Dualité des espaces de fonctions entières en dimension infinie
Annales de l'Institut Fourier, Volume 26 (1976) no. 4, p. 151-195

Dual pairs of spaces of holomorphic functions on locally convex domains are studied, yielding the holomorphic Fock spaces as particular cases. The duality is with respect to the Fourier-Borel transformation for appropriate holomorphy types. These functions spaces are shown to be Fréchet-Schwartz spaces (resp. Silva spaces, resp. nuclear). The p-summable growth conditions of Taylor series that intervene in their definitions are equivalent to the exponential growth conditions employed by Martineau in the study of differential equations of infinite order, and are more manageable in the treatment of duality questions in infinite dimension.

On étudie ici quelques espaces de fonctions holomorphes dans des domaines localement convexes, ayant comme cas particuliers les espaces de Fock holomorphes. Les espaces duaux sont caractérisés avec la transformation de Fourier-Borel pour des types d’holomorphie appropriés. On montre que ces espaces de fonctions sont de Fréchet-Schwartz (resp. de Silva, resp. nucléaires) quand leurs domaines sont des espaces de Silva (resp. de Fréchet-Schwartz, resp. nucléaires). Les conditions de croissance p-sommable des séries de Taylor qui y interviennent sont équivalentes aux conditions de croissance exponentielle employées par Martineau dans l’étude des équations différentielles d’ordre infini et sont plus maniables que celles-ci dans des questions de dualité en dimension infinie.

@article{AIF_1976__26_4_151_0,
     author = {Dwyer III, Thomas A. W.},
     title = {Dualit\'e des espaces de fonctions enti\`eres en dimension infinie},
     journal = {Annales de l'Institut Fourier},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {26},
     number = {4},
     year = {1976},
     pages = {151-195},
     doi = {10.5802/aif.636},
     zbl = {0331.46039},
     mrnumber = {58 \#2276},
     language = {fr},
     url = {http://www.numdam.org/item/AIF_1976__26_4_151_0}
}
Dwyer III, Thomas A. W. Dualité des espaces de fonctions entières en dimension infinie. Annales de l'Institut Fourier, Volume 26 (1976) no. 4, pp. 151-195. doi : 10.5802/aif.636. http://www.numdam.org/item/AIF_1976__26_4_151_0/

[1]R. Aron, Holomorphy types for open subsets of a Banach space, Studia Math., 45 (à paraître). | MR 49 #5838 | Zbl 0226.46018

[2]R. Aron, Holomorphic functions on balanced subsets of a Banach space, Bull. Amer. Math. Soc., 78 (1972), 624-627. | MR 46 #4197 | Zbl 0255.46023

[3]R. Aron, Tensor products of holomorphic functions, Nederl. Akad. Wetensch. Indag. Math., 35 (76) (1973), Fasc. 3, 192-202. | MR 49 #11255 | Zbl 0261.46031

[4]V. Bargmann, Remarks on a Hilbert space of analytic functions, Proc. Nat. Acad. Sci., 48 (1962), 199-204. | MR 24 #A2845 | Zbl 0107.09103

[5]P. Berezin, The method of second quantization, Pure and Applied Physics, Vol. 24, Academic Press; New York-London, 1966. | MR 34 #8738 | Zbl 0151.44001

[6]Ph. Boland, Some spaces of entire and nuclearly entire functions on a Banach space, J. Reine Angew. Math., 270 (1974), 38-60. | MR 53 #14126 | Zbl 0323.46042

[7]Ph. Boland, Espaces pondérés de fonctions entières et de fonctions entières nucléaires sur un espace de Banach, C.R. Acad. Sci., Paris, Sér. A-B, 275 (1972), A587-A590. | MR 53 #11370 | Zbl 0243.46038

[8]Ph. Boland, Malgrange theorem for entire functions on nuclear spaces, Proc. on infinite-dimensional holomorphy, Lecture Notes in Mathematics N° 364, Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR 54 #8285 | Zbl 0282.46019

[9]Ph. Boland, Holomorphic mappings on DFN (dual of Fréchet nuclear) spaces, Séminaire P. Lelong (Analyse) 14e année, 1973-1974. | Zbl 0314.46045

[10]S. Dineen, Holomorphy types on a Banach space, Studia Math., 39 (1971), 241-288. | MR 46 #3837 | Zbl 0235.32013

[11]S. Dineen, Holomorphically significant properties of topological vector spaces, Proc. Colloque international du C.N.R.S. sur űLes fonctions analytiques de plusieurs variablesƇ, Paris, 14-20 Juin 1972 (à paraître). | Zbl 0299.46043

[12]S. Dineen, Holomorphic functions and surjective limits, Proc. on infinite dimensional holomorphy, Lecture Notes in Mathematics N° 364, Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR 54 #11057 | Zbl 0277.46006

[13]T. Dwyer, Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type, Bull. Amer. Math. Soc., 77 (1971), 725-730. MR 44 # 7288. | MR 44 #7288 | Zbl 0222.46019

[14]T. Dwyer, Holomorphic Fock representations and partial differential equations on countably Hilbert spaces, Bull. Amer. Soc., 79 (1973), 1045-1050. | MR 47 #9283 | Zbl 0271.35064

