KAWA lecture notes on the Kähler–Ricci flow
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 285-376.

These lecture notes provide an introduction to the study of the Kähler–Ricci flow on compact Kähler manifolds, and a detailed exposition of some recent developments.

Ces notes de cours fournissent une introduction à l’étude du flot de Kähler–Ricci sur une variété kählérienne compacte, et un exposé détaillé de certains développements récents.

Published online:
DOI: 10.5802/afst.1571
Tosatti, Valentino 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208
@article{AFST_2018_6_27_2_285_0,
     author = {Tosatti, Valentino},
     title = {KAWA lecture notes on the {K\"ahler{\textendash}Ricci} flow},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {285--376},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {2},
     year = {2018},
     doi = {10.5802/afst.1571},
     zbl = {1395.53074},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1571/}
}
TY  - JOUR
AU  - Tosatti, Valentino
TI  - KAWA lecture notes on the Kähler–Ricci flow
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 285
EP  - 376
VL  - 27
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1571/
DO  - 10.5802/afst.1571
LA  - en
ID  - AFST_2018_6_27_2_285_0
ER  - 
%0 Journal Article
%A Tosatti, Valentino
%T KAWA lecture notes on the Kähler–Ricci flow
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 285-376
%V 27
%N 2
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1571/
%R 10.5802/afst.1571
%G en
%F AFST_2018_6_27_2_285_0
Tosatti, Valentino. KAWA lecture notes on the Kähler–Ricci flow. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 27 (2018) no. 2, pp. 285-376. doi : 10.5802/afst.1571. http://www.numdam.org/articles/10.5802/afst.1571/

[1] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978), pp. 63-95 | Zbl

[2] Bamler, Richard H. Long-time analysis of 3 dimensional Ricci flow III (2013) (https://arxiv.org/abs/1310.4483)

[3] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | MR | Zbl

[4] Buchdahl, Nicholas On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 287-302 | DOI | Numdam | MR | Zbl

[5] Campana, Frédéric; Höring, Andreas; Peternell, Thomas Abundance for Kähler threefolds, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 4, pp. 971-1025 | DOI | Zbl

[6] Cao, Huai-Dong Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., Volume 81 (1985), pp. 359-372 | Zbl

[7] Chau, Albert Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds, J. Differ. Geom., Volume 66 (2004) no. 2, pp. 211-232 | DOI | Zbl

[8] Chen, Xiuxiong; Wang, Bing Space of Ricci flows (II) (2014) (https://arxiv.org/abs/1405.6797)

[9] Chen, Xiuxiong; Wang, Yuanqi Bessel functions, heat kernel and the conical Kähler–Ricci flow, J. Funct. Anal., Volume 269 (2015) no. 2, pp. 551-632 | DOI | Zbl

[10] Collins, Tristan C.; Tosatti, Valentino Kähler currents and null loci, Invent. Math., Volume 202 (2015) no. 3, pp. 1167-1198 | DOI | Zbl

[11] Demailly, Jean-Pierre Regularization of closed positive currents and intersection theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl

[12] Demailly, Jean-Pierre; Paun, Mihai Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. Math., Volume 159 (2004) no. 3, pp. 1247-1274 | DOI | Zbl

[13] Di Nezza, Eleonora; Lu, Chinh H. Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math., Volume 305 (2017), pp. 953-993 | DOI | Zbl

[14] Dinh, Tien-Cuong; Nguyên, Viêt-Anh The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal., Volume 16 (2006) no. 4, pp. 838-849 | DOI | Zbl

[15] Edwards, Gregory A scalar curvature bound along the conical Kähler–Ricci flow, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 225-252 | DOI | MR | Zbl

[16] Ein, Lawrence; Lazarsfeld, Robert; Mustaţă, Mircea; Nakamaye, Michael; Popa, Mihnea Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl

[17] Enders, Joerg; Muller, Reto; Topping, Peter M. On type-I singularities in Ricci flow, Commun. Anal. Geom., Volume 19 (2011) no. 5, pp. 905-922 | DOI | MR | Zbl

[18] Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Weak solutions to degenerate complex Monge-Ampère flows II, Adv. Math., Volume 293 (2016), pp. 37-80 | DOI | Zbl

[19] Feldman, Mikhail; Ilmanen, Tom; Knopf, Dan Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differ. Geom., Volume 65 (2003) no. 2, pp. 169-209 | DOI | Zbl

