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EXISTENCE DE CERTAINES _
CONNEXIONS PLATES INVARIANTES
SUR LES GROUPES DE LIE

par G. GIRAUD et A. MEDINA

0. Introduction.

Soit G un groupe de Lie réel ou complexe d’algebre de
Lie g. La donnée d’une connexion invariante, réelle ou
complexe, sur G, équivaut & la donnée d’une application,
R ou C-linéaire, V: g— gl(g). Une telle connexion est
(localement) plate, c’est-a-dire de courbure et torsion nulles,
s1 V est un homomorphisme d’algéebre de Lie et

V(z)y — V(y)z = [z, y]

pour tout z, y € g. On peut donc dire que la donnée d’une
connexion hnealre invariante plate, V, n’est que la donnée
d’un homomorphisme d’algébre de Lie,

0: g—>8® gl(g) (e(x) = (.’L‘, Vz)a x € g)

ou g @ gl(g) estl’algébre affine de g.
Si 6 est un tel homomorphisme le produit z.y = V(2)y
fait de g une algébre vérifiant :

(1) z.(y.z) — (.y).z2=y.(x.2) — (y.2).2

dont I’algébre des commutateurs est ’algébre de Lie de départ.

Une structure d’algebre satisfaisant la propriété (1) est appelée

une structure symétrique 4 gauche ([6]). Réciproquement si

lalgébre g est 'algeébre de Lie des commutateurs (dite sous-

jacente) d’une telle algébre, 1’application z — (z, L,) ou
13
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L,y = z.y est un homomorphisme d’algébre de Lie et définit
donc une connexion linéaire plate invariante sur G.

Dans cet article on s’intéresse aux algébres de Lie admettant
une structure d’algébre symétrique & gauche dont I’endo-
morphisme 6 est a valeurs dans g @ ad (g), puis plus
généralement dans g @ Derg. Dans le premier cas les théo-
remes A et B donnent une caractérisation de ces algébres.
Dans le deuxiéme cas, le théoréme C assure que les algébres
de Lie qui admettent ce type de structure sont résolubles.
Dire que 0 est a valeurs dans g @ ad (g) (resp. g ® Der (g))
équivaut, géométriquement, & dire que la connexion, associée
a 0, est adaptée 4 une Int (g)-structure (resp. Aut (g)-
structure) invariante a gauche sur G obtenue en faisant
opérer le groupe Int (g) (resp. Aut(g)) sur un parallélisme
invariant & gauche.

Une condition plus faible que I’existence d’une connexion
invariante plate adaptée & une Int (g)-structure est évidem-
ment la platitude de cette structure (au sens de la théorie
des G-structures). St ’on remarque que la O-connexion de
Cartan est adaptée a une telle structure, on peut interpréter
la 1-platitude par I’existence sur g d’une structure d’algebre
appelée ici de « type £, » (§ 1). La propriété

(uxo)xw —wx(uxy) = (Uuxw)xy — ¢ x(U*xw))

définissant ce type d’algébre n’est que la traduction du fait
que la courbure de la O-conexion est un cobord dans la coho-
mologie de Spencer de ad (g). Nous montrons que I’algébre
de Lie sous-jacente & une structure de « type £, » est résoluble
(proposition 1.2). Ceci provient du fait que la propriété de
1-platitude dans les cas considérés, d’une part passe au quotient
par le radical, d’autre part n’est pas vérifiée si le groupe de Lie
est semi-simple.

Au paragraphe 2 on explicite les liens algébriques existant
entre les structures de « type £, » et celles & associateur
symétrique a gauche définies par un 6 & valeurs dans
g @ ad (g).

1.

Dans ce papier toutes les algébres considérées sont réelles
ou complexes de dimension finie.
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Une structure d’algébre notée x sur g est dite de type
() si elle vérifie

(2) (uxo)xw —wx*(uxy) = (Uuxw)xe — ¢x(Uxw)

quels que soient u, ¢, w, €, g.

L’algébre des commutateurs d’une telle algébre est une
algébre de Lie.

La relation (2) peut s’écrire aussi :

[u*v, w] = [u=*w, o] ou ad,., € (ad (g))®

Or sur une algébre de Lie semi-simple adg (isomorphe a g)
respectant la forme de Killing qui est non dégénérée :

(ad (g))® =0 (voir [5]).

