On the existence of probability measures with given marginals
Annales de l'Institut Fourier, Volume 28 (1978) no. 4, p. 53-78

Let X be a compact ordered space and let μ,ν be two probabilities on X such that μ(f)ν(f) for every increasing continuous function f:XR. Then we show that there exists a probability θ on X×X such that

(i) θ(R)=1, where R is the graph of the order in X,

(ii) the projections of θ onto X are μ and ν.

This theorem is generalized to the completely regular ordered spaces of Nachbin and also to certain infinite products. We show how these theorems are related to certain results of Nachbin, Strassen and Hommel.

Soit X un espace compact ordonné et soient μ,ν deux probabilités sur X telles que μ(f)ν(f) pour toute fonction croissante continue f:XR. Alors nous démontrons qu’il existe une probabilité θ sur X×X telle que :

(i) θ(R)=1, où R est le graphe de l’ordre sur X,

(ii) les projections de θ sur X sont μ et ν.

On généralise ce théorème aux espaces complètement réguliers ordonnés de Nachbin et, en plus, à certains produits infinis. On met en évidence les relations entre ces résultats et les travaux de Nachbin, Strassen et Hommel.

     author = {Edwards, David Albert},
     title = {On the existence of probability measures with given marginals},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {28},
     number = {4},
     year = {1978},
     pages = {53-78},
     doi = {10.5802/aif.717},
     zbl = {0377.60004},
     mrnumber = {81i:28009},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1978__28_4_53_0}
Edwards, David Albert. On the existence of probability measures with given marginals. Annales de l'Institut Fourier, Volume 28 (1978) no. 4, pp. 53-78. doi : 10.5802/aif.717. http://www.numdam.org/item/AIF_1978__28_4_53_0/

[1] A. Badrikian, Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, Springer-Verlag, Berlin, 1970. | MR 43 #4994 | Zbl 0209.48402

[2] D. A. Edwards, Choquet boundary theory for certain spaces of lower semicontinuous functions, in Function algebras, Scott Foresman and Co., Chicago 1966. | MR 33 #4708 | Zbl 0145.38601

[3] D. A. Edwards, Measures on product spaces and the Holley-Preston inequalities, Bull. Lond. Math. Soc., 8 (1976), 7.

[4] D. A. Edwards, On the Holley-Preston inequalities, to appear in Proc. Roy. Soc. of Edinburgh, Section A (Mathematics). | Zbl 0387.28019

[5] G. Hommel, Increasing Radon measures on locally compact ordered spaces, Rendiconti di Matematica, 9 (1976), 85-117. | MR 53 #13504 | Zbl 0393.28014

[6] J. H. B. Kemperman, On the FKG-inequality for measures on a partially ordered space (to appear). | Zbl 0384.28012

[7] L. Nachbin, Topology and order, van Nostrand, Princeton, 1965. | Zbl 0131.37903

[8] C. J. Preston, A generalization of the FKG inequalities, Commun. Math. Phys., 36 (1974), 233-241.

[9] H. A. Priestley, Separation theorems for semi-continuous functions on normally ordered topological spaces, J. Lond. Math. Soc., 3 (1971), 371-377. | MR 43 #3999 | Zbl 0207.21203

[10] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist., 36 (1965), 432-439. | MR 31 #1693 | Zbl 0135.18701

[11] G. F. Vincent-Smith, Filtering properties of wedges of affine functions, Journ. Lond. Math. Soc., 8 (1974), 621-629. | MR 50 #14148 | Zbl 0312.46018