[20] Fine, Joel Fibrations with constant scalar curvature Kähler metrics and the CM-line bundle, Math. Res. Lett., Volume 14 (2007) no. 2, pp. 239-247 | DOI | MR | Zbl

[21] Fischer, Wolfgang; Grauert, Hans Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Göttingen, Volume 1965 (1965), pp. 89-94 | MR | Zbl

[22] Fong, Frederick Tsz-Ho; Zhang, Zhou The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, J. Reine Angew. Math., Volume 703 (2015), pp. 95-113 | Zbl

[23] Fu, Jixiang; Xiao, Jian Teissier’s problem on proportionality of nef and big classes over a compact Kähler manifold (2014) (https://arxiv.org/abs/1410.4878, to appear in Algebr. Geom.) | Zbl

[24] Fujiki, Akira; Schumacher, Georg The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics, Publ. Res. Inst. Math. Sci., Volume 26 (1990) no. 1, pp. 101-183 | DOI | Zbl

[25] Fujino, Osamu; Gongyo, Yoshinori On images of weak Fano manifolds, Math. Z., Volume 270 (2012) no. 1-2, pp. 531-544 | DOI | MR | Zbl

[26] Fujita, Takao On Kähler fiber spaces over curves, J. Math. Soc. Japan, Volume 30 (1978), pp. 779-794 | DOI | Zbl

[27] Gill, Matthew Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Commun. Anal. Geom., Volume 19 (2011) no. 2, pp. 277-304 | DOI | MR | Zbl

[28] Gill, Matthew Collapsing of products along the Kähler–Ricci flow, Trans. Am. Math. Soc., Volume 366 (2014) no. 7, pp. 3907-3924 | DOI | MR | Zbl

[29] Greene, Brian R.; Shapere, Alfred; Vafa, Cumrun; Yau, Shing-Tung Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B, Volume 337 (1990) no. 1, pp. 1-36 | DOI | MR | Zbl

[30] Griffiths, Phillip; Harris, Joseph Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978, xii+813 pages | Zbl

[31] Gross, Mark; Tosatti, Valentino; Zhang, Yuguang Collapsing of abelian fibered Calabi-Yau manifolds, Duke Math. J., Volume 162 (2013) no. 3, pp. 517-551 | DOI | MR | Zbl

[32] Gu, Hui-Ling; Zhu, Xi-Ping The existence of type II singularities for the Ricci flow on S n+1 , Commun. Anal. Geom., Volume 16 (2008) no. 3, pp. 467-494 | MR | Zbl

[33] Guo, Bin On the Kähler Ricci flow on projective manifolds of general type, Int. Math. Res. Not., Volume 2017 (2017) no. 7, pp. 2139-2171 | DOI | Zbl

[34] Guo, Bin; Song, Jian; Weinkove, Ben Geometric convergence of the Kähler–Ricci flow on complex surfaces of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 18, pp. 5652-5669 | DOI | Zbl

[35] Hamilton, Richard S. Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255-306 | DOI | MR | Zbl

[36] Hamilton, Richard S. The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) (Contemporary Mathematics), Volume 71, American Mathematical Society, 1988, pp. 237-262 | DOI | MR | Zbl

[37] Hamilton, Richard S. The formation of singularities in the Ricci flow, Surveys in differential geometry. Vol. II (Cambridge, MA, 1993) (Surveys in Differential Geometry), International Press, 1995, pp. 7-136 | Zbl

[38] Hein, Hans-Joachim; Tosatti, Valentino Remarks on the collapsing of torus fibered Calabi-Yau manifolds, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 1021-1027 | MR | Zbl

[39] Höring, Andreas; Peternell, Thomas Mori fibre spaces for Kähler threefolds, J. Math. Sci., Tokyo, Volume 22 (2015) no. 1, pp. 219-246 | Zbl

[40] Höring, Andreas; Peternell, Thomas Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | Zbl

[41] Huybrechts, Daniel Complex geometry. An introduction, Universitext, Springer, 2005, xii+309 pages | Zbl

[42] Kawamata, Yujiro On the length of an extremal rational curve, Invent. Math., Volume 105 (1991) no. 3, pp. 609-611 | DOI | MR | Zbl

[43] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl

[44] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. I., John Wiley & Sons, 1963 | Zbl

[45] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. II., John Wiley & Sons, 1969 | Zbl

[46] Kodaira, Kunihiko Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer, 2005, viii+465 pages | Zbl

[47] Krylov, Nicolaĭ Vladimirovich Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Mathematics, 12, American Mathematical Society, 1996, xii+164 pages | Zbl

[48] La Nave, Gabriele; Tian, Gang Soliton-type metrics and Kähler–Ricci flow on symplectic quotients, J. Reine Angew. Math., Volume 711 (2016), pp. 139-166 | Zbl

[49] Lamari, Ahcène Le cône kählérien d’une surface, J. Math. Pures Appl., Volume 78 (1999) no. 3, pp. 249-263 | DOI | MR | Zbl

[50] Lazarsfeld, Robert Positivity in algebraic geometry I & II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48-49, Springer, 2004 | Zbl

[51] Lieberman, Gary M. Second order parabolic differential equations, World Scientific, 1996, xi+439 pages | Zbl

[52] Nakamaye, Michael Stable base loci of linear series, Math. Ann., Volume 318 (2000) no. 4, pp. 837-847 | DOI | MR | Zbl

[53] Nakayama, Noboru The lower semicontinuity of the plurigenera of complex varieties, Algebraic geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 551-590 | DOI | MR | Zbl

[54] Phong, Duong Hong; Sturm, Jacob On stability and the convergence of the Kähler–Ricci flow, J. Differ. Geom., Volume 72 (2006) no. 1, pp. 149-168 | DOI | Zbl

[55] Rong, Xiaochun Convergence and collapsing theorems in Riemannian geometry, Handbook of geometric analysis 2 (Advanced Lectures in Mathematics), Volume 13, Higher Education Press, 2010, pp. 193-299 | MR | Zbl

[56] Sesum, Natasa; Tian, Gang Bounding scalar curvature and diameter along the Kähler–Ricci flow, J. Inst. Math. Jussieu, Volume 7 (2008) no. 3, pp. 575-587 | Zbl

[57] Shen, Liangming Unnormalize conical Kähler–Ricci flow (2014) (https://arxiv.org/abs/1411.7284)

[58] Sherman, Morgan; Weinkove, Ben Interior derivative estimates for the Kähler–Ricci flow, Pac. J. Math., Volume 257 (2012) no. 2, pp. 491-501 | DOI | Zbl

[59] Shi, Wan-Xiong Ricci flow and the uniformization on complete noncompact Kähler manifolds, J. Differ. Geom., Volume 45 (1997) no. 1, pp. 94-220 | MR | Zbl

[60] Song, Jian Ricci flow and birational surgery (2013) (https://arxiv.org/abs/1304.2607)

[61] Song, Jian Finite time extinction of the Kähler–Ricci flow, Math. Res. Lett., Volume 21 (2014) no. 6, pp. 1435-1449 | DOI | Zbl

[62] Song, Jian; Székelyhidi, Gábor; Weinkove, Ben The Kähler–Ricci flow on projective bundles, Int. Math. Res. Not., Volume 2013 (2013) no. 2, pp. 243-257 | DOI | Zbl

[63] Song, Jian; Tian, Gang The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math., Volume 170 (2007) no. 3, pp. 609-653 | DOI | Zbl

[64] Song, Jian; Tian, Gang Canonical measures and Kähler–Ricci flow, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 303-353 | DOI | Zbl

[65] Song, Jian; Tian, Gang Bounding scalar curvature for global solutions of the Kähler–Ricci flow, Am. J. Math., Volume 138 (2016) no. 3, pp. 683-695 | DOI | Zbl

[66] Song, Jian; Tian, Gang The Kähler–Ricci flow through singularities, Invent. Math., Volume 207 (2017) no. 2, pp. 519-595 | DOI | Zbl

[67] Song, Jian; Weinkove, Ben Contracting exceptional divisors by the Kähler–Ricci flow. I., Duke Math. J., Volume 162 (2013) no. 2, pp. 367-415 | DOI | Zbl

[68] Song, Jian; Weinkove, Ben Introduction to the Kähler–Ricci flow, An introduction to the Kähler–Ricci flow (Lecture Notes in Math.), Volume 2086, Springer, 2013, pp. 89-188 | DOI | Zbl

[69] Song, Jian; Weinkove, Ben Contracting exceptional divisors by the Kähler–Ricci flow. II., Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1529-1561 | DOI | Zbl

