions, Annals of Maths, vol. 98, n° 3, pp. 498-550. | MR | Zbl

[2] B. Ferrero, Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978). | MR | Zbl

[3] A. Fröhlich, Ideals in a extension field as modules..., Math. Zeit., 74 (1960), 29-38. | Zbl

[4] R. Gillard, Sur le groupe des classes des extensions abéliennes réelles, Séminaire Delange-Pisot-Poitou, exposé du 3.1.77. | Numdam | Zbl

[5] R. Gillard, Unités cyclotomiques et Zl-extensions, Séminaire de théorie des nombres de Bordeaux, 25 mars 1977. | Zbl

[6] G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. de l'Inst. Fourier, t. 27, n° 1 (1977), 1-66. | Numdam | MR | Zbl

[7] G. Gras, Etude d'invariants relatifs aux groupes des classes des corps abéliens, Journées arithmétiques de Caen (1976), Astérisque, n° 41-42 (1977), 35-53. | Numdam | MR | Zbl

[8] R. Greenberg, On p-adic L functions and cyclotomic fields II, Nagoya Math. J., 67 (1977). | MR | Zbl

[9] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, Berlin, 1952. | Zbl

[10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. math. Sem. Hamburg, t. 20 (1956), 257-258. | MR | Zbl

[11] K. Iwasawa, On some properties of Γ finite modules, Annals of Maths., vol. 70, n° 2, (1959), 291-312. | MR | Zbl

[12] K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univ. Press. | MR | Zbl

[13] K. Iwasawa, On Zl-extensions of algebraic number fields, Annals of Maths, vol. 98 (1973), 246-326. | MR | Zbl

[14] H. Leopoldt, Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abh. Deutsche Akad. Wiss., Berlin, 2 (1954). | Zbl

[15] H. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine angew. Math., 201 (1959), 119-149. | MR | Zbl

Cited by Sources: