On singular perturbations for quasilinear IBV problems
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 9 (2000) no. 3, p. 467-486
@article{AFST_2000_6_9_3_467_0,
     author = {Milani, Albert},
     title = {On singular perturbations for quasilinear IBV problems},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 6, 9},
     number = {3},
     year = {2000},
     pages = {467-486},
     zbl = {0989.35021},
     mrnumber = {1842028},
     language = {en},
     url = {http://www.numdam.org/item/AFST_2000_6_9_3_467_0}
}
Milani, Albert. On singular perturbations for quasilinear IBV problems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 9 (2000) no. 3, pp. 467-486. http://www.numdam.org/item/AFST_2000_6_9_3_467_0/

[1] Friedman (A.). - Partial Differential Equations of Parabolic Type. Krieger, Malabar, FL 1983.

[2] Kato (T.). - Abstract Differential Equations and Nonlinear Mixed Problems. Fermian Lectures, Pisa, 1985. | MR 930267 | Zbl 0648.35001

[3] Lions (J.L.). - Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris, 1969. | MR 259693 | Zbl 0189.40603

[4] Lions (J.L.), Magenes (E.). - Non-Homogeneous Boundary value Problems, Vol. I. Springer Verlag, New York, 1972. | Zbl 0223.35039

[5] Lions (J.L.), Magenes (E.). - Non-Homogeneous Boundary value Problems, Vol. II. Springer Verlag, New York, 1972. | Zbl 0227.35001

[6] Matsumura (A.). - Global Existence and Asymptotics of the Solutions of Second Order Quasilinear Hyperbolic Equations with First Order Dissipation term. , Publ. RIMS Kyoto Univ., 13, 349-379 (1977). | MR 470507 | Zbl 0371.35030

[7] Milani (A.). - Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations with Small Parameter and Dissipation Term. Non Linear An. TMA, 10/11 (1986), 1237-1248. | MR 866256 | Zbl 0645.35064

[8] Milani (A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations. Adv. Math. Sci. Appl., 6/2 (1996), 419-444. | MR 1411976 | Zbl 0868.35008

[9] Milani (A.). - A Remark on the Sobolev Regularity of Classical Solutions to Uniformly Parabolic Equations. Math. Nachr., 199 (1999), 115-144. | MR 1676322 | Zbl 0962.35038

[10] Milani (A.). - On the Construction of Compatible Data for Hyperbolic-Parabolic Initial-Boundary Value Problems. Rend. Sem. Mat. Univ. Trieste, 29 (1997), 167-188. | MR 1658443 | Zbl 0921.35013

[11] Yang (H.), Milani (A.). - On the Diffusion Phenomenon of Quasilinear Hyperbolic Flows. To appear on Bull. Sc. Math.

[12] Milani (A.). - Global Existence via Singular Perturbations for Quasilinear Evolution Equations: the Initial-Boundary Value Problem. Preprint, 1999. | MR 1807450

[13] Milani (A.). - Sobolev Regularity for t > 0 in Quasilinear Parabolic Equations. Preprint, 1999. | MR 1866198

[14] Racke (R.). - Lectures on Nonlinear Evolution Equations. Vieweg, Braunschweig, 1992. | MR 1158463 | Zbl 0811.35002