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Nous etudions des versions du modele de Sherrington-
Kirkpatrick ou les spins sont a valeurs dans la sphere de Rd de rayon d.
Nous montrons qu’à haute temperature la solution "replique-symetrique"
est correcte. Nous en deduisons, toujours a haute temperature, des prin-
cipes de grandes deviations pour le recouvrement de deux configura-
tions dans la version usuelle du modele SK. Dans le cas ou les spins
sont uniformes sur la sphere de rayon Vd, nous montrons que la solu-
tion replique-symetrique est valable au-dessus d’une temperature bornee
independamment de d.

ABSTRACT. - We show how to prove large deviation principles for the
overlaps of the usual Sherrington-Kirkpatrick model (at high enough tem-
perature) by proving that some higher dimensional versions of this model
are "solved by the replica-symmetric solution". In the version where the
spins are uniform over the sphere of radius J2 of Rd we prove that the
critical temperature is bounded independently of d.

1. Introduction

The Sherrington Kirkpatrick (SK) model for spin glasses associates to a
sequence u = = ~ -1,1 ~ N the Hamiltonian

~ Equipe d’analyse, E.S.A. au C.N.R.S. n° 7064, Boite 186, Universite Paris VI, 4,
place Jussieu, 75252 Paris cedex 05.
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bus, OH 43210-1174.



where 9ij is an i.i.d. standard normal sequence, and h a parameter (that
represents an external field). The object of study is, for a typical realization
of the sequence (that will be called the disorder) to understand the
structure of the Gibbs measure at inverse temperature /3 given by

where Z is the normalization factor. While the physi-

cists believe they understand the structure of the SK model for all values
of {3, rigorous results are currently known essentially only for "small ~3" . In
the case h = 0, precise results are obtained for (3  1 in [C-N] (following
[A-L-R]). These results include central limit theorems for the overlaps. The
overlap of two configurations is defined as N~ 1 ~ and it is best

iN
viewed as a function on EN x EN. Overlaps are of fundamental importance,
as discovered in physics. The central limits theorems on the overlaps of
[C-N] are extended to the case h > 0, ~3  ~30 (~30 > 0) in [T2], a case that
is apparently much more difficult. The starting point of the present investi-
gation is the following natural question: what are large deviation principles
for the overlaps? In the study of the SK model (as well as in the study
of disordered systems) there are two rather distinct questions about large
derivations, that one can roughly state as follows.

Question ~. Understand how rare are the exceptional realizations of
the disorder for which Gibbs’ measure is rather different from its typical
realization.

Question 2. For the typical realization of the disorder, understand
how rare are, for Gibbs’ measure, the exceptional configurations for which
the overlaps are rather different from their typical (= average) value.

It is question 2 that will be addressed here. (The author is not aware of
any result in the direction of question 1.) Let us denote by ( . ) averages
on ~N (or its products) with respect to Gibb’s measure. Then question 2
essentially amounts, given t > 0, to estimate

This is a quantity of order N. It is explained that the fluctuations due

to the disorder of this quantity are of order N, so that all the information



we need about the left-hand side of (1.2) is in fact contained in the number

where E denotes expectation in the variables 9ij.

How can one compute this quantity? For example, its derivative with
respect to t is

where (.)t denotes average with respect to Gibbs’ measure, at inverse tem-
perature /? on E~ x EN, relative to the Hamiltonian 

’

There seems to be no other way to compute the quantity (1.4) than to gain
understanding of this Gibbs’ measure. Consider now the Hamiltonian

on "EN x "EN = (~-1,1~2)N. A simple, but crucial observation is that the
study of the Hamiltonian (1.5), when ~N is provided with uniform measure,
is the same as the study of the Hamiltonian (1.6), when EN x ~N is provided
with the probability vN, where v is the probability on ~ -1,1 ~ 2 given by

where a is the normalization factor. Indeed, for a function f on ~N x EN,

where (o’,o~) is identified with an element of ({-1,1}2)N.



Besides the overlaps, there are other quantities for which one might want
to establish large deviation principles, such as the "symmetrized overlaps"
considered in [Tl]. For these, the analysis performed above carries out, but
one has to study a certain Gibbs measure on To treat this different

cases in one stroke, we will introduce a general setting, the generalized SK
model. In this model, the individual spins take values in the ball B of R~

(where d is an integer)

The choice of the normalization is to ensure as seems

natural from the previous motivating examples. A configuration 0’ is then
a point of EN = BN. Denoting by (., .) the dot product in jRN, we consider
the Hamiltonian 

,

Given a probability J-t on B, we define Gibbs’ measure on B~ as the prob-
ability that has density proportional to with respect to 

The parameters of the system are then {3 and the probability A par-

ticularly natural example is when ~ is uniform on the boundary of B, an

example physically interesting if d = 3.

THEOREM 1.1 (Informal version). - There is a number L such that if
L~3d  1, , the replica symmetric (RS) solution holds for the generalized SK
model.

What is meant by the RS solution will be explained in detail in Section

2; but this means in particular that we can compute the limit as N - oo of
the quantity (1.4) (and of many others). Thus, as a consequence of Theorem
1.1, there is a number /?o such that if /3  we understand (at least in
principle, since the solutions are given in terms of implicit functions) the
large deviations of the overlaps for the usual SK model.

If no hypothesis is made upon the requirement 1 is reasonable.

For example, if for a certain x in with IIxll = Jd, we have ~c ( ~ x ~ ) =
~u(~-x~) = 1/2, then the corresponding generalized SK model is isomorphic
to the SK model for h = 0, at inverse temperature {3d, so that the RS
solution will not hold unless 1. Thus, if we define the critical value
of /3 as the supremum of the values for which the RS solution holds, we
can reformulate Theorem 1.1 by saying that the critical temperature is of
order at most d. In this example that showed that this order is optimal,
the measure  was actually "one dimensional". We feel that if  is really
d-dimensional (in a sense yet to be discovered) then the critical ~3 should be



of order 1 independently of the value of d. Here is a result in this direction,
concerning the natural example.

THEOREM 1.2. - There exists a number /?o > 0 such that /?o? 
and ~c is uniform over the boundary of B, the RS solution holds for the
corresponding generalized SK model, whatever the value of d.

In contrast with the case d = 1, it should be pointed out that for large d
the free energy density is much smaller that the anealed free energy density
(by a factor d), so that Theorem 1.2 is not as easy as one might have hoped.

We will generalize Theorem 1.2 as follows.

THEOREM 1.3. - There exists numbers 03B20 > 0, L > 0 with the following
property. If we assume that ~u has a density 1-f-m with respect to the uniform
measure on S, where 1 /L, then the RS solution holds for the
corresponding generalized SK model, whenever ,Q  ~30, whatever the value
of d.

We would like now to explain why the interest of the generalized SK
model possibly goes well beyond the application we gave to large devia-
tion principles. We were brought to that model by our attempts to prove
the validity of the RS solution for the usual SK model in the entire "high
temperature region" predicted by the physicists. This problem appears very
much harder than expected. At present it appears very difficult to get even
close to the critical value of ~3, unless h is small, where one can take advan-
tage of special features. The generalized SK model makes our shortcomings
more obvious. When d is large we are currently very far from being able
to get the proper order of the critical ~3. We can prove only that /3 is at
least of order 1/d, in cases where it is likely to be of order 1, unless we
can take advantage of special features, as in the case of Theorem 1.2. Of
course the reader might think that it is weird to attempt to solve a hard
problem (proving the validity of the RS solution in the entire high temper-
ature region) by working on a much harder one (studying the generalized
SK model). This is not necessarily the case. The attack of [T2], that seems
to follow the most natural approach, requires to estimate for each n,
where f is a certain function on It does not appear possible, when n is
of order N, to make these estimates by understanding Gibbs’ measure only.
Rather, it seems necessary to understand the measure of density exp t f with
respect to Gibbs’ measure. The form of f (that resembles an overlap) is such
that this amounts to understanding a generalized SK model for d = 4. It
is most likely that in the previous sentence the work "understand" must
mean "prove that the RS solution holds". So, to prove that the RS solution
holds for the ordinary SK model, at a given value of the parameters, one is



naturally lead to study a generalized SK model for d = 4. The hope is that
for this new model, one is a little bit further from the critical temperature
so that the problem is a bit easier. One could then iterate the procedure
until one reaches a problem easy enough to solve it directly. But the main
obstacle in this program is that the dimension d doubles at each iteration,
and the project has a chance to succeed only if one can develop estimates to
study the generalized SK models that are independent of the value of d (at
least for a sufficiently rich class of measures ~c). This, by itself, appears to
be a very difficult program, of which Theorems 1.2 and 1.3 are small steps.

We now describe the organization of the paper. In Section 2, we set
our notation, we explain the cavity method, and describe the RS solution.
In Section 3 we prove the key step toward Theorem 1.1, that is, we show
that "the system is in a pure state". This follows the basic ideas of [Tl],
but, since the situation is more complicated, some explicit computations
are no longer possible, and have to be replaced by general principles (which
of course results in great simplification). We have tried to give the simplest
proof we could, even though this means that some arguments will have to be
repeated later in a more elaborate form to prove Theorem 1.3. Proceeding
otherwise could have shortened the paper by a few pages; it would also have
guaranteed that the proofs would forever be impenetrable to others. The
proof of Theorem 1.1 is then completed in Section 4. In Section 5, we prove
Theorem 1.2. In Section 6, using the fact that ~ is close to uniform, we

prove a priori estimates on Gibbs’ measure. Using these, we then revisit the
methods of Section 3 and 4 to prove Theorem 1.3.

2. Description of the RS solution and preliminaries

The fundamental property of the RS solution will be that "the system
is in a pure state" ; we refer the reader to [T4] for a detailed discussion of
this idea. In the present case, the way we will define this notion is by the
fact, that, given any x, y in the function

of the two configurations cr, u’ is essentially a constant function on (~N, G2).
It is convenient to symmetrize, and to say instead that the function

of the three configurations ~1, y~, u3 is essentially zero.



To simplify notation, we will write fr = cr 2 we will denote 
the sequence (x, and we will denote by . the dot product in so

that (2.2) will be written as

To quantify the fact that is function is nearly zero, we will consider the
number 

_

In this notation, ( . ) means that ,~1, ~2, ~3 are integrated for Gibbs’
measure; E denotes expectation in the r.v. (gij)ij (the disorder) ; and 
is the norm of x in 

In Section 3 we will prove that 0 under the conditions of Theo-
rem 1.1.

The structure of the RS solution of the standard SK model is determined

by a number q. This number q has the property that for essentially all
realizations of the randomness, and essentially all choices of a, 0-’ according
to Gibbs’ measure, we have

The value of q is given by

where g is standard normal.

The situation is more complicated for the generalized SK model. We have
to consider two quadratic forms R, Q on These will have the property
that for x, y in JRd, essentially all realizations of randomness, and essentially
all choices of cr, u’ in ~N (according to Gibbs’ measure) we have

Given a positive semi definite form Q on ]Rd, there exists a jointly Gaus-
sian family such that = Q(x, y) for all x, y in



Then in the limit the quadratic forms Q, R will by determined by the
relations

In line with our previous work, we denote above by Av integration of 8, 8’
with respect to The reader is reminded that while certain authors use

the notation Av to mean average over the disorder, we denote average over
the disorder by E. Of course in (2.9), (2.10) E stands for integration in the
Gaussian variables 

In Section 4 we will prove these statements under the conditions of

Theorem 1.1. These already contain the information we need to evaluate

quantities such as (1.4) (that is asymptotically ER(el, e2) where el,e2 are
the unit vectors of R~). In fact it will be clear at that point that we can
compute many other quantities. It seems almost certain that in the range
of values of ~3 considered in Theorem 1.1, the generalized SK model can
be understood with the accuracy that is achieved in [T2] for the standard
SK model; but we did not see motivations to undertake such a large scale

project.

The fundamental tool for the present paper is the cavity method, and
we explain it now. Consider an independent sequence of i.i. d. N (0,1 )
variables, that is independent of the variables (gij)ijN. If we write g2, N+ 1 =

gi, the collection is independent i.i.d. We will denote by ( . )’
Gibbs’ measure for the (N + 1) spins system, where ~3 is replaced by ~3’ =

Consider a function f on E~+1. We make the convention to
write a configuration in EN+1 as (~, 9), where ~ E E B. We then

have the algebraic identity

where Z = Av(£(B, Q)) and

In (2.12), Av means that B is integrated with respect to u (and of course a
is integrated for Gibbs measure). Once one understands the notation, (2.12)



is obvious. Its purpose is to relate ( . ) and ( . )’ so that the information
on ( . ) can be transferred to ( . )’, allowing induction upon N. In the
previous papers where we have used formulas such as (2.12), after stating
the formula, we say "the reader will check extensions of this formulas to the
case where one replaces EN by a power and G N by its power (replicas)".
In the present case, there is no need to appeal to the reader’s good will,
because replicas of a generalized SK model are themselves generalized SK
models with a larger d, replacing the space and  by a power of itself.

3. System in a pure state

The aim of this section is to prove that if L~3d  1, then lim CN = 0.

It is possible that this could be proved by the method af [F-Z], Theorem A
(2), but since not all the details are provided there, it is not immediately
clear whether these authors obtain the correct dependence ~3d  1. In the
different normalization they use this is equvalent to the fact that in their
Theorem A (2) "{3 small enough" means small enough independently of d.
In any case, it should be useful to the reader to see an argument in the
spirit of the rest of our approach, argument that we present now.

What makes the problem challenging is that before we start we do not
know anything about Gibbs’ measure. Yet we will be able to make (with
foresight) a estimate of the left hand side of (2.12). We set

There of course = 0(r) . ~ B(~) = ~ (9, o~i)2. Even though, as
iN

mentioned at the end of the previous section, replicas of a generalized
SK model can themselves be viewed as generalized SK models, it will be
convenient to consider them directly. We will consider a function f =
f (~1, a.2, ~s, 8i, 92, 831, where cr~ E EN,Oi E B, and of course a quantity
such as

Av(f)
means that we integrate ~2, cr3 for Gibbs’ measure and 81, 82, 93 for p.

PROPOSITION 3.1.2014 1 we have



There, as well as in the rest of the paper, L denotes a number, not

necessarily the same at each occurrence. The meaning of this result is that
modulo a reasonable error term, we can replace in the numerator ~(8, ~)
by that has a much simpler dependence upon g.

Proof. - For 0  u  1, we consider

It is good to observe that E9£(u) does not depend upon u, where Eg denotes
integration in g only. Also, the left-hand side of (3.3) is so that

to prove (3.3) it suffices to prove that for each 0  u  1 we have

we will integrate by parts. If g is N(0,1) and h is a smooth function, then

Thus, if are i.Ld. N(0,1) and F is a smooth function on then



where aF/ag2 denotes the partial derivative of F with respect to the ith
variable and where g = We will use the functions

When computing

one sees that the contributions of the terms I cancel out with the contri-
butions of W2. This is because is independent of u. Using
replicas to write the contributions of the terms II, we then get that

We recall that, by Jensen’s inequality, we have Z > exp where
a is the barycenter of ~c. Thus

We first take expectation in g, using that (~B(~) ~~2  dN for 0 E S, a E ~5~,
to get



We now use Cauchy-Schwarz,

and we observe that

where the factor d arises from the fact that 0~ ~ are of norm B/d. D

To prove that lim C~ = 0, it seems necessary to consider another

quantity

This quantity is of a different nature than CN. Saying that DN is small
implies is essentially independent of r, a very precious infor-
mation in itself, since it allows to go one step beyond Proposition 3.1, as
the following shows.

PROPOSITION 3.2. - 1, we have

Proof. - Using Proposition 3.1, it suffices to bound

We consider the function



so that (3.20) is and to prove (3.19) we bound cp’(u) for each
u. We have

This is then bound by simple estimates, such as those previously used to
bound the right-hand side of (3.14). . D

Comment. Of course one can merge the proofs of Propositions 3.1 and
3.2, but we found it more clear not to do so.

PROPOSITION 3.3. - If (3d fi l, we have

In that statement, CN+1 and DN+1 are computed for the (N + 1) spin
system at inverse temperature /3~ = + I/TV. Iteration of the relations
(3.21) to (3.22) yields that if  i, then lim CN = 0 = lim D (which

N-.oo 

was the main objective of this section).

Proof.- Setting CN (r, y) = E((~,x(6~) ~ y(Q3))2), and using symmetry
between coordinates, we see that

Using this for N + 1 rather than N, and appealing to (2.13) we get

There, 6~ = 81 - 82, and Av means integration over B1, 82, 83. Consider