[70] Tian, Gang Smoothness of the universal deformation space of compact Calabi–Yau manifolds and its Peterson–Weil metric, Mathematical aspects of string theory (Advanced Series in Mathematical Physics), Volume 1, World Scientific, 1987, pp. 629-646 | DOI | Zbl

[71] Tian, Gang New results and problems on Kähler–Ricci flow, Differential geometry, mathematical physics, mathematics and society II (Astérisque), Volume 322, Société Mathématique de France, 2008, pp. 71-91 | Numdam | Zbl

[72] Tian, Gang Finite-time singularity of Kähler–Ricci flow, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1137-1150 | DOI | Zbl

[73] Tian, Gang; Zhang, Zhou On the Kähler–Ricci flow on projective manifolds of general type, Chin. Ann. Math., Volume 27 (2006) no. 2, pp. 179-192 | DOI | Zbl

[74] Tian, Gang; Zhang, Zhou Convergence of Kähler–Ricci flow on lower dimensional algebraic manifolds of general type, Int. Math. Res. Not., Volume 2016 (2016) no. 21, pp. 6493-6511 | DOI | Zbl

[75] Tosatti, Valentino Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Volume 84 (2010) no. 2, pp. 427-453 | DOI | Zbl

[76] Tosatti, Valentino Non-Kähler Calabi–Yau manifolds, Analysis, complex geometry, and mathematical physics (Contemporary Mathematics), Volume 644, American Mathematical Society, 2015, pp. 261-277 | DOI | Zbl

[77] Tosatti, Valentino Nakamaye’s theorem on complex manifolds (2016) (https://arxiv.org/abs/1603.00319, to appear in Proc. Symp. Pure Math.)

[78] Tosatti, Valentino; Weinkove, Ben The Chern–Ricci flow on complex surfaces, Compos. Math., Volume 149 (2013) no. 12, pp. 2101-2138 | DOI | MR | Zbl

[79] Tosatti, Valentino; Weinkove, Ben On the evolution of a Hermitian metric by its Chern–Ricci form, J. Differ. Geom., Volume 99 (2015) no. 1, pp. 125-163 | DOI | MR | Zbl

[80] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui Collapsing of the Chern–Ricci flow on elliptic surfaces, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1223-1271 | DOI | MR | Zbl

[81] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits (2017) (https://arxiv.org/abs/1408.0161, to appear in Am. J. Math.) | Zbl

[82] Tosatti, Valentino; Zhang, Yuguang Infinite time singularities of the Kähler–Ricci flow, Geom. Topol., Volume 19 (2015) no. 5, pp. 2925-2948 | DOI | Zbl

[83] Tosatti, Valentino; Zhang, Yuguang Finite time collapsing of the Kähler–Ricci flow on threefolds, Ann. Sc. Norm. Super. Pisa Cl. Sci, Volume 18 (2018) no. 1, pp. 105-118 | DOI | Zbl

[84] Tsuji, Hajime Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann., Volume 281 (1988) no. 1, pp. 123-134 | DOI | Zbl

[85] Tsuji, Hajime Degenerate Monge-Ampère equation in algebraic geometry, Proceedings of the miniconference on analysis and applications (Brisbane, 1993) (Proceedings of the Centre for Mathematics and its Applications), Volume 33, Australian National University, 1994, pp. 209-224 | Zbl

[86] Wehler, Joachim Isomorphie von Familien kompakter komplexer Mannigfaltigkeiten, Math. Ann., Volume 231 (1977), pp. 77-90 | DOI | MR | Zbl

[87] Weinkove, Ben The Kähler–Ricci flow on compact Kähler manifolds, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society, 2016, pp. 53-108 | Zbl

[88] Yau, Shing-Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl

[89] Zhang, Zhou Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type, Int. Math. Res. Not., Volume 2009 (2009) no. 20, pp. 3901-3912 | MR | Zbl

[90] Zhang, Zhou Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow, Mich. Math. J., Volume 59 (2010) no. 2, pp. 419-433 | DOI | MR | Zbl

[91] Zhang, Zhou General weak limit for Kähler–Ricci flow, Commun. Contemp. Math., Volume 18 (2016) no. 5, 1550079, 21 pages (Article ID 1550079, 21 p.) | MR | Zbl

Cited by Sources: