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EXISTENCE DE CERTAINES
CONNEXIONS PLATES INVARIANTES

SUR LES GROUPES DE LIE
par G. GIRAUD et A. MEDINA

0. Introduction.

Soit G un groupe de Lie réel ou complexe d'algèbre de
Lie g. La donnée d'une connexion invariante, réelle ou
complexe, sur G, équivaut à la donnée d'une applicatioù,
R ou C-linéaire, V : g —^ gl(g)- Une telle connexion est
(localement) plate, c'est-à-dire de courbure et torsion nulles,
si V est un homomorphisme d'algèbre de Lie et

V(x)y — ^{y)x == [x, y] ,

pour tout x, y e g. On peut donc dire que la donnée d'une
connexion linéaire invariante plate, V, n'est que la donnée
d'un homomorphisme d'algèbre de Lie,

e : g -> g e gi(g) (Q{x) = {x, vj, x e g)
où g © gl(g) est l'algèbre affine de g.

Si 6 est un tel homomorphisme le produit x.y = ̂ (x}y
fait de g une algèbre vérifiant :

(1) x . { y . z ) — ( x . y ) . z = y . ( x . z ) — { y . x ) . z

dont l'algèbre des commutateurs est l'algèbre de Lie de départ.
Une structure d'algèbre satisfaisant la propriété (1) est appelée
une structure symétrique à gauche ([6]). Réciproquement si
l'algèbre g est l'algèbre de Lie des commutateurs (dite sous-
jacente) d'une telle algèbre, l'application x -> (rc, LJ où
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234 G. GIRAUD ET A. MEDINA

Lyî/ == x,y est un homomorphisme d'algèbre de Lie et définit
donc une connexion linéaire plate invariante sur G.

Dans cet article on s'intéresse aux algèbres de Lie admettant
une structure d'algèbre symétrique à gauche dont l'endo-
morphisme 6 est à valeurs dans g © ad (g), puis plus
généralement dans g © Derg. Dans le premier cas les théo-
rèmes A et B donnent une caractérisation de ces algèbres.
Dans le deuxième cas, le théorème C assure que les algèbres
de Lie qui admettent ce type de structure sont résolubles.
Dire que 6 est à valeurs dans g © ad (g) (resp. g © Der (g))
équivaut, géométriquement, à dire que la connexion, associée
à 6, est adaptée à une Int (g)-structure (resp. Aut (g)-
structure) invariante à gauche sur G obtenue en faisant
opérer le groupe Int (g) (resp. Aut (g)) sur un parallélisme
invariant à gauche.

Une condition plus faible que l'existence d'une connexion
invariante plate adaptée à une Int (g)-structure est évidem-
ment la platitude de cette structure (au sens de la théorie
des G-structures). Si l'on remarque que la 0-connexion de
Cartan est adaptée à une telle structure, on peut interpréter
la 1-platitude par l'existence sur g d'une structure d'algèbre
appelée ici de « type ^\ » (§ 1). La propriété

((u ^ ^) ^ w — w ^ (u -x- ^) == (u -X- w) * P — ^ * (u * w))

définissant ce type d'algèbre n'est que la traduction du fait
que la courbure de la 0-conexion est un cobord dans la coho-
mologie de Spencer de ad (g). Nous montrons que l'algèbre
de Lie sous-jacente à une structure de « type ^i » est résoluble
(proposition 1.2). Ceci provient du fait que la propriété de
1-platitude dans les cas considérés, d'une part passe au quotient
par le radical, d'autre part n'est pas vérifiée si le groupe de Lie
est semi-simple.

Au paragraphe 2 on explicite les liens algébriques existant
entre les structures de « type ^i )> et celles à associateur
symétrique à gauche définies par un 6 à valeurs dans
g ® ad (g).

1.

Dans ce papier toutes les algèbres considérées sont réelles
ou complexes de dimension finie.
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Une structure d'algèbre notée * sur g est dite de type
(^i) si elle vérifie

(2) (u ^ ^) * w — w * (u * v} = (u * w) ^ v — y ^ (u * w)

quels que soient M, ^, w, e, g.
L'algèbre des commutateurs d'une telle algèbre est une

algèbre de Lie.
La relation (2) peut s'écrire aussi :

[u ^ ̂  w} = [u * w, ^] ou ad^, e (ad (g))C1)

Or sur une algèbre de Lie semi-simple adg (isomorphe à g)
respectant la forme de Killing qui est non dégénérée :

(ad (g))d) = 0 (voir [5]).

Ainsi une algèbre de Lie semi-simple ne peut être sous-jacente
à une structure de type (^i).

g étant l'algèbre de Lie des commutateurs d'une structure
de type (^i), supposons que g s'écrive A © m où A est
une sous-algèbre de Lie de g et m un supplémentaire de h
dans g vérifiant [A, m] c rn\ le produit de type (^i)
induit alors un produit de même nature sur h.

En effet posons :
u o ^ = (u ^ ̂  pour u et v dans h où (u ^ (^ dénote

la projection de u -x- ^ sur h parallèlement à m.
La relation (2), sous sa forme

[u * ^, w} == [u * w, p]
donne :

[u o v, w~\ == [{u -x- (̂ , w} = [u * p, w}= [u^ w, ^]
== [(M -x. w)/,, ^] == [u o w, U]

On tire alors comme conséquence :

PROPOSITION 1.1. — Une algèbre de Lie réelle est algèbre
de Lie sous-jacente à une algèbre de type (^\) si et seulement
si il en est de même de sa complexifiée.

En effet g est réductive dans sa complexifiée.
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Plus encore, on a :

PROPOSITION 1.2. — L'algèbre de Lie sous'jacente à une
algèbre de type (^i) est nécessairement résoluble.

Comme une algèbre de Lie semi-simple n'est pas sous-
jacente à une structure de type (^i), il suffira de prendre la
décomposition de Levi de g pour constater que g coïncide
avec son radical.

Noter aussi qu'un sous-groupe maximal compact étant
réductif dans le groupe, on pourra assurer qu'un sous-groupe
compact maximal d'un groupe de Lie dont l'algèbre de Lie
est sous-jacente à une structure de type (^i) est un toroïde.

2.

PROPOSITION 2.1. — Si un groupe de Lie réel (resp. complexe)
G admet une connexion plate invariante réelle (resp. complexe)
dont la 1-forme prend ses valeurs dans ad (g) alors G est
résoluble,

Démonstration. — L'algèbre de Lie g de G est munie
d'une structure d'algèbre à associateur symétrique à gauche
u.v = adj-(n)^ où f G End (g); ceci équivaut à l'existence d'un
endomorphisme f d'espace vectoriel vérifiant

(3) [u, p] = [/-(u), p] + [u, /•(?)]
(3') [f[u,^,w]=[[f{u),fW,^]

quels que soient u, p, w e g.
Soit D une dérivation de l'algèbre de Lie g, la relation (3)

donne :

[Du, p] + [u, Dp] = [D/(u), p] + [f{u), DP]
+ [Du, /"(?)] + [u, DfW

or
[/•(u), Dp] = [u, Dp] - [u, /-DP]

[Du, /•(?)]= [Du, p] - [fDu, p]
il vient :

{[D/-(w), p] - [fDu, ?]} - {[u, /•DP] - [u, D/-(P)]} = 0
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donc
[[D, f]{u)^] = [uj/; DM - [[D, f]^ u]

En particulier pour D = ad^^ on aura [[ad^^), /']?, w\
symétrique en v et w.

[ad )̂, /"^ = [u + 2Au), /•(P)] -7 [u + 2/*(u), p]
- [^ fW + 2[Au), /•(P)] - 2^[u, ^ - /l{2[/•(u), ^] - [u, p]}
= -̂  ̂  _ /-(^ 4- ^) + 2[Au), A^)] - 2/1 [u, „].

Mais [f(u), f(^)]—f [u, ^] appartenant au centre de g
d'après (37), l'expression — ^u — f(w + pu) vérifie encore
[— vu — f{w + ^u), w] symétrique en ^ et w.

u ^ p == — vu — f(w + pu)

définie un produit de type (^i) car

u * p — p ^ u === — vu + UP == [u, p] et [u * p, w]

est symétrique en p et w. L'assertion découle alors de la
proposition 1.2.

3.

Étudions les algèbres de Lie qui sont sous-jacentes à une
structure d'algèbre à associateur symétrique à gauche du
type : U . P = Qidj-^'yfe End. (g). L'endomorphisme f vérifie
donc

[u, p] == y(u), ̂ ]+ [", /•(?)].

Considérons d'abord le cas particulier où f est un auto-
morphisme de g.

PROPOSITION 3.1. — g est munie d^une structure à associateur
symétrique u.v === ad^-^p où f est un automorphisme £algèbre
de Lie si et seulement si g est 2-nilpotente.

L'inverse de / 'vérifie la relation:

/'- l([^2/])=y- l^),2/]+[^/- l(y)]
et, est aussi un homomorphisme d'algèbre de Lie. La démons-
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tration de la proposition est évidente à partir du lemme sui-
vant :

LEMME 3.1. — Une algèbre de Lie admet un automorphisme
qui est une dérivation si et seulement si elle est 2-nilpotente.

Soit a un tel automorphisme et g == Sg^. la décomposition
primaire de g (ou de sa complexifiée si g réelle) relative à a.
Le fait que a soit un automorphisme et une dérivation
entraîne ([3]) :

0
[g^ g^j] = ou

c giAu, sl ^i^j es^ valeur propre
0

[g^ ,̂] = OU
c giif+uL s! P-i 4~ ^j es^ valeur propre

Par conséquent si x e g^., y e g^.

[X, y] ^ 0 ==^ ̂ . = [L, + [Lj

est encore valeur propre.
Pour z e g^

[[^ 2/]î z] ^ ° ====^ (^^j) • ̂ k = Ç^i^j) + ^k

= ^i + ̂  + ̂  == (^-. + ^)^-/c

Jacobi indiquant, que Pun des crochets [y, z] ou [rc, z]
est non nul cela ajoute des relations au système qui alors
n'a pas de solution non nulle. Ainsi [[g, g], g] = C^ == 0,
c'est-à-dire g est 2-nilpotente.

Réciproquement, si g est 2-nilpotente il suffira de poser
a(rr) = ̂ x pour x e Dg et a.(x) = 2x pour x élément d'un
sous-espace supplémentaire de Dg dans g, pour obtenir
un endomorphisme qui est à la fois un automorphisme et
une dérivation. Q.E.D.

Étudions le cas où l'algèbre g est sans centre.
u.9 = ad^u)^ est une structure à associateur symétrique

équivaut aux relations

(4) [x, y] = [f(x), î/1 + [rr, f(y)]
(4') f[x, y] = [f(x), f{y)]
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Soit g = Sg^ la décomposition primaire de g relative à f
qui peut s'écrire :

g = go © gi © g' ® B
avec

gQ = [x e gif^x) = 0 pour un certain 1}
g^ = [x e g l ( f — ïdy[x) == 0 pour un certain 1}

g' = ga © g?

avec
a = 1/2 + i \/3/2 et (3 = 1/2 - i \/3/2

B == S^ sommation pour \ différent de 0, 1, a, p.
La formule :

(5)
(1 - ̂  - ̂ [a-, y] = S (^'W-^^U/'-^)''-^)]

0^0 \ î /

provenant de la relation (4) indique que :
Pour x e g^y e g .̂, si [.r, y] ^ 0 alors À, + À, == 1. La

relation (2) dit que : [x, y] e g .̂.
ĵ

Ainsi pour \ 7^ — chaque g .̂ est abélien.
^

On constate que [go + gi + ga + gp, B] == 0 et que, la
restriction de f à la sous-algèbre B étant un automorphisme
de B, d'après la proposition 3.1, B est 2-nilpotente.

Mais alors l'idéal dérivé D(B) vérifie:

[D(B), B] = 0 et [D(B), go + gi + g'] = 0

donc D(B) <= z(g) = 0 et B est abélienne, donc nécessaire-
ment nulle. Les valeurs de a et (3 sont telles que

a + ( 3 = = l = = a . ( î donc [g^ g^] c: ^ ;

mais la relation de Jacobi entraîne que [g^ gp] c z(g) et
par conséquent g' est abélienne.

Les relations

(6) [x,y]-i(n}[fm{x),f^(y)]
k=-o \ /l /

f [^ y] = [fW, fW
indiquent que go est un idéal abélien.
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Ainsi l'algèbre g, sans centre, s'écrit g == go ® gi où go
est un idéal abélien et gi une sous-algèbre abélienne.

Réciproquement, si une algèbre de Lie g est de la forme
go ® gi c'est-à-dire extension inessentielle d'une abélienne
par une abélienne alors la projection de g sur gi, parallèle-
ment à go, définit un endomorphisme f associé à une struc-
ture à associateur symétrique à gauche du type u.v = adr/u)?.

Si g est réelle, une telle décomposition de sa complexifiée,
induit sur g une décomposition de même nature.

Tout ceci peut s'énoncer :

THÉORÈME A. — Une algèbre de Lie g, sans centre, admet
une structure d^algèbre symétrique à gauche du type

u.v = ad^p u, v e g,

si et seulement si : g = go ® gi avec go idéal abélien et gi
sous-algèbre abélienne.