[15]T. Dwyer, Partial differential equations in holomorphic Fock spaces, Functional analysis and applications, Lecture Notes in Mathematics N° 384, Springer-Verlag, Berlin-Heidelberg-New York, 1974. | MR 53 #8692 | Zbl 0308.46043

[16]T. Dwyer, Holomorphic representation of tempered distributions and weighted Fock spaces, Analyse fonctionnelle et applications, Hermann, Paris, 1975, pp 95-118. | MR 53 #6315 | Zbl 0327.46048

[17]T. Dwyer, Convolution equations for vector-valued entire functions of bounded nuclear type, Trans. Amer. Math. Soc. (à paraître). | Zbl 0299.46036

[18]T. Dwyer, Dualité des espaces de fonctions entières en dimension infinie, C.R. Acad. Sci., Paris, Sér. A 280 (1975), 1439-1442. | MR 52 #3958 | Zbl 0308.46042

[19]T. Dwyer, Équations différentielles d'ordre infini dans des espaces localement convexes, C.R. Acad. Sci., Paris, Sér. A 281 (1975), 163-166. | MR 54 #6180 | Zbl 0319.46032

[20]K. Floret et J. Wloka, Einführung in die Theorie der Lokalkonvexen] Räume, Lecture Notes in Mathematics N° 56, Springer-Verlag, Berlin-Heidelberg-New York, 1968. | MR 37 #1945 | Zbl 0155.45101

[21]I. Gelfand et N. Vilenkin, Generalized functions, Vol. 4, Academic Press, New York-London, 1964.

[22]Ch. Gupta, Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Notas de Matematica N° 37, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1968. | MR 58 #30238 | Zbl 0182.45402

[23]Ch. Gupta, Convolution operators and holomorphic mappings on a Banach space, Séminaire d'Analyse Moderne N° 2, Univ. de Sherbrooke Québec, 1969. | Zbl 0243.47016

[24]Ch. Gupta, On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Nederl. Akad. Wetensch, Proc., Ser. A 73 = Indag. Math., 32 (1970), 356-358. | MR 44 #7289 | Zbl 0201.44605

[25]A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, Jour. d'Anal. Math., XI (1963), 1-164. | MR 28 #2437 | Zbl 0124.31804

[26]A. Martineau, Équations différentielles d'ordre infini, Bull. Soc. Math. France, 95 (1967), 109-154. | Numdam | Zbl 0167.44202

[27] M. De Matos, Sur le théorème d'approximation et d'existence de Malgrange-Gupta, C.R. Acad. Sci., Paris, Sér. A-B 271 (1970), A1258-A-1259. MR 44 # 3105. | Zbl 0205.40902

[28] M. De Matos, Holomorphic mappings and domains of holomorphy, Monografias do Centro Brasileiro de Pesquisas Fisicas, Vol. 27, 1970. | Zbl 0233.32004

[29]L. Nachbin, Topology on spaces of holomorphic mappings, Ergebn sse der Mathematik und ihrer Grenzgebiete, Band 47, Springer-Verlag, Berlin-Heidelberg-New York, 1969. MR 40 # 7787. | MR 40 #7787 | Zbl 0172.39902

[30]L. Nachbin, Concerning holomorphy types for Banach spaces, Proc. Internat. Colloq. on Nuclear Spaces and Ideals in Operator Algebras, Studia Math., 48 (1970), 407-412. MR 43 # 3787. | MR 43 #3787 | Zbl 0212.14701

[31]L. Nachbin, Convolution operators in spaces of nuclearly entire functions on a Banach space, Functional analysis and related fields, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | Zbl 0217.16403

[32]L. Nachbin, Convoluções em funções inteiras nucleares, Atas da 2a Quinzena de Análise Funcional e Equações Diferenciais Parciais, Sociedade Brasileira de Matemática, 1972.

[33]Yu. Novozhilov et A. Tulub, The method of functionals in the quantum theory of fields, Uspehi. Fiz. Nauk, 61 (1957), 53-102 = Russian Tracts on advanced Math and Math. Phys., Vol. 5, Gordon and Breach, New York, 1961. MR 25 # 959.

[34]A. Robertson et W. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics N° 53, Cambridge University Press, 1964. | MR 28 #5318 | Zbl 0123.30202

[35]J. Rzewuski, On Hilbert space of entire functionals, Bull. Acad. Polon. Sci., Sér. Math. Astronom. Phys., 17 (1969), 453-458 ; 459-466 ; 571-578. MR 40 # 6243 ; 6244 ; 6245. | MR 40 #6243 | Zbl 0182.45703

[36]J. Rzewuski, Hilbert of functional power series, Reports on Math. Phys., 1 (1970/1971), N° 3, 195-210. MR 44 # 1349. | MR 44 #1349 | Zbl 0208.38803

[37]B. Taylor, Some locally convex spaces of entire functions, Proc. Symp. Pure Math., Vol. 11, Entire functions and related parts of analysis, Amer. Math. Soc., Providence, R.I., 1968. | Zbl 0181.13304

[38]F. Trèves, Topological vector spaces, distributions and kernels, Pure and Applied Mathematics, Vol. 25, Academic Press, New York-London, 1967. | MR 37 #726 | Zbl 0171.10402

[39]F. Trèves, Linear partial differential equations with constant coefficients : existence, approximation and regularity of solutions, Math. and its applications, Vol. 6, Gordon and Breach, New York, 1966. | MR 37 #557 | Zbl 0164.40602