Ainsi une algébre de Lie semi-simple ne peut étre sous-jacente
a une structure de type (2,).

g étant l'algebre de Lie des commutateurs d’une structure
de type (2;), supposons que g s’écrive h @ m ou h est
une sous-algébre de Lie de g et m un supplémentaire de h
dans g vérifiant [h, m] = m; le produit de type (2,)
induit alors un produit de méme nature sur h.

En effet posons:

uoy = (u=xv), pour u et ¢ dans h ou (u=y¢), dénote
la projection de wx¢ sur h parallelement & m.

La relation (2), sous sa forme

[uxpe, w] = [uxw, ¢]
donne :

[wovo, wl=[(ux9) w]=[uxe, w] = [uxw,¢]
= [(u*w), v] = [uow, u]

On tire alors comme conséquence :

Prorosition 1.1. — Une algébre de Lie réelle est algébre
de Lie sous-jacente a une algébre de type (2P,) st et seulement
st il en est de méme de sa complexifiée.

En effet g est réductive dans sa complexifiée.
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Plus encore, on a:

Prorosition 1.2. — L’algébre de Lie sous-jacente & une
algébre de type (P,) est nécessairement résoluble.

Comme une algébre de Lie semi-simple n’est pas sous-
jacente & une structure de type (#,), il suffira de prendre la
décomposition de Levi de g pour constater que g coincide
avec son radical.

Noter aussi qu’un sous-groupe maximal compact étant
réductif dans le groupe, on pourra assurer qu’'un sous-groupe
compact maximal d’un groupe de Lie dont l’algébre de Lie
est sous-jacente a une structure de type (£;) est un toroide.

2.

Prorosition 2.1. — St un groupe de Lie réel (resp. complexe)
G admet une connexion plate invariante réelle (resp. complexe)
dont la 1-forme prend ses valeurs dans ad (g) alors G est
résoluble.

Démonstration. — L’algébre de Lie g de G est munie
d’une structure d’algébre a associateur symétrique a gauche
u.v = adg,w ou fe End (g); ceciéquivaut i 'existence d’un
endomorphisme f d’espace vectoriel vérifiant

(3) [u, v] = [f(u), #] + [u, f(+)]
(3) [f [w, ¢], w] = [[f(w), f()], w]

quels que soient u, v, we g
Soit D une dérivation de ’algébre de Lie g, la relation (3)
donne :

[Du, ¢] + [u, D¢] = [Df(w), ¢] + [f(u), D¢]
+ [Du, f(v)] + [w, Df(¢)]

[f(), De] = [u, D¢] — [u, fDy]
et
o [Du, f(¢)] = [Du, ¢] — [fDu, ]
1l vient :

[Df(u), v] — [fDu, ¢1} — {[u, fD¢] — [u, Df(¥)]} =0
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donc

[[D, f](w), ] = [u, [f, D]e] = [[D, f J¢, u]

En particulier pour D = ad, 5, on aura [[ad, s, [0, w]
symétrique en ¢ et w.

[adusaren, [ ]0 = [u 2f (), f(9)] — f [u + 2f(u), ¢]
= [u, f(v)] + 2[f(w), f(v ] 2w, 0] — f{2[f(u), ] — [u, ¢}
= — ou — f(uw + ou) + 2[f(w), f(s)] — 2f [u, ¢].

Mais [f(u), f(v)] —f[u, ¢] appartenant au centre de g
d’aprés (3'), 'expression — gu — f(uy 4 ou) vérifie encore
[— vu — f(ue + vu), w] symétrique en ¢ et w.

uxy = —vu— f(uy + vu)
définie un produit de type (2;) car

uxy —yxu= —ou -+ u = [u, v| et [u* v, w]

est symétrique en ¢ et w. L’assertion découle alors de la
proposition 1.2.

3.

Etudions les algébres de Lie qui sont sous-jacentes 4 une
structure d’algébre & associateur symétrique a gauche du
type: u.¢v = ad;,v; [ € End. (g). L’endomorphisme [ vérifie

donc
[u, #] = [f(u), #] + [, f(»)]-

Considérons d’abord le cas particulier ou [ est un auto-
morphisme de g.

Prorosition 3.1. — g est munie d’une structure & associateur

symetnque u.p = adf(,,)v ot f est un automorphisme d’algébre
de Lie si et seulement si g est 2-nilpotente.

L’inverse de [ vérifie la relation:

[z y)) = [f (=), y] + [, f (y)]

et, est aussi un homomorphisme d’algébre de Lie. La démons-



238 G. GIRAUD ET A. MEDINA

tration de la proposition est évidente & partir du lemme sui-
vant :

Lemme 3.1. — Une algébre de Lie admet un automorphisme
qui est une dérivation si et seulement si elle est 2-nilpotente.

Soit « un tel automorphisme et g = Zg, la décomposition
primaire de g (ou de sa complexifiée s1 g réelle) relative & «.
Le fait que « soit un automorphisme et une dérivation
entraine ([3]):

0

[8u.s g[-’-j] = ou )
< Gu; st w;i; est valeur propre

(8 8u)] = {ou ,
S Buity; s1 %; + u; est valeur propre

Par conséquent si x € g,, y € g,
[, y] # 0= ;= p; + 1

est encore valeur propre.
Pour ze g,

[z, y], 2] # 0= (piry) - i = (i) +
= u; + (1-/‘{‘ Y = (Pq' + P‘j)p‘k

Jacobi indiquant, que I'un des crochets [y, z] ou [z, z]
est non nul cela ajoute des relations au systéme qui alors
n’a pas de solution non nulle. Ainsi [[g, g], g] = C2g =0,
c’est-a-dire g est 2-nmlpotente.

Réciproquement, si g est 2-nilpotente il suffira de poser
a(z) = 4x pour z€ Dg et a(zx) =2z pour z élément d’un
sous-espace supplémentaire de Dg dans g, pour obtenir
un endomorphisme qui est a la fois un automorphisme et
une dérivation. Q.E.D.

Etudions le cas ou l'algébre g est sans centre.

u.v = ads,v est une structure a associateur symétrique
équivaut aux relations

(4) [z, y] = [f(2), y] + [, f(y)]
(4) flz, y] = [f(2), f(y)]
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Soit g = Zg,, la décomposition primaire de g relative a f
qui peut s’écrire :
=295 05 o8B

avec
g ={zeg/f(z)=0 pour un certain l}
g = {z € g/(f — 1d)(x) = 0 pour un certain [}
g =8 O 88
avec

x=1/24+iV3/2 et B=1/2—1iV32

B = Z,, sommation pour 2; différent de 0, 1, «, B.
La formule :

(5) |
(1 — % — w)fa, y] = (;’ ) [(f — M), (f — wl)=9(y)]

0<7<p
provenant de la relation (4) indique que:
[

Pour ze gyye g, st [z,y] #0 alors 3, + 2 =1 La
relation (2) dit que: [, y] € gy

Ainsi pour A; # % chaque g,, est abélien.

On constate que [g + g + 8. + g B] =0 et que, la
restriction de f & la sous-algébre B étant un automorphisme
de B, d’apres la proposition 3.1, B est 2-nilpotente.

Mais alors I'idéal dérivé D(B) vérifie:

[DB),B]=0 et [DB), g+ & +g]=0
donec D(B) = z(g) =0 et B est abélienne, donc nécessaire-
ment nulle. Les valeurs de o et 8 sont telles que

a+B=1=«p donc [g, gl < &;

mais la relation de Jacobi entraine que [g,, gz] < z(g) et
par conséquent g’ est abélienne.
Les relations

(©) my] =3 () (), 1))
et

f =z, y] = [f(2), f(y)]

indiquent que g, est un idéal abélien.
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Ainsi I’algébre g, sans centre, s’éerit g =g, ® g ou g
est un 1déal abélien et g, une sous-algébre abélienne.

Réciproquement, si une algébre de Lie g est de la forme
8 @ g C’est-d-dire extension inessentielle d’une abélienne
par une abélienne alors la projection de g sur g, paralléle-
ment & g, définit un endomorphisme [ associé & une struc-
ture a associateur symétrique a gauche du type u.¢ = adgqp.

S1 g est réelle, une telle décomposition de sa complexifiée,
induit sur g une décomposition de méme nature.

Tout ceci peut s’énoncer :

TutoriME A. — Une algébre de Lie g, sans centre, admet
une structure d’algébre symétrique d gauche du type

u.¢ = adgy u, v € g,

st et seulement si: g =g, ® g avec g idéal abélien et g,
sous-algébre abélienne.

Remarquons qu’une algébre de Lie du type précédent est
nécessairement 2 résoluble.

CororrLaIrRE. — Soit G un groupe de Lie de centre discret
et d’algébre de Lie g; G admet une connexion plate invariante
a valeurs dans ad(g) st et seulement st g est une extension
inessentielle d’une algébre abélienne par une algébre abélienne.

4.

Supposons maintenant que g ait un centre, z(g), non nul;
I’endomorphisme f en plus de la condition

[z, y] = [f(2), y] + [= {(y)]

vérifie seulement adj,, = adj;, sn au lieu d’étre un
homomorphisme.

Considérons encore la décomposition primaire de g (ou de
sa complexifiée) relative & f: g=g, + g + g + B avec
g0 81» 8u» g3 les espaces correspondants aux valeurs propres
O’ 1a “=1/2+'/\/3/2, 321/2—1'\/3/2’ g’=g¢+gﬁ;
B = Xg,;, pour X; valeur propre différente de 0, 1, «, B.
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f étant un homomorphisme d’algébre de Lie modulo le

centre, si A et p sont deux valeurs propres arbitraires de f
on aura:

(g0 8u] € grp T+ 2(8)

Mais, d’aprés la formule (5), le crochet de gy avec g, ne sera

non nul que st A4 p=1. Chaque g est abélien sauf si
A = 1/2. On en déduit aussi que

(80 + 8,8 +B]=0 et [g+a+g,B]=0.
Nous savons que [g,, gg] < g mais

[ga,go-l-gx—FB]:[g;g,go—l—g,—l—B]z()

donc par Jacobi on montre que

(8., 88] < 2(8) ou [g,8]< g Nzg.

La relation (6) indique que g, est une sous-algébre abé-
lienne, mais au lieu d’étre un idéal, elle vérifie:

(&0, &1] < & + =(g)-
On démontre comme au paragraphe précédent que B est

une sous-algébre 2-nilpotente.

TutoriME B. — Un groupe de Lie G, d’algébre g, admet
une connexion linéaire plate invariante & valeur dans ad (g)
st et seulement st g se décompose sous la forme :

=8 P8 ®g ®B

otu B est une sous-algébre 2-nilpotente en somme directe avec
8 © g ® g, g un sous-espace tel que [g', g'] < g N z(g),
g et g des sous-algébres abéliennes telles que '

(&> &1] < g + 2(g)-

En effet, si g admet une telle décomposition on peut
construire une connexion linéaire plate invariante & valeurs
dans ad (g) en posant:

Vw = ad;,v avec f(u) = u, + 1/2u, + 1/2us
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(ug, uy, up étant les projections de u respectivement sur
g, g et B).

Ve = [u, + 1/2u, + 1/2upv]
= (U, 96,] + 1/2[uy, 0,1 + 1/2[us, 8]

donc

Vuv - Vvu = [u7 V] = [u.w Vy.] + [ugl’ Vgo]

[f(w), f(9)] = 1/4[uy, 95] + 1/4[un, 5]
flu, 9] = [ugy 9] + 1/2[us, vs].

Tous ces termes étant dans le centre :

et

adyg, g = adya,roy = 0.
Une structure de « type (£,) » associée a cette connexion est :
uxy=— Vu-+ (Ve + V,u)

Elle vérifie la propriété (ux¢)*»w = (u*w)x¢ et est alors
dite de « type (2)». L’existence d’une telle structure est une
condition suffisante pour la platitude de la Int (g)-structure
invariante sur G définie 4 ’aide d’une base de g.

On remarque que, s1 z(g) =0, g = B =0 et la connexion
devient V., = [u,, ¢].

S1i go=g =g =0 on retrouve la connexion sur les
algébres 2-nilpotentes, donnée au paragraphe 3.

5.

Intéressons-nous maintenant au cas ou la connexion plate
invariante prend ses valeurs dans Palgebre, Der (g), des
dérivations de l’algébre de Lie g.

Considérons un élément A € g* ® g* ® Der (g) vérifiant:

(7) Mu)y — A(v)u = ady, ,
(AM(u)o)w = (M(u)w)y Yu, o, weg

et supposons que g ne soit pas résoluble. L’algébre quotient
8/r@ ou R(g) estleradical de g, est semi-simple.
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Si1 vy e R(g) et u, we g l'élément (A(u)o)w = (AM(u)w)e,
appartient a R(g) car A(u)e € Der (g).

Pour u, € R(g) l'identité A(u,)¢ — A(¢)u, = ad,_,} rend
possible d’interpréter A(u,) comme une application de g
dans Hom (g, R(g)). Par conséquent l’application 2 qui
au triplet (u, v, @) d’éléments de gy, fait correspondre
Iélément (A(u)¢)w est bien définie. Elle jouit aussi des mémes
propriétés que A.

Cependant le fait que le premier prolongement d’une algébre
de Lie semi-simple (ou plus précisément de son algébre adjointe)
est nul montre la non-existence d’un tel A pour ces algebres.
Ainsi I’existence de A sur g, satisfaisant (7), implique la
nullité de g/ry), c’est-a-dire la résolubilité de I’algeébre.

Avec les notations données dans I'introduction, nous allons
montrer :

TutortmMe C. — St un groupe de Lie G, dalgébre g,
admet une connexion linéaire plate invariante & valeurs dans
Der (g), alors U'algébre de Lie g est résoluble.

Montrons d’abord que l’expression [D, L,](B) — Lpwy(B)
est symétrique en « et B (i.e. appartient a (Der g)®),
D € Der g.

{[D7 La](ﬂ) - LD(«)(B)} - {[D’ LB](“) - LD(S)(“)}
= D(L,8 — Lgx) — L,D(B) + LgDa — LB + Loga
— D[«, 8] — [D«, B] — [«, DB] = O.

Considérons maintenant la dérivation ad, 4+ 2L, ou ue g
et posons

(Mu)o)w = [ad, 4 2Ly, L](%) — Lia, +2190(%)

d’aprés ce qui précéde cette expression est symétrique en ¢
et w.
Montrons que: A(u)e — A(v)u = ady, ,

[adu + 2Lu’ Lu] - L[u, v]+2Lp T [adu + 2Lua Lu] + L[u, u] +2L,u
= [ad,, L,] — [ad,, L,] 4+ 4[L,, L,] — 2L ,; — Lo,

L étant un homomorphisme d’algébre de Lie il reste :

lad,, L,] — [ad,, L,] = — ady, + ad,, = ad, ,
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ainsi le ‘A écrit vérifie les conditions (7) et d’aprés ce qui
précéde g est résoluble.

Exemples :

1) Considérons’algébre de Lie g déterminée parle tableau:

le, 8] = [eq, 8] = [ea, €6] = [e3, €5] = [e5, €] = 0
[e2, €3] = e1, [ea, €5] = €4, [€5, €6] = €6
Une décomposition de g comme celle du théoréme B est
§=8 &5 ®B

avec g, engendré par e, eg; g engendré par e;, e; B

engendré par ey, e,.

On a bien [g ® g, B] =0, [g, &] < g -+ (g). L'endo-

morphisme
f(e1) = ney, f(es) = 0, fles) = e
f(64) = )\64, f(65> = €5, f(eﬁ) =0

(ou A est un coeflicient arbitraire) définira une connexion
linéaire invariante plate & valeurs dans ad (g) sur le groupe
de Lie simplement connexe dont ’algébre de Lie est g.

De plus s1 u = Zue;, v = Zpe; sont deux éléments quel-
conques de f, une structure de type (2,) associée est
donnée par:

U*9 = — [0ge5 + v5e5, U] = UpPse; + UsPzes — Ughsey
On remarque que ce produit vérifie en plus
0= (ux9)xw=(uxw)xy=20
2) Soit g l’algébre donnée par

[e1, €2] = eser, €3] = es[ep, ea] = ey
(1, ea] = [e3, &3] = [e3, €a] = [e5, 8] =0
Cette algébre ne vérifie pas les conditions du théoréme B;
il n’existe pas de connexion plate invariante a valeur dans
ad g, sur le groupe de Lie, G, associé & g. Par contre on
peut munir g d’une structure de type (#,) en posant:
ux v = — (ugr1)es — (Ua¥p)es + Us0pes.

Ce produit vérifie (ux*¢)xw = (u*w)xv; ce qui assure la
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platitude de la Int (g)-structure définie sur G par I'action
du groupe des automorphismes intérieurs de G sur le parallé-
lisme de G défini par une base g.

3) Tous les groupes de Lie non semi-simples de dimension
< 3 et tous les groupes nilpotents de dimension 4 admettent
une connexion plate invariante a valeurs dans I’algébre
adjointe.
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