Remarquons qu'une algèbre de Lie du type précédent est
nécessairement 2 résoluble.

COROLLAIRE. — Soit G un groupe de Lie de centre discret
et (Kalgèbre de Lie g; G admet une connexion plate invariante
à valeurs dans ad(g) si et seulement si g est une extension
inessentielle Sune algèbre abélienne par une algèbre abélienne.

4.

Supposons maintenant que g ait un centre, z(g), non nul;
l'endomorphisme f en plus de la condition

[x, y] = [f{x\y] + [x, f(y)] .

vérifie seulement ad^, ̂  = ad^.) ̂  au lieu d'être un
homomorphisme.

Considérons encore la décomposition primaire de g (ou de
sa complexifiée) relative à f: g = go + gi + g' + B avec
&)? gi? ga? g^ les espaces correspondants aux valeurs propres
0, 1, a = 1/2 + i \/3/2, p = 1/2 - . y/3/2, g'= g. + gp;
B = 2g^ pour \i valeur propre différente de 0, 1, a, (3.
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f étant un homomorphisme d'algèbre de Lie module le
centre, si X et [L sont deux valeurs propres arbitraires de f
on aura :

[gx, g^] c gx^+^g)

Mais, d'après la formule (5), le crochet de g^ avec gu. ne sera
non nul que si À + ^ = 1. Chaque gi est abélien sauf si
X == 1/2. On en déduit aussi que

[go + gi, g' + B] = 0 et [go + gi + g', B] == 0.

Nous savons que [g^, gp] c g^ mais

[ga, go + gl + B] = [gp, go + gl + B] = 0

donc par Jacobi on montre que

[ga, gp] c z(g) ou [g', g'] <= gi n z(g).

La relation (6) indique que go est une sous-algèbre abé-
lienne, mais au lieu d'être un idéal, elle vérifie :

[g^ gi] c go +^(g).

On démontre comme au paragraphe précédent que B est
une sous-algèbre 2-nilpotente.

THÉORÈME B. — Un groupe de Lie G, d'algèbre g, admet
une connexion linéaire plate invariante à valeur dans ad (g)
si et seulement si g se décompose sous la forme :

g = go ® gi © g' ® B

où B est une sous-algèbre 2-nilpotente en somme directe avec
go ® gi ® g', g' un sous-espace tel que [g', g'] <= gi n z(g),
go ^ gi ^5 sous-algèbres abéliennes telles que

[go, gi] c go + <g).

En effet, si g admet une telle décomposition on peut
construire une connexion linéaire plate invariante à valeurs
dans ad (g) en posant :

V^ = ad^ avec f(u) = i^.-f- l/2u^ + l/2ua
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(u^, Ug,, MB étant les projections de M respectivement sur
gi, g ' et B).
v^ = [̂ . + 1/2",. + l/2uB,p]

= [U,., ^] + 1/2[U,,, P,,] + l/2[Ua, Pa]

donc

V^ - V^M = [U, P] = [U ,̂ Pj + [l̂ , Pj

+ [ïV, Pff-] + ["B', PB].

[/•(u), /•(?)] = l/4[u,,, p,,] + l/4[ua, Pa]
et

/•[U,P]=[U,,,^,]+1/2[UB,PB].

Tous ces termes étant dans le centre :

^/[u^] = ̂ [wjw = 0.
Une structure de « type (^i) » associée à cette connexion est :

u ^ v = — V,u + /*(V^ + V,u)

Elle vérifie la propriété {u * ^) * w = (u * w) * ^ et est alors
dite de « type (^) ». L'existence d'une telle structure est une
condition suffisante pour la platitude de la Int (g)-structure
invariante sur G définie à l'aide d'une base de g.

On remarque que, si z(g) == 0, g' == B = 0 et la connexion
devient V^ == [Ug^ ^].

Si go === Si = § ' = 0 on retrouve la connexion sur les
algèbres 2-nilpotentes, donnée au paragraphe 3.

5.

Intéressons-nous maintenant au cas où la connexion plate
invariante prend ses valeurs dans l'algèbre, Der (g), des
dérivations de l'algèbre de Lie g.

Considérons un élément X e g* 0 g* 0 Der (g) vérifiant :

(7) X(u)^ — X(^)u = ad^

(X(u)^)w == (\(u)w)v Vu, P, w € g

et supposons que g ne soit pas résoluble. L'algèbre quotient
g/R^) où R(g) est le radical de g, est semi-simple.
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Si î e R(g) et u, w e g l'élément (X(u)^)w = (^(u)w)^
appartient à R(g) car \{u)v e Der (g).

Pour MI e R(g) l'identité X(ui)^ — X(^)ui == ad^y] rend
possible d'interpréter X(ui) comme une application de g
dans Hom (g, R(g)). Par conséquent l'application À qui
au triplet (u, ^, w) d'éléments de g/R(^) fait correspondre
l'élément (X(u)^)w est bien définie. Elle jouit aussi des mêmes
propriétés que À.

Cependant le fait que le premier prolongement d'une algèbre
de Lie semi-simple (ou plus précisément de son algèbre adjointe)
est nul montre la non-existence d'un tel À pour ces algèbres.
Ainsi l'existence de X sur g, satisfaisant (7), implique la
nullité de g/R(^), c'est-à-dire la résolubilité de l'algèbre.

Avec les notations données dans l'introduction, nous allons
montrer :

THÉORÈME C. — Si un groupe de Lie G, d'algèbre g,
admet une connexion linéaire plate invariante à valeurs dans
Der (g), alors Valgèbre de Lie g est résoluble,

Montrons d'abord que l'expression [D, La]((3) — LD(<X)(P)
est symétrique en a et P (i.e. appartient à (Der g)^),
D e Der g.

{[D, L,](p) ~ L^(p)} - {[D, Lp](a) - L^(a)}
= D(L^ - Lpa) - L^D((3) + LpDa - L^ + L^a
=D[a, P]- [Da, (3]- [ a , D ( 3 ] = = 0 .

Considérons maintenant la dérivation ad^ + 2Lu où u e g
et posons

(X(u)^)w == [ad^ + 2L», L,](w) — L^+2L,)(.)(w)

d'après ce qui précède cette expression est symétrique en v
et w.

Montrons que : \(u)v — \{v)u = ad^ ^

[ady + 2Ly, LJ — L^yj+gL^ — [ady + 2L,, L^] + L^]+2L.,u
== [ad,, L,] - [ad,, L,] + 4[L^, LJ - 2L^ — Lg^-.a)

L étant un homomorphisme d'algèbre de Lie il reste :

[ad,, L«] — [ad,, LJ = — ad^ + ad^, == ad^
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ainsi le À écrit vérifie les conditions (7) et d'après ce qui
précède g est résoluble.

Exemples:
1) Considérons l'algèbre de Lie g déterminée par le tableau :

[e^ g] = [e^ ë] = [e^ ^e] = |>3, ^5] = [^ ^} =0
[^ ^3] = ̂  [^2, e^\ = e^.[e^ e^\ = eç

Une décomposition de g comme celle du théorème B est

g = go © gi © B

avec go engendré par e^ e^ gi engendré par ^3, e^ B
engendré par e^ e^

On a bien [go © gi, B] ==0, [go, gi] Œ go + ^(g). L'endo-
morphisme

A^i) = ̂  A^) = 0, f(e^} = ̂
A^) = ̂  f[e^) = e^ f(ee) = 0

(où À est un coefficient arbitraire) définira une connexion
linéaire invariante plate à valeurs dans ad (g) sur le groupe
de Lie simplement connexe dont l'algèbre de Lie est g.

De plus si u == 2u^, ^ = 2^^ sont deux éléments quel-
conques de /*, une structure de type (^i) associée est
donnée par :

U * ^ = — [^3^3 + ̂ 5, U] = U^l + ̂ 2^4 — ^6^6

On remarque que ce produit vérifie en plus

0 = (u ^ ^) *. w ==(u ^ w) -x- v = 0

2) Soit g l'algèbre donnée par

[^lî ^j = ̂ [^ ^] ̂  ^[^25 e^\ = ^4

[^i, ^4] == [^ ^3] ̂  [^3, ^l^ [e^ -g] = 0

Cette algèbre ne vérifie pas les conditions du théorème B;
il n'existe pas de connexion plate invariante à valeur dans
ad g, sur le groupe de Lie, G, associé à g. Par contre on
peut munir g d'une structure de type (^i) en posant:

U ^ V == — (^3^1)^3 — (1^2)^4 4- ^1^5-

Ce produit vérifie (u ^ P) ^ w = {u * w) ^ ^; ce qui assure la
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platitude de la Int (g)-structure définie sur G par l'action
du groupe des automorphismes intérieurs de G sur le parallé-
lisme de G défini par une base g.

3) Tous les groupes de Lie non semi-simples de dimension
^ 3 et tous les groupes niipotents de dimension 4 admettent
une connexion plate invariante à valeurs dans l'algèbre
adjointe.
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