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SUR LE PROBLEME DE BACKLUND

ET LES SYSTEMES DE DEUX EQUATIONS DE PFAFF

Par E. GOURSAT.

Dans un Mémoire (*) antérieur, j’avais montré comment la recherche de certaines
transformations de Biicklund conduisait 4 I’étude d’une expression de Pfaff, et & la
réduction de cette expression a une forme canonique. En essayant d’étendre ce
résultat aux transformations de Bicklund les plus générales, on est conduit a rem-
placer le probléme de Bicklund lui-méme par un probléme équivalent, Vintégra-
tion d’un systéme de deux équations de Pfaff a six variables. Les diverses transfor-
mations de Bicklund B, B,, B, se trouvent ainsi rattachées a leur véritable origine,
Cest-a-dire aux différentes facons dont il est possible de ramener I'intégration d'un
systéme de Pfaff de cette espéce a l'intégration d'une équation aux dérivées par-
tielles du second ordre. La liaison entre ces diverses transformations, entre les
caractéristiques de deux équations qui se déduisent I'une de I'autre par I'une de ces
transformations, se trouvent ainsi établies d’une fagcon presque intuitive.

Les systémes de Pfaff & un nombre quelconque de variables indépendantes n’ont
été I'objet jusqu’a présent que d’un petit nombre de travaux. Les résultats les plus
importants sont dus a M. Cartan (*), qui a introduit dans cette théorie un certain
nombre de notions fondamentales. La considération des éléments singuliers permet
de faire trés simplement 1’étude des systémes de deux équations i six variables.
Cette étude détaillée fait I'objet de la premiére partie du Mémoire. La plupart des
résultats avaient déji été obtenus directement par M. Duport (°) & l'aide d'une
méthode toute différente exigeant d’assez longs calculs, que la théorie des éléments
‘singuliers du systéme permet d’abréger beaucoup, et dont elle fournit une interpré-
tation trés simple. Ces résultats pourraient sans doute étre rattachés a des résultats

(*) Sur quelques transformations des équations aux dérivées partielles du second ordre
(Annales de la Faculté des Sciences de Toulouse, 2° série, t. 4; pp. 299-340.) -

(%) Voir en particulier le Mémoire Sur Vintégration des systémes d’équations aux différen-
tielles totales. (Annales de VEcole Normale supérieure, 3° série, t. 18, 19o1; pp. 241-311.)

(*) Journal de Mathématiques pures et appliquées, série V, t. 3, 1897; p. 17.
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plus généraux dus aussi & M. Cartan (*); mais il m’a semblé que I’étude détaillée,
et méme un peu minutieuse, que 'on peut pousser jusqu'au bout, d'un systéme
particulier d’équations de Pfaff, pouvait contribuer & la diffusion d’une théorie
importante et trop peu connue jusqu’ici. \

Dans la seconde partie, je fais I'application des résultats obtenus au probléme
de Bicklund. Les théorémes connus sur les transformations de Bicklund, et plu-
sieurs autres qui semblent nouveaux, se présentént d’eux-mémes. Les autres ques-
tions, qui se posent au sujet de ces transformations, se rattachent aussi d'une fagon .
trés naturelle & des problémes relatifs aux systémes de Pfaff, ou interviennent en
particulier les systémes de quatre équations de Pfaff & six variables qui définissent
les éléments singuliers d'un systéme de deux équalions.

Tout systétme de quatre équations de Pfaff & six variables peut étre considéré,
d’une infinité de maniéres, comme définissant une famille d’éléments singuliers
d’un systéme S de deux équations A six variables. Dans la troisitme partie de ce
Mémoire, je montre que la recherche de ces systémes S se rameéne & l'intégration
d’une équation aux dérivées partielles du second ordre & six variables indépendantes.
Jindique comment on peut former cette équation, et je traite quelques cas ou la
question se simplifie. ,

Enfin, dans la quatriéme partie, je montre rapidement comment la mé-
thode suivie dans la premiére partie‘ s’étend aux systémes de deux équations dé
Pfaff & n variables. Les résultats sont essentiellement différents suivant la parité de n.

Pour la définition des éléments qui interviennent dans I'étude d'un systéme de
Pfaff, je renverrai le lecteur au Mémoire fondamental de Cartan cité plus haut.

[4] Soit S un systéme de deux équations de Pfaff & six variables x,, x,, x,, «,,
x,, T, ,
w,=Ade, +Adr, 4+ ... +Adr,=o,
) w, = B, dx, + B,d‘ac2 + ... +Bdx,=o,
les coeficients A,, B, étant des fonctions quelconques des variables x;. Si ces deux
équations sont distinctes, on peut les résoudre par rapport & deux des différentielles
qui y figurent; pour fixer les idées, nous supposerons qu'on peut les résoudre par

on rem-

29

rapport & dx, et dx,. Cela posé, si dans les covariants bilinéaires o',, '

*) Suar l’mtégjration de cerlains systémes de Pfaff de caractére deux. (Bulletin de la Société
Mathémalique, t. 29, 1got; pp. 233-302.) :
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place dx,, dx,, 3x,, 3x, par leurs expressions au moyen de dx,, dx,, dx,, dx,,
3x,, 3x,, 3x,, dx,, les deux équations ', = 0, w/, = o prennent la forme
12 2 3 5 1 2

o, = Y A (dw,3x, — dx,3w) =0,
. (mod (1)‘, (v)z)

(2)
o', = Y\ By (dw,3x, — dz,3a) =o,

(i, k=12,3,4),

"les coefficients A;» By, s’exprimant au moyen des fonctions A;, B, et de leurs déri-
vées partielles du premier ordre. ‘

Tout systéme de valeurs (dx, , dx,, dx,, dx,) définit un élément linéaire intégral e,
issu d'un point déterminé (x,, «,, ..., x,) de l'espace & six dimensions. Ce point
étant regardé comme fixe et de situation générale, les éléments linéaires intégraux
qui en sont issus forment une multiplicité a trois dimensions. Si I'on considére
dx,, dx,, dx,, de, comme les coordonnées homogénes d’'un point dans l'espace a

“trois dimensions, on peut dire qu’a tout point m de I'espace & trois dimensions
correspond un élément linéaire intégral ¢, 4 une dimension du systéme S, et réci-
proquement. Soient e,, ¢, deux éléments linéaires intégraux en involution du sys-
téme S, m, m' les points correspondants de I'espace A trois dimensions; les coor-
données (dx,, dx,, dx,, dx,), 3x,, 3x,, 3x,, 3x,) de ces deux points doivent satisfaire
aux deux relations (2). Nous dirons aussi, pour abréger, que ces deux points m et m’
sont en involution. Le point m étant donné, les coordonnées du point m' doivent
vérifier les deux équations linéaires (2) qui sont en général distinctes. Le lieu des
points en involution avec un point donné m de I'espace est donc en général une
droite D issue de ce point. D’aprés la forme bilinéaire des relations (2), deux points
quelconques de cette droite D sont aussi en involution, et les éléments linéaires
intégraux qui correspondent aux différents points de D forment un élément linéaire
intégral e,, qui a pour image la droite D dans l’eépace A trois dimensions, Tout élé-
ment linéaire intégral e, appartient donc en général & un élément intégral e, el aun
seul. Le systtme S est donc du second genre et admet des intégrales M,, de telle
sorte que toute intégrale M, appartient & une intégrale M, et & une seule (*). '

Ces conclusions ne s’appliquent pas & certains éléments linéaires exceptionnels.
Les relations (2) expriment que la droite D qui joint deux points en involution m,
m' appartient & une congruence linéaire. Cela étant, plusieurs cas peuvent se pré-
senter. )

“1° Les deux directrices A,, A, de la congruence sont distinctes et ne se coupent
pas, ce qui est évidemment le cas général. Un élément intégral e, est représenté par

3

(*) Cartan, Annales de UEcole Normale supérieure, 3¢ série, t. 18, p- 254 et suivantes.
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une droite D rencontrant A, et A,, et il est évident que tout élément linéaire inté-
gral e, représenté par un point m, qui n’appartient & aucune des deux droites A, , A,,
appartient & un élément e, et & un seul. Il y a exception pour les éléments e, qui
correspondent aux points des deux droites A,, A, ; ces éléments linéaires sont des
éléments singuliers, et nous voyons qu’il y a en général pour un systéme S deux
Sfamilles distinctes d’éléments linéaires singuliers. La représentation géométrique
rend encore intuitives les propriétés suivantes : |

a) Soit m, un point de la droite A, par exemple, et'soit P, le plan passant par m,
et par A,; I'élément linéaire e, représenté par le poin-‘t'ml est en involution avec .
tous les autres éléments linéaires intégraux qui correspondent aux différents points
de P,, mais I'ensemble de ces éléments (élément polaire de e,) ne forme pas un élé-
ment intégral e,. ‘

b) Deux éléments singuliers de familles différentes sonl toujours en involution.

c¢) Toul élément intégral e, renferme un élément singulier e, de chaque famille.

Voici une conséquence importante de cette propriété. Les éléments singuliers de
chaque famille sont définis par un systéme de quatre équations de Pfaff & six varia-
bles. Il y a donc une infinité de multiplicités intégrales a une dimension du systéme S,
dépendant d’une fonction arbitraire d’une variable, dont tous les éléments linéaires
sont des éléments singuliers; ce sont les caractéristiques de Monge du systéme S.
Toule intégrale M, de S est un lieu de caractéristiques de Monge de chaque famille. En
effet, puisque tout élément intégral e, de M, contient un élément singulier de chaque
espéce, les multiplicités M, situées sur M,, qui admettent en chaque point un élé-
ment singulier pour élément linéaire, sont déterminées par l'intégration d’une
équation différentielle du premier ordre : il en passe donc une de chaque espéce par
chaque point de M,. L’analogie avec la théorie des caractéristiques d’'une équation
aux dérivées partielles du second ordre est évidente et sera expliquée plus loin.

2° Si les deux directrices A,, A, sont confondues, il y a un seul systéme d’élé-
ments singuliers représentés par les points d’une droite A. L'élément singulier e,

" représenté par un point m de A est en involution avec tout élément linéaire repré-

senté par un point quelconque d’un plan P passant par A et tangent en m a un
paraboloide dont A est une génératrice. Tout élément non singulier e, appartient &
un seul élément e,, qui renferme un élément singulier. [1 n’y a plus qu'une famille
de caractéristiques de Monge, dépendant d'une fonction arbitraire d'une variable,
et toute intégrale M, du systéme de Pfafl est encore un lieu de caractéristiques de
Monge de ce systeme. .

3° Si les deux droites A,, A, sont situées dans un méme plan P sans étre confon-
dues, la congruence linéaire est formée des droites qui passent par le point O com-
mun aux deux droites A, A,, et des droites situées dans le plan P. Les deux direc-
trices A,, A, peuvent étre remplacées par tout autre systtme de deux droites du
plan P passant en O. Ces deux droites ne jouent donc aucun réle dans les propriétés



SUR LE PROBLEME RE BACKLUND. 69

de la congruence, ou interviennent seulement le plan P et le point O. Dans ce cas,
I'élément linéaire intégral figuré par le point O est en involution avec tous les autres
éléments linéaires intégraux du systéme, c’est donc un élément caractéristique & une
dimension. 11 s’ensuit que le systéme S admet des caractéristiques de Cauchy i une
dimension; il est donc de cinquiéme classe, et 'on peut, par un changement de
variables convenable, le ramener & une forme ou ne figurent que cinq variables et
leurs différentielles. Toute intégrale M, est le lieu des caractéristiques de Cauchy
issues des divers éléments d’une intégrale M,, et le probléme de l'intégration est
ramené a la détermination des caractéristiques de Cauchy de ce systéme.

On reviendra plus loin sur cette question dont M. Cartan (*) a fait une étude
approfondie. Nous indiquerons encore ici quelques propriétés du systéme S, que la
représentation géométrique rend ¢videntes. Tout élément linéaire intégral e, repré-
~senté par un point m, non situé dans le plan P, appartient & un élément-intégral e,
représenté par la droite Om. Mais les éléments linéaires intégraux figurés par des
points du plan P sont des éléments singuliers. Tous ces éléments sont deux & deux
en involution et forment un élément intégral du troisitme ordre e,, de sorte que
chaque point de 'espace & six dimensions est 'origine d’un élément intégral e, du
systéme S. Il ne s’ensuit pas que par chaque point de l’espace il passe une inté-
grale M, de ce systéme. Lorsqu’il en est ainsi, on peut choisir les variables de fagon
que ces intégrales M, soient représentées par les équations

y.=GC,, y.=GC,, Yy, =G

1 v 2 2

3 dy,=y.dy,, dy,=y,dy,,

mais ce n’est 1a qu’'un cas tout particulier.

Dans le cas général, en ajoutant aux deux équations w, = o, w, = o I'équation
du plan P, v, =0, on a un syst¢tme de trois équations de Pfaflf & six variables
et de cinquiéme classe, dont les intégrales M, sont des intégrales singuliéres du sys-
téme S, car tout élément lingaire intégral de M, est un élément singulier de .
La détermination de ces intégrales se rameéne & U'intégration d’un systéme en invo-
lution de deux équations du second ordre et inversement; cette proposition a été
établie par M. Cartan dans le Mémoire déja cité.

[2] Nous avons supposé jusqu’ici que les deux équations

’
w, =0, m" =0 (mod ©,, o)z)

[ 4

(*) Annales de PEcole Normale supérieure, 3¢ série, t. 27, 1910; PpP. 109-192.
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w

étaient distinctes. Il peut arriver, pour certains systémes de Pfaff, que ces deux
équations se réduisent & une seule. On peut alors déterminer deux coefficients et
tels que l'on ait identiquement

Ao, + po’, =0 (mod v,, »,)

ou, ce qui revient au méme,
(ho, + vo,) =0 (mod w,, w,),

de sorte que deux éléments linéaires intégraux quelconques du systéme e,, ¢, sont
toujours en involution relativement & I'équation v, + pww, = o. Il est évidemment

permis de supposer que l'on a pris cette équation pour 'une des équations du sys-
téme S, par exemple que l'on a *

o', —o0 (mod v,, v,).

Pour que deux éléments linéaires intégraux (dx,, dx,, dx;, dx,), (3x,, 3x,, 8, 3x,)
soient en involution relativement au systéme S, il suffira donc que l'on ait

' o', =o0 (mod wl,.wg).
Cette équation, qui est de la forme

3 B, (dw;3w, — do,5w) = 0 (i k=1,2,3,4),
- .

exprime que la droite qui joint les points figuratifs des deux éléments appartient
a un complexe linéaire. Il peut encore se présenter deux cas :

1° Si ce complexe n’est pas un complexe singulier, il n’y a ni éléments caracté-
ristiques, ni éléments singuliers pour le systdme. Tout élément intégral e, appar-
tient 4 co' éléments e,, mais la représentation géométrique prouve qu’il n’existe
pas d’éléments e,. Il résulte d’'une propriété générale gles systémes de Pfaff de carac-
tére un (*) que l'équation v, = o est, dans ce cas, complétement intégrable, ce qu’il
est aisé d’établir directement. En effet, supposons cette équation de classe cing et
mise sous la forme normale

(ol:dxs + .Tzdél" + oc‘dacazo;

on peut supposer que la seconde équation w, = o ne renferme pas dx,, mais elle

(*) Bullelin de la Sociélé Mathématique, t. 29, 1901; p. 257.
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renferme certainement une des différentielles dw,, dx,, dx,, dx,.

Admettons, par
exemple, qu’elle contient dx,, '

o,=dx, + X, dx, + X, dx, + X dx, + X dx,—o.

Le covariant o', = dx, 3, — dx, 3%, + dx, 3, — dx,3x, ne peut étre identi-
quement nul quand on.y remplace dx, et 3x, par leurs éxpressions tirées de w, = o,
car les termes dx, 3z, — du, 3z, ne se réduisent avec aucun autre. L’équation v, = o
ne peut donc étre de classe cing.

Si cette équation était de classe trois, on pourrait la supposer mise sous la forme
normale '

w, == d.’JL'5 + .’L’sdw‘ =o,
I'équation v, = o étant la méme que tout & I'heure. On a alors

o' = (X3, + X3z, + X, 3z, + X,3z,)d,
— X, dx, + X dx, + X, dx, + X dx,)dx, (mod v,, w,)

et ce covariant ne peut étre nul idertiquement que si ’'on-a

X,=X,=X,=o.
Le systéme de Pfaff serait de classe quatre, ce qui est contraire & lhypothése,
puisqu’il n’y a pas dans ce cas d’élément caractéristique. i
" L’équation », = o étant mise sous la forme dx, = o, la seconde équation v, = o
est nécessairement de classe cing et peut étre ramenée a la forme normale

N

w,=dx, + x,dx, + x dr,—o.

On vérifie aisément sur cétte forme canomque du systéme S qu’il n’y a pas
d’éléments singuliers.

2° Si le complexe est formé de droites rencontrant une droite fixe A, tous les
points de cette ‘droite.représentent des éléments linéaires caractéristiques. 11 y a
donc =o' éléments de cette espéce issus de tout point de I'espace & six dimensions.
Le systtme de Pfaff admet des caractéristiques de Cauchy & deux dimensions, et
par suite ce systéme est de quatriéme classe. Il y a encore deux cas a distinguer,
suivant que I’équation w, = o est de classe trois ou de classe un.

Enfin, si 'on a o', = o/, = o (mod v;, v,), le systéme de Pfaff est complétement
intégrable,
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[3] Apreés ces généralités, nous allons montrer comment on obtient les équations
qui définissent les deux familles d’éléments singuliers. Nous supposerons d’abord,
pour fixer les idées, que ’on peut résoudre les deux équations w, = 0. w, = o. par
rapport & dz, €t dx,, de sorte que les covariants bilinéaires «',, ', peuvent &tre
ramenés & la forme (2), et que les deux équations o', =0, .0', = o sont distixnctes,
Cest-a-dire que le systéme S n’admet pas de systéme dérivé.

Pour qu’un élément linéaire intégral (dx,, dx,, dx,, dx,) soit un élément singu-
lier, il faut et il suffit que les deux équations o', = o, o', = o, considérées comme
définissant 3x,, 8x,, 8x,, 3x,, ne soient pas distinctes, ou que I'on ait identique-
ment, pour un systéme de valeurs des coefficients &, .,

o', + po’,=o0,

quels que soi?nt 8x,,ox,, ox,, ox,. Les coordonnées homogénes d'un point m de I'es-
pace correspondant i un élément singulier doivent donc vérifier les quatre relations

([') ()‘Aia + !‘LBH) d'rx + ()‘Aiz + F‘Bia)dmz + ()‘Aiu + p‘Biu)dx.} + ()‘Ais + l“'BiA)dxh =0,
(i=1,2,3.4),

ot les coefficients A,,, B, vérifient les conditions
Aik+Aki:O7 Bik+Bki:O) A —B.—o.

Pour que les équations (4) soient vérifiées par des valeurs non toutes nulles de
dx,, dx,, dx,, dx,, il est nécessaire que le déterminant symétrique gauche

M, 4+ pB, R,+pB, M, +pB, KA, +pB,,
M, + B, R, 4B, KA, +uB, 2A, +uB,
M, +uB, A, +pB, R, +pB, A, 4B,
M, +uB, M, +wB, KA +pB, A, +uB,

®) AQww=

soit nul. Or ce déterminant est le carré d'une forme quadratique F(i, p) en }, p,

et I'on voit que le rapport 2 doit satisfaire a I’équation du second degré
®
(6) ' FO., p) =o0;

il y a donc en général deux systémes d’éléments singuliers, comme on I'avait re~
connu par une discussion géométrique.

Soit (A, u) un systtme de deux nombres, dont 'un au moins n’est pas nul,
vérifiant 'équation (6). Les quatre relations (k) se réduisent alors & deux relations
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distinctes qui, jointes aux deux équations o, = o, v, = o, définissent une famille
R, . . A

d'éléments singuliers. Le cas ot, pour une valeur convenable du rapport —, les qua-
! _ "

tre équations (4) seraient vérifiées identiquement, correspond 4 une hypothese qui
a été examinée au paragraphe précédent, et que nous avons écartée. Pour qu’il en

A ¥ fussent égaux, et les deux
ik

équations o', = 0, ', = o se réduiraient & une seule. Remarquons que, dans ce

ft ainsi, il faudrait en effet que tous les rapports —

cas, 'équation F(}, ) = o a une racine double, car tous les éléments du détermi-
" nant A(}, ) sont divisibles par un méme facteur linéaire en 1, p.

Ce cas singulier étant écarté, & un couple de valeurs (},, w,) non toutes nulles,
satisfaisant a I’équation (6), correspond une équation du systéme de Pfaff considéré

-

7 Q =Nov, +u,0,=o0,

telle que l’on ait

(Mo, + po0) =%, +po,=o0 (mod o,, v,)

pour tous les éléments singuliers de la famille correspondante, quel que soit 'autre
élément intégral (3x,, 3x,, 3x,, 3x,). En d’autres termes, tous les éléments singu-
liers correspondant a un systéme de solutions (},, 1,) de I’équation (6) sont en invo-
lution avec tous les autres éléments linéaires intégraux du systéme de Pfaff, relati-
vement & 1'équation (7). ' :

On peut évidemment supposer que cette équation (7) est I'une des équations qui
définissent le systéme de Pfaff, par exemple que c’est I'équation w, = o Aelle-méme,»,
ce qui revient & supposer que I'équation (6) est vérifiée par les valeurs A=1, p. = o.
Si cette équation », = o est de classe cing, ce qui est le cas général, supposons—lé
ramenée 4 une forme canonique par un changement de variables

o, =dy, +y,dy, + y,dy, = o.

On peut encore supposer que la seconde équation du systéme ne renferme pas dy,,
mais elle renferme forcément I'une au moins des différentielles dy,, dy,, dy,, dy,,
par exemple dy,. Soit ’ ’ L

w,=dy, + Y,dy, + Y,dy, + Y,dy, + Y, dy,= o
cétte équation. On a
_dyiav dyzoyavl-d\ Oy _dykoys
—4¥wfkﬁwp+1wmm—«wa+wa+ﬁwmm4wmw‘ Ww%
= (Y,dy, + Y, dy, + Y, dy)8y, — m%+mm+w3YmermmJ

(mod o,, v,). »
Fac. des Sc., t. X. . ) 10
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Pour que les quatre équations

dey:t—*—styt’*_Yﬁdyc:O’ stdyi-de1=O, Yldyi—dy3=q7 Y(‘-dylzo’
qui, dans I'hypothése adoptée, doivent définir un des systémes d’éléments singu-
liers, admettent un systéme de solutions non toutes nulles, il faut et il suffit que
I'on ait Y, = o. Les quatre équations précédentes se réduisent alors aux deux équa-
tions

(8) dyu = ‘“.sd-.vl 4 dys - Yadyl !

v

et le systéme d’¢éléments singuliers correspondants est défini par les quatre équa-
tions

(o) dy, _dy. _dy, _dy, 4y,
9 T YA -—_Y;:—__—Yl———ye—xgyt.
Ea condition Y, = o exprime que les éléments linéaires caractéristiques de
I'équation v, = o, '
dy,=o, dy,=o, dy=o, dy,=o, dy=o

vérifient aussi la seconde équation du systéme de Pfaff v, = o. Cette propriété est
évidemment indépendante du choix des variables, et nous voyons qu'a un couple
de solutions (), 11,) de Uéquation F (i, p) = o correspond Ex GENERAL une équation de
classe cing

(10) o, + o0, =0

dont les éléments caractéristiques satisfont aux deux équations o, = o, v,=o du
systéme de Pfaff. '

Le méme calcul prouve qu’inversement, si I'équation (10) est de classe cinq
et si tous ses éléments caractéristiques satisfont aux deux relations v, =0, v, = o,
on a F(,, 1) = o, et & cette équation correspond une famille d’éléments singuliers
du systéme de Pfaff.

11 peut aussi arriver qu’a un systéme de solutions (1, , 11,) de I'équation (6) corres-
ponde une équation de classe trois, qui, réduite a la forme canonique, s’écrit

o, = dy, +y,dy, = o.
Toutes les fois que I'on peut trouver une équation de classe trois dans les équa-

tions %, », + w, w, = o du systéme de Pfaff, (,, u,), est un couple de solutions de
I’équation (6). En effet, quelle que soit la seconde équalion », = o, l'équation pré-
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cédente », = o correspond toujours i une famille d’é1éments singuliers du systéme,
et par suite & une racine de I'équation (6). 11 suffit, pour le démontrer, d’observer
que les éléments linéaires intégraux définis par les relations

dy

,==0, dy,=o, dy,=o, ®, =0

: .
sont en involution relativement a ’équation w, = o avec tous les autres ¢léments
linéaires intégraux du systéme.

Enfin, nous avons remarqué que, lorsque le systéme de Pfaff admet une combi-
naison intégrable, I'équation (6) a une racine double a laquelle correspbnd précisé-
ment une équation de la forme dx, = o. 1l n’y a plus dans ce cas d’éléments singu-
liers.

On peut résumer tous ces résultats comme il suit :

A toul systéme de solulions (i,, w,) de l'équation A(%, w) = o correspond une .
équalion ), w, + u, v, == o, dont fous les éléments caractéristiques vérifient les deux
équalions v, = 0, o, = 0, si elle est de classe cinq, mais qui peut étre de classe trois
ou un.

Réciproquement, si U'équation i, o, + w, v, = o est de classe cinq et si lous ses
élémenls caractéristiques vérifient les deux relations o, = o0, o, = o, ou si celle équa-
tion est de classe trois ou un, on @ A(},, p,) = o.

Les deux derniers cas ne peuvent se présenter que pour des systémes de Pfaff
particuliers. Dans le dernier cas, I'équation (6) a une racine double, mais ce n'est
pas le seul cas o1 il en est ainsi. .

Remarque. — Reprenons le cas général ou 1'équation (7) est de genre cing.
Cette équation étant ramenée a une forme canonique par un changément de varia-
bles, si I'on regarde dy,, dy,, dy,, dy, comme les coordonnées homogénes d'un point
dans T'espace, les équations (8) représentent une droite A,, et I'équation o', = o,
ou ‘ :

Y, (dy,3y, — dy,3y,) + Y,(dy,3y, — dy,3y,) + dy, 3y, — dy,8y,=o

exprime que la droite D qui joint les deux points (dy,, dy,, dy,, dy,) et (3y,, 3y,, 3y,, 8y,)
rencontre la droite A, . ‘ V

D’une fagon générale, quelles que soient les valeurs des coefficients %, ., I’équa-
tion .
(ro, + pow,) =o mod (v,, v,)

représente, avec les conventions expliquées plus haat, un complexe de droites pas-
sant par la congruence définie par les deux équations o', =0, ', =o0. Si I'on a

choisi X et p de fagon que F(3, 1) = o, ce complexe est formé des droites qui ren-
contrent une des directrices A,, A, de la congruence.
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[4] 1l nous reste & examiner si I'équation F(}, p) = o peut se réduire & une
identité. Il en est certainement ainsi toutes les fois que le systéme de Pfaff proposé
est de classe inférieure & six, ou admet des éléments caractéristiques, c’est-a-dire "
des éléments linéaires intégraux en involution avec tous les autres éléments linéaires
intégraux du systéme, relativement aux deux équations v, =0, v, = o. Les huit
équations '
(i) S A, de, + A dr, + A, dx, + A, dx,=o, (=1.2.34)

{ B, dx, + B,dx, + B, dr, + B, dx,=o, I
sont alors vérifiées par des valeurs non toutes nulles de dx,, dx,, dx,, dx,. Tous les
déterminants & quatre lignes déduits du tableau des coefficients A,,, B,, sont donc
nuls, et par suite il en est de méme du déterminant A(%, 1), quels que soient et .

Réciproquément, supposons que l'on ait identiquement A(), u} = o. En suppo-
sant d’abord % = 1, u = o, nous voyons que I'équation w, = o correspond a une
famille d’éléments singuliers représentés par les points d'une droite A, et de méme
I'équation w, = o, obtenue en supposant % == o, .. = 1, correspond i une autre
famille d’¢1éments singuliers représentés par les points d’'une autre droite A,. Si ces
deux droites ne sont pas dans un méme plan, il est impossible, d’aprés 1'étude faite
au début, que 1'équation o, + pw, = o corresponde & une famille d’¢léments singu-
liers, quels que soient X et w, puisqu’il n’y a que les deux familles précédentes d’élé-
ments singuliers. Il faut donc que les droites A, A, soient dans un méme plan P.
Soit O le point d’intersection de ces deux droites; ce point O correspond & un
élément caractéristique du systéme qui est alors de cinquiéme classe. Remarquons
que toute droite du plan P passant par O représente une famille d’¢léments singu-
liers du systéme de Pfaff, correspondant a une équation de la forme Jo, + po, = o.
Les éléments caractéristiques de toute équation de classe cing, appartenant & un
systétme de Pfaff A six variables et de classe cinq, vérifient donc les deux équations
de ce systéme, résultat évident a priori.

Si les huit équations (11) se réduisent a deux équations distinctes, la famille
d’éléments singuliers correspondant & I'équation io, + pw, = o reste la méme,
quels que soient % et p.. Cette famille d’éléments est représentée par une droite A,
dont tous les points figurent des éléments caractéristiques du systéme de Pfaff, qui
est alors de quatriéme classe. '

Il est évident que I'équation (6) se réduit aussi & une identité si le systéme de
Pfaff est complétement intégrable.

[5] Lorsque les coeflicients du systéme (1) ne satisfont & aucune condition d’éga-
lité, ce systéme est évidemment de classe six, et 'équation F(, ) = o a deux

racines distinctes en —, & chacune desquelles correspond une famille d’éléments
1 . . . “ .
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- singuliers et une équation lw, + po, = o de classe cing, dont tous les éléments
caractéristiques vérifient les deux équations du systéme.
Tout systéme de Pfaff de deux équations a six variables peut donc, EN GENERAL,
étre ramené de deux facons différentes, et de deux seulement, & la forme suivante,
par un changement de variables,

(12) dy, + y.dy, +y,dy, =o,
Ydy, + Y.dy, + Y,dy, + Y,dy,=o,

Y,, Y,, Y,, Y, élant des fonctions des six variables indépendantes y,, y,, ¥;. ..., ¥,-

Cette réduction exige d’abord la résolution d'une équation du second degré,
puis la réduction d’'une expression de Pfaff & sa forme canonique. Remarquons que
les variables y,, y,,¥,, ¥,, ¥, ne sont déterminées qu’a une transformation de contact
pres, et que I'on peut aussi remplacer la derniére variable v, par une fonction arbi-
traire de y,, v,, ¥,, ¥., ¥, et d’'une autre variable. ’

D’une facon générale, & tout systéme de solutions (3, u) de I'équation F(A, p)=o0
correspond une équation v, + pww, = o du systéme de Pfaff, que nous appellerons
une équation singuliére de ce systéme. A chaque famille d’éléments singuliers corres-
pond une équation singuliére du systéme et une seule. Dans le cas général, un sys-
téme de Pfaff posséde deux équations singuliéres de classe cing, mais 1'une de ces
équations, ou méme les deux & la fois, peuvent étre de classe inférieure a cing.
Il peut aussi arriver qu’il n’y ait qu'une seule équation singuliére, ou que F()\, w)
soit un carré parfait. Tous ces cas particuliers seront discutés plus loin.

Le résultat qui précéde a été établi par M. Duport, dans le travail cité plus haut,
A l'aide d’assez longs calculs. On voit, par ce qui précéde, comment il se rattache
naturellement & I'étude des éléments singuliers. L’équation du second degré consi-
dérée par M. Duport est équivalente 4 I'équation (6) et peut étre obtenue de la méme
facon en laissant les équations du systeme de Pfaff sous la forme générale
0 %wl:aldacl +a2dm;+ .. +a,dr,=o,

w, = b,dacl + bgdl',_, 4+ ... + l)ﬁd.%'c =o,

Tout revient a démontrer que 'on peut de deux facons différentes ramener le
systéme (1) a la forme

3) §£2l:A‘dy’ +A,dy2+ vee + Asdys:(),

I .

( Q,=B,dy, + B,dy, + ... + Bdy,=o,

les coefficients A,, A,, ..., A, ne dépendant que de y,, ¥,, ..., v,. Les équations

(I[‘) ) y,.:C,, .ya:Cw .V:x:C::’ yn=cv y=cs
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définissent une famille de caractéristiques & une dimension de I'équation Q=0
dans I'espace & six dimensions (y,, v,, .., ¥,), et tous les éléments lindaires de ces
caractéristiques satisfont aussi & la seconde équation du systéme Q, = o.
Réciproquement, soit
Q,=%o, + pv,=—o0

une combinaison des deux équatiéns (1) admettant une famille de caractéristiques
a une dimension dont tous les éléments linéaires vérifient les deux équations »,=o0,
w, = 0. Nous pouvons faire un changement de variables tel que cette famille de
caractéristiques soit représentée par le systtme des cing relations (14), Yir Yor Yas
Yi» Ys» ¥, étant six fonctions distinctes des variables x,. L’équation Q, = o devient,
avec ce nouveau systéme de variables,

:Aldyi + Agdyg + ctt + Amdy‘.r; =0,

tandis qu’une autre équation du systéme (1), distincte de celle-13, se change en une
autre équation
Q,=B,dy,+B,dy, + ... + B dy,=o;
la différentielle dy, ne peut figurer dans les équations du systéme, puisque par hypo-
thése ces équations doivent étre vérifiées quand on y fait dy,=dy,= ... =dy,—o.
De plus, ces éléments linéaires doivent satisfaire aux équations dlfférentiellcs
qui définissent les caractéristiques de I'équation Q, = o,

Ady, +Audy, + ... + A, dv, = Adt t=1,2,...,6)

W, A,

Pig—

Wy,

Il faut et il suffit pour cela que I'on ait

A‘m R A;r. J— S AEG
Al o A'.‘. o o A5 ’
c’est-a-dire
dlogA,  dlogA, DlogA
o,y 2,

Le rapport de deux coefficients quelconques A, doit donc étre indépendants de v,,
~ et par conséquent on peut supposer que ces coefficients eux-mémes sont indépen-
dants de y,. Le systéme est ainsi ramené a la forme (13). 11 suffit donc, pour pou-

voir ramener le systéme de Pfaff & la forme (13), et par suite i la forme réduite (12),
: -
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de déterminer une équation Aw, + pw, = o admettant une famille d’éléments
linéaires caractéristiques satisfaisant & la fois aux deux équations w, == 0, w, = o.
Cherchons d’abord 4 quelles conditions doivent satisfaire les coefficients a;, b, pour
que l'équation w, = o elle-méme posséde cette propriété. Les huit équations

a,dx, +a,de, + ... +a,dx, =adl, (i=r,2,...,6)

a,dx, + a,dx, 4+ ... + adxr,=o, da, da,
a., — —_————
bdr, +bdx, + ...+ bdr,=o, * dr,
doivent admettre un systéme de solutions en dx,, ..., dx,, d, ou tous les dux, ne soient

pas nuls. Il faut et il suffit pour cela que tous les déterminants  sept lignes conte-
nus dans le tableau

o a, a, a, a,
a, o a, e Q,
T
S N o a '
' a, a, a, ., O
: b, b, b, ... b o

soient nuls. Ces. conditions se réduisent & une seule. Considérons en effet le déter-
minant A obtenu en ajoutant une colonne au tableau précédent

o a, a, ... a, a b

a, o ' a, a,, a, b,

A=
a, e O o a, b,

a, .,  a, a, o o

X .. b, .. b, o o

qui devient identique & un’déterminant symétrique gauche quand on change les
signe des deux derniéres lignes. ou des derniéres colonnes. Si tous les déterminahts
d’ordre sept déduits du tableau T sont nuls, le déterminant A est nul, comme on le
voit immédiatement en le développant par rapport aux éléments de la derniére
colonne. Réciproquement, si A = o, tous ses mineurs du premier ordre sont nuls
aussi, puisque c’est un déterminant symétrique gauche d’ordre pair. En particulier,
tous les mineurs correspondant aux éléments de la derniére colonne, c’est-a-dire
" tous les déterminants A sept lignes du tableau T sont nuls. La relation A = o



8o

E. GOURSAT.

exprime donc la condition nécessaire et suffisante pour que l'équation w, = o
admette une famille d’é1éments linéaires caractéristiques satisfaisant aux deux équa-
tions v, = 0, v, = o. »

- Cherchons maintenant la condition pour que cette propriété appartienne & I'équa-
tion Aw, + pw, = o, ou I'on a par exemple X Z4= 0. On obtient évidemment cette
condition en remplacant dans A le coefficient a; par Xa, + ub,, et a,, par

b D
R (ha; + ub,) — R, (A, + pby) =1ha,, + pby,

. a B2 .
Rax, e, o,

A

+ a, + b

X,

En retranchant dans le nouveau déterminant les éléments de la derniére colonne
multipliés par u des éléments correspondants de la colonne précédente, et en opé-
rant de méme sur les deux derniéres lignes, puis en divisant par 2*, on raméne le
nouveau déterminant & un autre ou les deux derniéres lignes et les deux derniéres
colonnes sont identiques aux lignes et aux colonnes de méme rang de A. Si I'on
retranche ensuite de la ki¢me colonne les éléments correspondants de la septiéme
o

N
colonne multipliés par {5— et ceux de la derniére multipliés par 3o o fait dispa-
CLy k

. b)\ D ryr . A . A
raitre les termes a, — + b, 2 e chaque élément. On fait de méme disparaitre
0X, o,
. 2 . . 12 -
de chaque élément la somme a, % + b, 3a o ajoutant aux éléments dela ii®meligne
I, .Z'i

é

iy . s e RN _
les éléments correspondants de la septiéme ligne multipliés par = et ceux de la -
¢

i
. 9 . . .
derniére multipliés par S—E'— Apres toutes ces transformations, on arrive en défini-
x, :

i

nitive au résultat suivant :

Pour que I'équation de Pfaff

(15) Ao, + po,=o0

admette une famille d’éléments linéaires caractéristiques qui vérifient les deux équa-
tions v, = 0, w, = 0, il faut et il suffit que I'on ait

o, AN, wb, A, +ud,,, a,b,

' A, +ub,, 0, ... A, +ub,, a,, b,
(16) AN, ) == | o =o.

na,, + p.b;, A, by, oo o, a, b,

a,, Gy, e a, o, 0

b,, b,, b,, o, 0
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11 est clair que I'on obtiendrait la méme condition en supposant . == 0. L’équa--
tion (16) est identique & ’équation du second degré considéré par M. Duport.
On est encore conduit & I'équation (16) dans la recherche des éléments linéaires
singuliers, Pour qu’un élément linéaire intégral e, (dw,, dz,, ..., dx,) soit singuliez',
il faut et il suffit que les quatre équations '

N — 3 o
Eaiowi_o, Zbioaci_o,

(17)

o, = Z a,dx, 3%, = o, o, = 2 b, dx,3x;, = o,
qui déterminent les éléments linéaires (3x,, 3x,, ..., 3x,) en involution avec 1'élé-
ment e,, se réduisent & moins de guatre équations distinctes. Pour qu’il en soit ainsi,
il faut et il suffit que I'on ait, pour des valeurs convenables, des coefficients %, ., v, o,
et quels que soient les 3x;,

A 2 a,dx, 3z, + @ Z b, dx,3x, + v 2 a;3x; + p 2 bdx,=o,
ou encore

(18) (Ma,, + wb)dx, + ... + (Aa, + pb,)dx, + va, + b, = o

i=1,2,...,6;

si nous ajoutons a ces six équations les deux relations
» w,:Eaidwizo, w,.—_—Zbidw,.::O,

nous obtenons un systéme de huit équations homogénes en dx,, ..., dx,, v, p. Pour
qu’elles admettent un systéme de solutions ou les valeurs des daci ne soient pas
toutes nulles, il est nécessaire que le déterminant A(}, w) soit nul, et cette condition
est évidemment suffisante si les deux équations w, = o0, ®, = o sont distinctes.

Remarque. — Lorsque, pour un systéme de valeurs (%, ), I'équation (15) est.de
classe trois, il est & peu prés évident que I'on doit avoir A(}, 1) = o. En effet, cette
équation (15) étant ramenée & une forme canonique dy, + y, dy, = o, il est clair que

les équations
dy,=o, dy,—o, dy,=o, Vo, +p'w,=o, w,==o0,

ol Mg — A’ n’est pas nul, et ol w, est une équation choisie arbitrairement de fagon
‘A former avec les précédentes un systéme de cing relations distinctes, définissent
Fac. des Sc., t. X, 1x
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une famille d’éléments linéaires caractéristiques de I'équation (15) qui vérifient les
deux équations v, = 0, », = o.

« [6] Reprenons un systéme de Pfaff de sixiéme classe ramené & la forme réduite (12),
que nous écrirons, en modifiant un peu les notations en vue de la suite,

w, =dz — pdx — qdy = o,

(19) ) . '
v, = Xdx + Ydy 4 Pdp + Qdg=o,

X, Y, P, Q étant des fonctions de x, y, z, p, ¢ et d’une sixiéme variable u. Nous pou-
vons écarter le cas, sur lequel on reviendra plus loin, ou les rapports de ces fonc-
tions ne dépendraient pas de u; le systétme de Pfaff serait alors de classe inférieure
A six. ] '

On peut aussi supposer, en effectuant au besoin sur les variables x, y, z, p, ¢ une
transformation de contact (transformation de Legendre ou d’Ampére), que P n’est
pas nul, et prendre par conséquent P = 1. Si Q dépend de u, on peut prendre ce

“ coefficient Q pour la variable — u elle-méme. Si Q est indépendant de u, cette varia-
ble figure nécessairement dans X ou dans Y. Si u figure dans Y, on effectuera une
transformation d’Ampére en écrivant I'équation v, = o

v, =d(z —qy) — pdx + ydq,

ce qui permute les variables ¢ et y, et 'on sera ramené au cas précédent. Si Y ne
dépend pas de u, sans étre nul, X contient forcément la variable u, et la transforma-
tion de Legendre raméne encore au premier cas. Si Y est nul et Q différent de zéro,
la transformation d’Ampére raméne encore au premier cas. Il ne reste donc a exa-
miner que Ihypothése oi I'on aurait Y = o, Q = o; on peut alors poser X = — u.
Le systéme (19) est alors

dz — pdx — qdy=o, dp — udx=o;
la transformatioun de contact définie par les formules
x=q', y=p, p=p—y, q=¢—a, z=7+p¢—pT—qYy

le remplace par le systéme

.

dz' — p'dx' — ¢'dy' =o, dp' + dy' —udq'=o.

On peut donc toujours écrire les équations (19) du systéme de Pfaff sous la forme
réduite ’

v, = dz — pdx — qdy =o,
(20)

w, = dp — udq — adx — bdy = o,
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ol figurent deux fonctions arbitraires a et b des six variables x, y, z, p, ¢, u. On ne
peut obtenir pour un systéme de Pfaff quelconque de deux équations a six variables
une forme réduite ot figurent moins de deux coefficients arbitraires. En effet, le
systéme, étant supposé résolu par rapport & deux des différentielles, contient huit
coefficients arbitraires. Quand on effectue un changement de variables, on dispose
de six fonctions arbitraires que I'on peut ghoisir de facon que six des-coefficients du
systéme transformé aient des expressions données & 'avance; il restera donc deux
coefficients indéterminés dans le nouveau systéme d’équations.

1l est facile de former directement les équations des deux familles d’éléments
singuliers du systéme (20). Nous avons

o', = — [udq + bdy)3x + [bdx — dq]8y + [udx + dy]3q,
[:<___._—> y 4 ( Da)dq—*——i%—du]%m

+[(‘Z§ 3i)d (G i) a— e

[ (224 32 e+ (u T+ 3 ) dr—du |og

[adw+bbd + dgq |%u
+El_ o Y ‘I:| )

mod (v, , w,)

en posant
da da da da
=50+ 5 b
dy dy 2z Bp
db . b bb + .
dr W o

Les deux équations o', = 0, »',= 0, considérées comme déterminant les rapports
des 3x, 3y, 3¢, 3u, peuvent se réduire & une seule de deux fagons différentes :

1° En supposant que I'on a o', = o, ce qui donne le premier systétme d’éléments
singuliers définis par les relations .

(21) —_————= = =

correspondant & I'équation singuliére w, = 0;
2° Ce cas écarté, les deux équations o', = 0, «', = o ne peuvent étre identiques
que si le coefficient de 3u dans o', est nul

(22) 2 e+ 28 g —
| dq+budac+3udy 0.
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En tenant compte de cette condition, les deux équations o', = 0, o/, = 0
deviennent '
da b 7 .
o, = \u l——-——b) dy |8x + (b+ ™ )dx+a—u-dy 8y + (udx + dy)3q =o,
db  da da 2 da da b da
= (———)d {— - — =
@ [(dx dy> y+<bq+ p )(bu +Dudy) ?udu]Bw

da b R 2 2
+[(dv dx)d +<aq+u3;><‘—d +—d> budu:l‘dy_

Da b b .
+[< Dp )dac—i—( bp+—?>dy———du]oq_o.

Pour que ces deux équations se réduisent & une seule, il faut et il suffit que 'on

ait

db

b da
Ady+B< dy)—\ du ———Adx+C<

Du u u
( da
u
’ u

) = b ( )

_ Bdx 4 Cdy —du

ade +dy
ou l'on a posé
__db da -__3a+uba C__bb+ubb
dr  dy’ Y p’ T g p

Ces deux conditions se réduisent a une seule, car si 'on ajoute aux deux termes
du premier et du second rapport ceux du troisiéme multipliés respectivement

da b .
par — % et — L elles deviennent
du ¢

b - da b da
<A+B-D;l-—c?l;>dy (—A——B—+c—£)dm

= du __ Bdx + Cdy —du
2 2 - D ) - 7 .
(u—b——b— =) ar <b+i_u‘b)dx udz + dy
ou NI du e _
On obtient donc une seule condition
M g - 2 2
<A BT du > (udx + dy)={ v du u ) (Bdx + Cdy — du)
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et 'on a un second systéme d’éléments singuliers déterminés par les quatre équa-
tions :

2 2
(A+Bib—— c——> (udar‘+dy)~..< o —b—%)(de+Cdyfdu),

(33) dq + da: + dy =o,

w, =0, w, = 0.

L’équation singuliére correspondante du systéme de Pfaff est

' b da ‘ b da ) .
(24) (u o b— E) @ ( du w )T
b 2a ‘ iy S
Siu S8 b — 3 est différent de zéro, les deux familles d’éléments singuliers
u u

sont distinctes, ainsi que les équations singuliéres correspondantes du systéme de

Pfaff.
b da : b da
Lorsque u b — est nul, sans que A+ B — — C < soit nul, les deux
u u , u o
familles d’éléments singuliers sont confondues, ainsi que les équations singuliéres

correspondantes. Enfin, si 1'on a & la fois

db da b da .
¢ h =o0, A “+ B ¢ _ = .
u u du Ju

.(25) u

nous sommes dans le cas ou le probléme est indéterminé, et ot le systéme de Pfaff
. est de cinquiéme classe. On voit en effet que dans ce cas les équations obtenues,
en égalant 4 zéro les coefficients de 3x, 3y, 3¢, 3u dans o', et ’,, se réduisent & deux

N
if’_dyzo’

da
udx + dy =o, dq+317dx+bu

- ce qui est bien d’accord avec les propriétés générales démontrées au’n® 4.

Remarque. — Connaissant une premiére famille d’éléments singuliers, on peut
obtenir aisément les équations de la seconde famille en s’appuyant sur ce que deux
éléments singuliers appartenant 4 deux familles différentes sont en involution.

Soient (dw, dy, dz, dp, dq, du) un élément singulier de la famille qui correspond
a T'équation singuliére v, = o, (3, 3y, ..., 3u) un élément singulier de la seconde
famille. Si dans I'équation ', = o on remplace dy, dz, dp, dq par leurs expressions
tirées des formules (21), il reste seulemen{ un terme en dx et un terme en du.
En égalant leurs coefficients & zéro, on a deux relations en 3, ..., 3u, qui définissent



86 "E. GOURSAT.

les éléments singuliers de la seconde famille. En effectuant les calculs, on retrouve
bien les deux premiéres équations (23).

[7] D’un_e fagon générale, quelles que soient les fonctions X, Y, P, Q, I'équa-
tion o, = o est une équation singuliére pour le systéme (19), et les éléments singu-
liers correspondants sont définis par les relations

(26) de _ dy _—dp —dq  dz
| P-Q X Y Pp+Qq

Les équations différentielles qui définissent une famille d’éléments singuliers d’un
systéme de Pfaff de classe six, correspondant & une équation singuliére de classe cing,
admettent au plus deux combinaisons intégrables distinctes.

Soit dF = o une combinaison intégrable des équations (26). La fonction F doit
satisfaire aux deux équations simultanées :

F F O
P_bgc—_*-Q_B? +¥(PP+Q‘I)“'X

F )F OF
W g w

dont la derniére montre que la fonction F ne dépend que des variables caractéris-
tiques de I'équation singuliére o, = o. ,

il existe une intégrale commune i ces deux équations, on peut donc supposer
que I'on a effectué sur les variables x, y, z, p, ¢ une transformation de contact de
fagon que cette intégrale soit y = C. Cette transformation étant faite, on aura
donc Q = o. Si P n’est pas nul, ce que nous supposerons tout d’abord, on peut
prendre P = 1, et P'un au moins des coefficients X; Y contient la variable u. Nous
supposerons tout d’abord que X dépend de u; on peut prendre ce coefficient lui-
méme pour la variable u, et écrire le systéme de Pfaff

w,=dz—pdr—qdy=o0,  o,=dp—udx—f(x,Yy,2p,q, a)dy=o.

La famille’d’éléments singuliers correspondant & I'équation singuliére w, = o
est définie par le systéme d’équations

dy—o, dp = udx, dg=fdx, dz = pdzx;

pour que dF = o soit une combinaison intégrable de ces équations, la fonction F
doit satisfaire aux relations

OF )F OF OF OF
7 =0 o TPty et /=0
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“En différentiant la seconde par rapport & u, on voit que F doit aussi satisfaire.

aux deux conditions
F  F Af F

d N Y D ut

si b—;n’est pas nul, on en tire successivement
- :

- OF F oF oF
=o, — =o, —=o,

- g p 0z hb o

etil n'y a pas d’autre intégrale premiére que dy = o. Si f est une fonction linéaire
de u, f = au + B, la fonction F doit &tre une intégrale du systéme

F n )F n F Y
w b dq Bf ’
F  OF
—_a==0, \
)p g .

qui se présente aussi quand on cherche les combinaisons intégrales des équations
différentielles \ : .
‘ dy—o, dz = pdx, dq—adp——:pdwzo, ‘

d’un des systémes de caractéristiques de I'équation s = ar + f. Ce résultat sera
expliqué plus loin (n° 43). Cette équation ayant deux familles distinctes de caracté-
ristiques, le systéme précédent admet au plus deux intégrales distinctes.

Si X ne dépend pas de u (*), Y dépend nécessairement de u, pour que le systéme
soit de sixiéme classe, et 'on peut écrire ce systéme

w, =dz — pdx — gdy=o, w,=dp— f(x,y, z, p, ¢)dx —udy =o.

Les équations différentielles de la famille d’éléments singuliers qui correspond
4 v, = o, sont

dy=o, dp = fdx, dg = udx, dz =pdx.
Si dF = o est une combinaison intégrable, on doit avoir

F F F  OF _ OF

w w Tl $f+5(7u:o,

() Il est & remarquer que, dans ce cas, les deux familles d’éléments singuliers ne sont
pas distinctes, car on peut écrire la seconde équation, grice & une transformation d’Am-
pere, dp — udq — fdxr = o. On a a= f, b=o, et la premiere des conditions (25) est vérifiée.
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et par suite ‘
)F JF F )F
-=o,

g

- —f=0o.
dx dz *p

En différentiant la seconde par rapport 4 ¢, on obtient la nouvelle condition

0F df —
p g
.2 .
Si T; n’est pas nul, on aura aussi
2 ,
oF oF o F
»_ w W

et par suite, il n’y a pas d’autre combinaison intégrable que dy = o.

Si %;If- =o0, on vériﬁe aisément que le systéme de Pfaff est de cinquiéme classe.
De méme, lorsque P = o, le systéme de Pfaff est encore de cinqui¢me classe, car si
le r'apport}}; dépend de u, on peut écrire la seconde éqlfation du systéme dy = udx,

et la premiére dz—={(p + ug)dx; il n’y figure que les cinq variables x,y, z,u, ¢ +qu.

[8] Prenons maintenant le cas ou I'une des équations du systéme de Pfaff est de
classe trois. Si 1'on suppose cette équation ramenée & une forme canonique, on peut
écrire le systéme de Pfaff -

) wxzdya_yadyazo’
(@7 o, =Y, dy, + Y,dy, + Y,dy, + Y.dy, + Y,dy, = o.

Ecartons le cas ot Y,, Y,, Y, seraient nuls & la fois; le systéme serait alors de
classe inférieure 3 siz. L’équation auxiliaire )

. Y, dy, + Y, dy, + Y, dy,=o,

ou l'on regarde v,, y,, y, comme des paramétres, peut &tre de classe {rois ou de
classe un. Si cette équation est de classe trois, on peut, par un nouveau changement
de variables effectué sur y,, y,, ,, la ramener 4 une forme canonique, et le sys-
téme (27) s’écrit sous la forme réduite

w, :dys_"yzdydzo’

28
( ) wﬂzdys_ysdytﬂ_quyaﬂl-Ygdys=o’
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Y, et Y, n’ayant plus la méme expression que dans les formules (27). Si I'équation
auxiliaire est de classe un, on peut de méme, par un changement de variables effec-
tué sur y,, y,, v,, ramener I'équation o, = o & la forme

©, = dy, + Y‘ dy1 4 Yady_: — 0.

Les fonctions Y, Y, doivent former avec Yo Yo ¥.» ¥, un systéme de six fonctions
distinctes; autrement le systéme de Pfaff serait de classe quatre ou cing. On peut
donc poser
Y =y

1

Y. =Y.

5

et le systéme de Pfaff prend la forme canonique

gwi:dyi}—;\"'}dyl—;o’

) \
G9) ( 0, =dy, +y.dy, + y,dy, =o.

Les deux formes (28) et (29) sont essentiellement distinctes. En effet, les équa-
tions différentielles de la famille d’éléments singuliers correspondant & I'équa-

tion w, =.0 du systéme (28) sont

dy,=o, dy,=o, dy,=o, dy,—y,dy, = o,
et admettent trois combinaisons intégrables seulement.
Au contraire, pour le systéme (29), les équations différentielles de cette famille

d’éléments singuliers sont

’=o, dy,=o, dy,=o, dy,—=o

et admettent quatre combinaisons intégrables distinctes.
Dans ce dernier cas, les deux familles d’éléments singuliers du systéme (29) sont
confondues. On a en effet

w’?.:dysayi —dyaayv. +dycayc - dyeays; |

* pour que I'élément (3y,, ..., 3y,) soit en involution avec un élément singulier du pre-
mier systéme, il faut que l'on ait, quels que soient dy, et dy,, dy, 3y, -+ dy, 3y, = o,
ce qui exige que 3y, et 3y, soient nuls. La seconde famille se confond donc avec la
premiére. \
11 est d’ailleurs facile de vérifier que I'équation A(}, w) = o se réduit dans ce cas
apt=o. » ’ )
Fac. des Sc., t. X. ) 12
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Au contraire, les deux familles d’éléments singuliers du systéme (28) sont tou-
jours distinctes. Si en effet dans 1'équation '

o', = dy 3y, — dy, 3y, + dY, 3y, — 3Y,dy, + dY,3y, — 3Y,dy, = o,

on remplace dy,, dy,, dy, par zéro et dy, par y, dy,, en égalant & zéro les coeflicients
de dy, et de dy,, on obtient une équation ou figure 3y,.

Dans le particulier ot Y, =Y, = o, les équations (28) deviennent
(30) o,=dy, —ydy,=o,  o,=dy —ydy=o;

les deux équations singuliéres du systeme sont alors de troisiéme classe.

[9] Crassirication. — En définitive, lorsque le systéme de Pfaff S est de classe
sixz, on peut toujours, par un changement de variables, le ramener & I'une des
formes suivantes :

1° Cas général. — L'équation F (), n) = o a deux racines distinctes, et & chacune
d’elles correspond une équation ko, + po, = o de classe cing. Le systéme peut étre
ramené, de deux facons différentes, & la forme réduite,

I Q, =d:z — pdx — qdy =o,
O Q, = dp — udq — adx — bdy = o,

., . R . da P/
a et b étant des fonctions de x, y, z, p, ¢, u. L'expression e +b—u " est pas
: <

nulle, et les équations différentielles qui définissent les éléments singuliers de chaque
systéme admettent au plus deux combinaisons intégrables.

2° L’équation F(%, n) = o a deux racines simples, 1'une qui correspond A une
équation de-classe cing, I'autre & une équation de classe trois. Le systéme peut &tre
ramené a la forme (I) et aussi a la forme suivante

Qizdys - yzdy1=0’

11
( ) Qﬂ::dys—yudy(—adytwbdyw

a et b étant des fonctions de y,, ¥,, ..., ¥,, et n’étant pas nuls & la fois. L'un des
systémes d’équations différentielles qui définissent les éléments sihguliers admet
au plus deux combinaisons intégrables, I'autre en admet trois.

3° L’équation F(%, u) = o a deux racines simples, & chacune desquelles corres-
pond une équation singuliére de classe trois. ‘

On peut donc trouver dans le systéme deux équations distinctes de classe trois,
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et les variables caractéristiques de ces deux équations sont évidemment indépen-
dantes, puisque le systéme est de classe six. On peut donc le ramener a une forme

canonique

£24 == dy:x _y-;dyi =0,
(11m) '

,\Q&—_—'-dy_,."‘—y“dy*:O.‘ .

Les équations différentielles de chaque famille d’éléments singuliers admettent
trois combinaisons intégrables distinctes.
4° Léquation F(}, w) = o admet une racine double 4 laquelle correspond une

équation de classe cing. Le systéme peut étre ramené d’une seule fagon i la forme (I).

; . b da . - ,
L’expression u :\1— — b — 5o est nulle, mais la seconde des conditions (25) n’est
au .

au

pas satisfaite.
5> L’équation F(, u) = o a une racine double i laquelle correspond une équa-
tion singuli¢re de classe trois. Le systéme peut étre ramené a une forme canonique

Q‘:dyx-—ygdyi =0,

(v)
S Q,=dy, +ydy, + ydy, = o;

il y a une seule famille d’éléments singuliers, dont les équations di[’féreﬁtielles_ :
admettent quatre combinaisons intégrables.

6° L’équation F(%, p.) = o a une racine double, i laquelle correspond une équa-
tion de classe un. Le systéme est réductible 4 une forme canonique

Q,=du=o,

M _ o
Q,=dz— pdxr—qdy=o.

Il n’y a pas d’éléments singuliers (voir n° 2).

’ 51 r . I . .
[10] Pour compléter I'énumération des formes réduites auxquelles on peut
ramener un systéme de deux équations de Pfaff i six variables, nous devons encore
examiner le cas ou le systéme est de classe inférieure & six. Soit

N 1

un systéme de classe cinq & six variables, et soient %, u deux coefficients quelcon-
ques choisis de telle fagon que I'équation iw, + pw, = o soit de classe cing. Cette
équation étant mise sous forme canonique, on peut remplacer le systéme pIZOPOSé
par un systéme équivélent

w, = dz—pdx —qdy = o, !
«, = Xdx + Ydy + Pdp + Qdg + Udu = o,



92 ~ E. GOURSAT.

u étant la derniére variable. Si U n’est pas nul, on a
o', =dpdx — dr3p + dysq — dy 3y (mod w,, »,)
et les (f,léments caractéristiques. devraient vérifier les relations
dr=dy=dp=dg=o

et par suite dz =du = o. Il n'y a donc pas d'élément caractéristique pour le sys-
téme, si U n’est pas nul. On a donc U = o, si le systéme est de cinquiéme classe,
et ce systéme peut &tre ramené d’une infinité de manitres 4 la forme (19). 11 suffit
pour cela de prendre une équation quelconque du systéme o, + ww, = o, qui soit
de cinquiéme classe. A chacune de ces équations correspond une famille d’éléments
singuliers du systéme, qui ont pour image une droite du plan P passant par le
point O qui représente 1'élément caractéristique (n° 4). Si I'on met le systéme sous
la forme réduite (20), les deux coefficients a et b vérifient les deux conditions (25).

Mais on a aussi pour les systémes de deux équations de Pfaff de cinquiéme classg
des formes réduites ou ne figurent que cinq variables et une fonction arbitraire.
On peut faire pour ces systémes une étude des éléments singuliers analogue 4 celle
qui a été faite au n° 4 pour les systémes & six variables, mais les résultats sont
tout différents. Soit S un systéme de deux équations de Pfaff & cinq variables
X, T,, T, X, X, :

®w, =0, 0,—0,

que Uon peut supposer résolues, pour fixer les idées, par rapport a x, et x,. Dans
les équations
»,=o0, o,=o (mod w,, w,)

on peut ne laisser que di,, dx,, dr,, 3x,, 3x,, 3x,, et ces équations deviennent

o', = A, (dx,3x, — dx,3x,) + B, (dx, 32, — dx,3x,) + C,(dx,3x, — dx,3x,) = o,
w'z == A! (dxz axu - d‘ru axa) + Ba (dx.; awa - dxl axa) + Cz (dwa Ba’.g - da"z Bxg) =o.

Considérons (dx,, dx,, dx,), 3x,, 3x,, 3x,) comme les coordonnées homogénes
de deux points m, m’' d'un plan, et soient P,, P, les points du méme plan de coor-
données homogénes (A,, B,, C), (A,, B,, C,). La relation o', = 0 exprime que les
trois points m, m’, P, sont en ligne droite, et o', = o exprime de méme que les
trois points m, m’, P, sont en ligne droite. Si les points P, et P, sont distincts, tout
point m non situé sur la droite P, P, représente un élément intégral e, qui n’appar-
tient pas & un élément e,, tandis que les points de la droite P, P, représentent des
éléments singuliers ¢, qui forment un élément intégral ¢,. De tout point de I'espace

1
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a cinq dimensions il part donc un élément intégral ¢,. Mais ces éléments a deux
dimensions ne peuvent pas en général étre associés de fagon & former des intégrales
4 deux dimensions du systéme. o
Ceci ne s’applique plus si les deux points P,, P, sont confondus; ce point repré-
sente alors un élément caractéristique du systéme, qui est de quatriéme classe. Il en
est de méme si I'une des équations o', = 0, ', = o est vérifiée identiquement ou si
ces deux équations se réduisent & des identités. Le systéme est alors de classe deux,
c’est-d-dire complétement intégrable.
~ Revenons au cas général d'un systéme de classe cinq. Parml les équations
ho, + po, = o il y en a toujours une infinité de classe trois, car la condition pour

qu'une équation de Pfaff & cing variables
Q=aqadx,+ ... +adx,=o

soit de classe trois est que le déterminant

- a, a,., a. a‘
an 22 a,, as
D=|............. ...
asl aS! 5% a5

a, a, a, o

soit nul. En prenant pour Q la forme Jw, 4+ po,, on est conduit & une équation
ou figurent les deux fonctions A, u, et leurs dérivées partielles du premier ordre.
Si, par exemplé, A figure dans cette condition, on pourra prendre p. arbitrairement,
et I'on a pour déterminer A une équation aux dérivées partielles du premier ordre.

On pefxt donc toujours supposer que l'équation o, — o est de classe trois, et
ramenée i une forme canonique. Le systéme proposé peut donc étre écrit comme
1l suit, par un choix convenable des variables,

w, =dy, — y,dy, = o, o, = Y, dy, + Y,dy, + Y, dy, + Y, dy, = o;

les deux fonctions Y,, Y, ne peuvent pas étre nulles & Ia fois, car le systéme serait
de quatri¢éme classe. Soit K un facteur tel que I'on ait

U U U U U
—d —dy. =dU — — — —dy.:
3, y‘+by y.= du . dy,— vlyf aysdy“

K, dy, + Y, dy,) = ¥

3
en prenant la fonction U pour la variable indépendante y,, on voit que la seconde
équation du systéme peut s’écrire

L w, =dy

2

—U,dy,—U,dy, =o,

4
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I'un au moins des deux coefficients U,, U, dépendant de la variable y,. Comme on

peut permuter y, et y,, on peut prendre le coeflicient U, pour cette variable, et le
systéme de Pfaff est mis sous la forme réduite

gt')l;dyx—yad l:O’

Vi )
(V1) ( 0)2=dy4 __.fdy‘——ysdyi_—_.o,

S étant une fonction quelconque de y,, v,, y,, v,, ¥,- La démonstration prouve

d’ailleurs que le systérhe de Pfaff peut étre ramené a cette forme d’une infinité de.
maniéres.

Inversement, quelle que soit la fonction f, le systéme (VI) est de classe cinq.
On a en effet

o', =dy, 3y, — dy,3y,,

4 d ) )
(” o l:< + Ys > d_‘,’_: + _—Jj (lyS:I'ayu + I:dy_'" < f + 3 _‘}}:..> dyl] By!

— (4 Lan ), mod (o, 0.

-/

Tout élément caractéristique devrait donc satisfaire aux relations dy, = o,
dy, = o, dy, = o, et par suite aux relations dy, = dy, = o.
Pour que les équations o', = 0, ', = o soient compatibles, il faut et il suffit,

on le voit aisément que I'on ait

A

v‘.

o, = dy, + dyl_o

Les éléments singuliers du systéme (VI) sont donc définis par le systéme S, des
trois équations v, = 0, w, = 0, w = 0, ou par le systéme équivalent

J P
Ql_: Y ydyi—o’ "z:dy-s+ <y:,~;{-‘—f>dy‘:0, Qa:dyz+—b_§dy1zo'
On a
bz bﬂ
'“yl =0, i‘)'-.: = y; __V—j.‘.‘_ <dy:;5yl _dyl ay.) ’ Q’&:: \yj.'. (dydayl - dyl Byz)
Jdy, aYs
mod (Q,, Q,, Q,);
si 3{ = o, ce systéme S, est compléiement intégrable, comme on le vérifie immé-
s

diatement, et le systéme S admet une famille d’intégrales M, & deux dimensions
dépendant de deux constantes arbitraires, de telle sorte qu’il passe une de ces inté-
grales par un point quelconque de I'espace. Soient
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les équations qui définissent ces intégrales; si l'on a pris pour variables Y, Y,, Y,
et deux autres variables indépendantes des premiéres, il est clair que les différen-
tielles dY,, dY,, dY, figureront seules dans les équations du systétme S, et, en choi-
sissant convenablement les deux derniéres variables, et remplacant les grandes
lettres par des petites lettres, le systéme est ramené & une forme canonique

.

(VID) dy, — y,dy, = o,  dy,—y.dy,=o.

Quoique ce systtme soit de genre un, il admet une famille d’intégrales & deux
dimensions M,, mais ces intégrales M, sont des inlégrales singuliéres, car tous leurs
éléments intégraux sont des éléments singuliers. '

En dehors de ce cas, les équations du systéme S, ne peuvent admettre de combi-
naison intégrable. En effet, pour que dF = o soit une combinaison des équations
de S,, la fonction F doit satisfaire aux deux relations

OF F of F oF of \ OF
3 =o, 3 —_ + Y, + f — Y5 T
Y, 4y, Dy% bye ay : ayv. Dy&
et par suite a la relation -
»f F ¥f F
Yy, TRyt ay,
L ‘
Si ;;—2 n’est pas nul, on a dong
[ ¢
F )F
- + v, —_—
2, o
et par suite
: oF o F
. =o, =0,
* Dyt A ‘ ay.’ ’
de la seconde condition
‘ F 6F
v, Ty, T
on tire alors les deux autres relations
)F oF
=o, =o.
2, 2y,

Remarque. — Lorsque f n’est pas une fonction linéaire de y,, on a

Q'A =0, (Qi - ysga)' =0 mod (Qs’ Qa’ QS) *
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Or on a
Q=uw, Qg—ynQGZdy‘—-fdyi——ybdyzzmg,

de sorte que le sysidme S est le systéme dérivé de S,.

[14] Lorsque le systéme S est de quatritme classe, on sait qu’il peut étre
ramené, par un changement de variables ("), &Tune des formes suivantes :

(VIII) o, =dy, —y.dy,—o, we_:dya——.y‘dyl =o,
(IX) (v)lzdyizo, wgzdys—yldygzo.

Ce théoréme peut aussi s'établir de la méme facon que le théoréme du n° 5 rela-
tif aux systémes de classe six. Soit

o, = a,dx, + a,dx, + a dxr, + a,dr, = o,

w, = b,dx, + b,dx, + b dr, + b dr, = o

un systéme de deux équations & quatre variables. Pour que les éléments caractéris-
tiques de I'équation dw, + ww, = o vérifient les deux équations v, = 0, w, = 0, on
démontre, comme au n° 5, qu'il faut que 2, w vérifient la condition

0, i,+ub,, da,+pb,, la, + wb,, a, b
Mg, + by, 0, N+ pb,, da, +ub,, a, b,
................................................ o
A, +b,, o, a, b

a,, o N . O, O

b,, , " - o, o

on a ainsi une équation dont le premier membre est un carré parfait (O, — ui)*=o.
- Si I'équation %, o, + p, ©, = o est de classe trois, le systéme peut étre ramené A la
forme canonique (VIII), tandis que le systéme peut &tre ramené & la forme (IX)
lorsque cette équation est de premiére classe.

Enfin, lorsque le systéme donné S est de deuxiéme classe, il peut étre mis sous
la forme canonique
(X) _ dy,—o, dy,=—o.

2 —

(*) Voir, par exemple, un article de M. Cartan Sur quelques quadratures dont Uélément
différentiel contient des fonctions arbitraires. (Bulletin de la Société Mathématique de France,
t. 29, p. 118.)



SUR LE PROBLEME DE BACKLUND. 97

La réduction du systéme S & I'une des formes réduites n’exige, d’aprés la mé-
thode méme qui a servi & établir 1a possibilité de cette réduction, que I'intégration
d’équations différentielles ordinaires. Par exemple, pour réduire le systéme a la
forme (I) qui convient au cas général, on doit ramener une équation de Pfafl de
classe cinq 4 une forme canonique. '

[12] L'intégration d’'un systéme de deux équations de Pfaff & six variables,
C'est-a-dite la détermination de toutes les multiplicités intégrales de ce systéme,
n’exige que l'intégration d’équations différentielles ordinaires, lorsque ce systéme
peut étre ramené & une forme canonique. Il en est ainsi en particulier lorsque ce
systéme est de classe deux ou quatre, car il suffit de le mettre sous une des formes
canoniques (VIII), (IX) ou (X). Si le systéme est de classe deux, toute multiplicité
intégrale est représentée par le systéme des deux relations

y,=C

12 Je 2

y,=C

jointe & 4 — p relations arbitraires entre les variables primitives; y, et y, sont sup-
posées exprimées au moyen de ces variables x,. Le nombre p peut avoir les valeurs
1, 2,3, 4, et il existe des intégrales M,, M,, M, M_. .

Si le systéme proposé est de classe trois et réductible & la forme canonique (VIILI),
toutes les intégrales M, de ce systéme sont définies en ajoutant zéro, une ou deux
relations 4 'un des systémes d’équations

yz:f(yl)’ yu:f,(yi)’ yl:f”(yi)’
yl-——,cl' yazce' yJ:C’

il y a des intégrales M,, M,, M. _
‘ Enfin, si le systéme est réductible & la forme canonique (IX), toutes les inté-
grales M, du systéme sont définies de méme en ajoutant zéro, une ou deux relations
4 'un des systémes
=0, n=/0), =S
y.=¢C,,  y,=¢C,, y,=G,;

il y a encore des intégrales M, M, M,.

Lorsque le systéme est de classe cing, on peut obtenir sans aucune intégration
toutes les multiplicités intégrales, toutes les fois que le systéme est ramené a la
forme réduite (VI) ou a la forme canonique (VII). Dans le premier cas, en effet,
toutes les intégrales du systémé (VI) sont définies par I'un des systémes de relations

(@ y=S/0) v.=r0) r.=9%0), ¢@)—S—rS(y)=0,
(ﬁ) yl:Cs’ y:x:Cs’ D/A:(‘P(yi)’ y:s:?,(ye)’
) =G, - y=C, y,=C,, y.=C,.

Fac. des Sc., t. X. 13
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Si l'on suppose y,, ..., y, exprimées au moyen des variables x;, on obtient ainsi
une intégrale M, du systéme de Pfaff & six variables. Pour obtenir une intégrale M, ,
il suffira d’établir entre les six variables x, une autre relation de forme arbitraire.

De méme, toutes les intégrales du systéme canonique (VII) sont définies par
I'un des systémes de relations

@ n=/00 v=S0), v=e), =40,
@®  r=C, y,=C,, y,=C,

dont le second ne contient que trois relations. En revenant aux variables x;, on voit
que l'on peut ajouter aux équations («) une relation nouvelle, tandis qu’on peut en
ajouter une ou deux au systéme (8). Le systéme de Pfaff admet, dans ce cas; comme
on I'a déja remarqué, une famille d'intégrales M, dépendant de trois constantes
arbitraires.

On peut aussi obtenir I'intégrale générale d’un systéme de classe cinq sans rame-
ner ce systeme & la forme réduite (VI). L'intégration se raméne & la détermination
des caractéristiques, comme I'a montré M. Cartan dans le Mémoire déja cité plu-
sieurs fois. _

Considérons maintenant un systéme de Pfaff de classe six. Lorsque ce systéme
peut étre ramené a la forme canonique (V), son intégration est ramenée i celle
d’une équation de Pfaff & cinq variables et de forme canonique. Il y a des intégrales
a une et a deux dimensions. Si le systéme est réduclible & la forme canonique (III),
toutes les intégrales M, sont définies par un des systémes de relations

@ n=S0),  n=L0)  v.=sk), .=,

(16) y‘s:f(y()Y V:f(yi)’ yi:CtV ’:C’
(Y) :Y‘ZC” y3: 37 y:s_”(ys>7 yu::?,(yl)’
(a> y1:Cl’ ys: 37 yi:CA’ y*.:Cs

S et ¢ étant des fonctions arbitraires, et les C; des constantes arbitraires.

Une intégrale M, s'obtiendra en ajoutant une relation de forme arbitraire & I'un
des systémes précédents.

Dans le cas ou le systéme peut étre mis sous la forme canonique (IV), toutes les
intégrales M, sont définies par un des deux systémes de relations '

l

@ = G), =10  yve=90), @) +y,+rS"(y)=0,
® .v=C, Y.=0G,, yv=00), ¥ +¢@) =o,
C,.

(Y) Y. = }3203, y,_,=C=, yLZC‘U
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et on obtient les intégrales M, en ajoutant une relation arbitraire & I'un des syste-
mes d’équations précédentes.

Dans tous les cas que nous venons d’examiner, le probléme admet une solution
générale explicite; toute mulliplicité intégrale M, est définie par un systéme de
relations ou figurent explicitement une ou plusieurs fonctions arbitraires et quel-
ques-unes de leurs dérivées. Il n’en est pas de méme en général dans les autres cas
qui restent & ¢étudier. Prenons d’abord un systéme de la forme (II) :

'AZLLV:x_yadyLZO’ . "')'.’.:duvr,_yudy.x_adya_bdyé:(r‘

On tire de la bremiére
.=/0),  n.=S0)
et la derniére devient

dy,=uv,dy, + Fdy,,

F étant une fonction de y,, y,, y,, ¥,,» ou figurent une fonction arbitraire f(y,), et
ses dérivées f'(y,), f"(y,). On est ramené & résoudre une équation de Pfaff de classe
trois, ce qui exige l'intégration d'un systeme d’équations différentielles ou figure

une fonction arbitraire et ses dérivées.

[13] Enfin, dans le cas général, 'intégration d’'un systéme de Pfaff de la forme
- générale (I) se raméne & l'intégration d'une équation aux dérivées partielles du
second ordre d'une forme particuliére. D'une facon générale, soit

(31) ) F(x,y,z,p,q,r,8,t)=o0

une équalion quelconque du second ordre, permettant d’exprimer les dérivées r, s, ¢
au moyen de x, y, 2, p, ¢, et de deux paramétres auxiliaires u et v. L’intégration de
I’équation (31) revient a la recherche des intégrales M, d’un systéme de Pfaff de trois
équations a sept variables, vy, z, p, ¢, u, v, '

(Z) o,=dz—pdr—qdy=o0, o,=dp—rdrx—sdy=o0, o,—=dq—sdx—Ildy=o,

ou I'on suppose r, s, ¢ remplacées par leurs expressions au moyen de x, v, z, p, ¢, u, v.

Ce systéme E n’est pas d’ailleurs le plus général de son espéce.

v

Supposons que I'équation (31), ou I'on regarde &, y, z, p, ¢ comme des paramé-
tres, et r, s, { comme les coordonnées d’'un point de l’espace & trois dimensions,
représente une surface réglée dont les génératrices sont paralléles A celles du coéne
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rft — s*=o0. On peut alors prendre pour r, s, ¢ des expressions de la forme suivante
r=fiR e s=fibele. I=[9,

S S fo e b étant des fonctions de x, y, z, p, ¢, u. Les deux derniéres équations

‘du systéme (2) deviennent
o, =dp—(f, + ')z — (f, + s4v)dy=o,
w,=dg — (f, + ¢pv)de —(f, + V'v)dy =o.

On en déduit‘immédiatement une combinaison ot ne figure plus la variable v

0,= o, —go, =‘Wp— ¢dq — (fiy —Si9)de — (S — fi9)dy =o,

et I'on peut remplacer le sy'stéme <Z> par un systeme de deux équations de Pfalf

a six variables (*) .
1
(E) w, =0, w, =0.

!
Une fois qu’on aura trouvé les intégrales M', de 2 , c'est-a-dire exprimé x, v, z,

P, ¢, u au moyen de deux variables indépendantes, I'une ou l'autre des équations
w, = 0, o, = o donnera v.

Le systéme‘(Z) est de la forme (19) que nous avons rencontrée dans 1'étude
du systéme de Pfaff le plus général & six variables,
S Q,:dz——pdx—qdy:o,
( Q,=Xdx + Ydy + Pdg + Qdg=o,

ot X, Y, P, Q sont des fonctions quelconques de x, y, z, p, q, u.

1) 1l est & remarquer qu’'une intégrale M, du systéme £ ne donne pas forcément une
q q g 2 P
intégrale a deux dimensions M’, de X’. Considérons par exemple le systeme

o, =dz — pdxr — qdy =o, w,=dp —sdy=o, o, =dq — sdr — tdy =o.
Les équations '
y=@,. s=C,, p=C,, q—sx=C,, z—px=0_C,,
représentent bien une intégrale 4 deux dimensions du systéme ¥, les déux variables indé-
pendantes élant x et {; mais les mé¢mes équations ne représentent qu’une intégrale & une
dimension du systéme formé par les deux équations w, = 0, w, = o, avec les six varia-
bles «, y, z, p, q, s.

Ce fait est a rapprocher du suivant. Le systéme X n’admet pas d’éléments caractéristi-
ques, tandis que le second systéme est de cinquiéme classe, car on peut I'écrire

d(z — px) + (xs —q)dy =o, dp — sdy=o.
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Inversement, tout systéme de cette forme conduit & une équation aux dérivées
pértielles du second ordre ayant un systéme de caractéristiques du premier ordre.
Soit en effet M, une intégrale de ce systéme, ot x, y, z sont liées par une seule rela-
tion. Si 'on prend x et y pour variables indépendantes, cette multiplicité M, est
définie pgr quatre relations de la forme

! A of
Z:f(W,J'% P=ax, QZW, u:q;(ac,y)

De I'équation Q, = o, on déduit que la fonction u = ¢(x, y) doit satisfaire aux
deux relations -

(32) . Pr+4+ Qs+ X=o, Ps +Qt+ Y=o,

r, s, t étant les dérivées partielles du second ordre de f(x,y). Avec les conventions
précédentes, ces deux relations représentent une droite paralléle i une génératrice
du cone rt — s* = o, et {'élimination du parameétre u conduira bien 4 une équation
aux dérivées partielles du second ordre ayant une famille de caractéristiques du
premier ordre (*).

En rapprochant ce résultat de celui qui a été obtenu plus haut (n° 5), nous som-
mes conduits & la proposition suivante : La recherche des intégrales M, d'un systéme
de forme générale de deux équations de Pfaff & six variables se raméne de deux fagons
différentes & l’inte’grati’on d'une équation aux dérivées partielles du second ordre ayant
une famille de caractéristiques du premier ordre, de telle facon qu’a toute intégrale -
de cette équation corresponde une intégrale M, du systéme et une seule.

Nous dirons par la suite que ces équations E,, E, sont les équations résolvantes
du systéme de Pfaff. Chaque équation résolvante correspond & un systéme d’élé-
ments singuliers. Soit E, 'équation obtenue en éliminant le paramétre u entre les
deux équations (32). En éliminant ce paramétre u entre les quatre équations qui
définissent les éléments singuliers correspondant a la forme réduite (1g), -

(26’)‘ dx_ﬂ_—dp__——dq_ dz
P Q X Y Pp+Qq

(*) Nous laissons de coté les intégrales M, du systéme, pour lesquell?s il existerait plus
d’une relation entre les variables x, y, z. On satisfait par exemple a la Premiére équation
en posant -

@  y=f@), =), p=9¢@)—q9f(®)

et la seconde équation du systtme devient
[Q—Pf'(@)}dq + [Pg’ () — Pqf"(z) + X + Y (z)]du=o.

~ Cette équation de Pfaff, ou figurent x, g, u, doit étre de premiére classe, pour qu’il
suffise d’ajouter une seule relation aux trois relations (2) pour obtenir une intégrale M,
du systéme. :
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on est conduit & un systéme de trois équations

dy dp dq> dq
33 == C 4 Zz s 3 vy 53— |—O0, s Yy ey 3 | =—0,
(33) dz=pdx + qdy, | (I),(;c, Y, 2, D, q de de e o) 432(x y dac> o

qui définissent précisément les caractéristiques du premier ordre de I'équalion E, (.

Les deux équations E,, E, ne sont d’ailleurs déterminées qu’a une transforma-
tion de contact prés, puisque la forme réduite (1) ne change pas quand on effectue
sur les variables «, y, z, p, ¢ une transformation de cette espéce.

Inversement, toute équation aux dérivées partielles du second ordre E qui pos-
séde une famille de caractéristiques du prerhier ordre est une équation résolvante
pour un systéme de deux équations de Pfaff & six variables. En effet, si 'on regarde,
dans cette équation, «, y, z, p, ¢ comme des constantes, r, s, { comme des coor-
données courantes, elle représente une surface réglée engendrée par une droite qui
reste paralléle dans toules ses positions & une génératrice du cone rf — s* = o.
Soient

X+ Pr+Qs=o, Y+ Ps+ Qt=o0

les équations de cette génératrice, ou X, Y, P, Q sont des fonctions de x, y, z, p, q
et d’'un paramétre u. L’équation E oblenue par I’élimination de u entre ces deux
équations est identique a 1'équation du second ordre 4 laquelle nous avons ramené
- I'intégration du systeme de Pfaff

) dz — pdx — qdy =o, Xdx + Ydy 4+ Pdp + Qdg=o.

On voit que ce systéme de Pfaff est complétement déterminé, 4 cela prés qu'on
peut y remplacer la variable u par une fonction arbitraire de «, y, z, p, ¢ et d’'une
nouvelle variable. ce qui revient & changer le paramétre u dont dépend la généra-
trice mobile. Si 'on peut choisir ce parameétre u de fagon que X, Y, P, Q soient des
fonctions linéaires de u, I'équation E est une équation de Monge-Ampére. Si les
deux familles de caractéristiques sont distinctes, cette équation peut se déduire de
deux facons différentes d’'un systéme de Pfaff, et ces deux systémes de Pfaff ne peu-
vent en général se ramener I'un a lautre par un changement de variables.

Pour certains systémes de Pfaff il n’existe qu'une équation résolvante. C’est ce
qui arrive lorsque 1'équation (6) a une racine double, a laquelle correspond une
forme réduite (‘I). Les deux familles d’éléments singuliers sont confondues, et
I'équation singuliére E, a aussi ses ‘deux familles de caractéristiques confondues
(n° 14). )

(*) Voir mon Mémoire des Acta Malthemalica, t. 19, 1895, p. 295 et suivantes.
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Il n’existe encore qu'une seule équation résolvante E -pour le systéme de PfafT,
lorsque ce systéme peut étre ramené a la forme (I) et a la forme (II). Lorsqu’il en
est ainsi, ['équation résolvante admet une intégrale intermédiaire dépendant dune
Jonction arbitraire. Supposons en effet que du systéme (I) on puisse déduire une
équation de classe trois

dU —WdV =o,

U, V, W étant des fonctions de x, v, 2, 15, q, u 3

U=/f@,y.2,p,¢;0), V=fxy,2,p0u0, W=/f(@72,p 0.
Pour une intégrale quelconque du systéme (I), on a deux relations de la forme

U=F(V), W = F(V),
ou

So=F¥(f), So=F¥ (),

F étant yne fonction qui peut étre choisie arbitrairement.

L’élimination de u conduit & une intégrale intermédiaire de 1'équation E,, dépen-
dant d’une fonction arbitraire F.

Inversement, supposons qu'une équation du second ordre E admette une inté-
grale intermédiaire dépendant d’'une fonction arbitraire. Elle en admet alors une
infinité dépendant de deux constantes arbitraires. Soit

b=V(x,v,z,p,q,a)

une de ces intégrales intermédiaires, a et b étant deux constantes arbitraires.
L’équation E s’obtient en éliminant le paramétre a entre les deux relations

VAV v

w TP Ty Tt
W W v v
I R TR

elle provient donc du systéme de Pfaff

w,=dz —pdx —qdy = o,

/W W Vv 4 W
o= (G res) et (Grag)tre oo+ ra=o,
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ou figurent les six variables x, v, z, p, ¢, . Or on déduit immédiatement de ce
systéme une équation de troisiéme classe '

dV — oV da=o.
da
Prenons par exemple le systéme
w,=dz — pdr—qgdy=o, w,=dp +udg — \/—;—dac:o;

¥
I’équation », = o est de troisiéme classe, car on peut I'écrire

v -

: dp, + udg, = o,

— . X -
) p.=p—\ux, q,=q—\/l:L~

En éliminant u entre les deux relations r + us — \/— = o0, $+ ul =o, on est
» x

&

-conduit & I'équation considérée par Ampére
st + x(rt—s°)°=o0

qui admet l'intégrale intermédiaire

p:za\/;—a“’q-kb

avec deux constantes arbitraires a et b.

La conclusion précédente est en défaut si I'équation E est une équation de
Monge-Ampére. Nous avons remarqué en effet que cette équation, ayant deux
familles de caractéristiques du premier ordre, peut étre regardée comme la résol-
vante de deux systémes de Pfaff distincts, et il peut se faire que le systéme consi--
déré tout & I'heure, qui admet bien I’équation E comme résolvante, ne soit pas celui
dont on est parti. ,

En définitive, lorsqu'une résolvante E d’un systéme de Pfaff de sixiéme classe
admet une intégrale ‘intermédiaire dépendant d’une fonction arbitraire, deux cas
peuvent se présenter : ' '

1° Il peut se faire que les équations différenticlles de la famille d’éléments
singuliers correspondant i cette résolvante admettent deux combinaisons intégrables
distinctes. C’est le cas qui a été signalé au n° '7; I’équation E est alors nécessaire-
ment une équation de Monge-Ampére.

2° Il peut arriver aussi, comme on vient de le montger, qﬁe les équations diffé-
rentielles de la seconde famille d’éléments singuliers admettent trois combinaisons
intégrables distinctes. L'équation résolvante E n’est pas forcément dans ce cas une
équation de Monge-Ampére.
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Les deux espéces d’intégrales intermédiaires peuvent se présenter pour un sys-
téme de Pfaff. Prenons par exemple le systéme

dz — pdx — qdy =o, dp: udx,”

qui admet la résolvante s = o. Les équations différentielles des deux familles d’¢lé-
ments singuliers _

dy =o, dp = udx, dg—=o, dz = pdx,

dr=o, dp=o, du—o, dz =qdy

admettent respectivement deux et trois combinaisons intégrables.

[14] Lorsque l'équation (6) se réduit & une identité, le systtme S admet une
infinité de résolvantes. Nousavons vu en effet (n° 10) que ce systéme peut étre ramené
d’une infinité de maniéres & la forme réduite (I), et & chacune d’elles correspond
une équation résolvante E. Les équations du second ordre auxquelles on est ainsi
conduit forment une classe d’équations intégrables, qui ont déja été étudices.

Reprenons un systéme de la forme (20)

(20) _ w,:dz——pdx—_qdy:o, .
w,=dp — udg — adx — bdy = o,

\

ot a et b sont des fonctions de x, y, z, p, ¢, u satisfaisant aax deux conditions

b da db da
25 AN L 2 _¢
(%) “u W A+By,

= o0,

u

A, B, C ayant la méme signification qu’au n°6. La premiére des équations (25) peut
s’écrire :

d(ub—a)

wm

2b.

En posant ub — a = 24(x, y, z, p, ¢; u), on a donc

(34) a:u—?i—mp,

__ %Y
u b=+

T’

et la résolvante du systéme (20) s’obtient en éliminant.le paramétre u entre les deux
équations

N g
r—us—i—mp—um_o, s—ut—-—aa—_o.

Fac. des Sc., t. X. 14
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Si I'on conserve les mémes conventions qu’au n° 43, ces équations représentent
une droite dépendant d’un paramétre variable @, qui est précisément la caractéris-.
tique du plan mobile représenté par 1'équation

(35) r——zus—}—Li"t-l—zq;(w,y,z,p,qfu):o.

L’équation (E) rveprésente donc une surface développable dont chaque généra-
trice est paralléle A une génératrice du cone s* — rl — o. Cette conclusion s’appli-
que & toutes les équations résolvantes des systemes de Pfaff pour lesquels la pre-
miére des conditions (25) est vérifiée, c’est-a-dire aux systémes dont les deux
familles d’éléments singuliers sont confondues. On voit que les deux familles de
caractéristiques de la résolvante d’un systéme de cette espéce sont aussi confondues,
ce qu'il était aisé de prévoir a priori. Toutes les équations de cette espéce, et par
suite tous les systémes de Pfaff correspondants s’obtiennent en prenant pour ¢ une )
fonction arbitraire de x, v, z, p, ¢, u.

Pour que I'équation (6) se réduise & une identité, la fonction ¢ doit en outre
satisfaire & une équation aux dérivées partielles du second ordre que 'on obtient
en remplacant a et b par leurs expressions (34) dans la seconde des conditions (25).
J’ai étudié (*) les équations du second ordre E qui proviennent d’une fonction ¢ de
cette espece, montré qu’elles admettent une intégrale générale. explicite, et donné
le moyen de les former. M. Cartan (*) les a étudiées depuis lors & un autre point de
vue, en les rattachant précisément & un systéme de deux équations de Pfaff de cin-
quiéme classe. Je n’y reviendrai pas.

Remarquons seulement que toute équation E de cette espéce admet une infinité
d’intégrales intermédiaires dépendant de deux constantes arbitraires. Il existe
donc une infinité d’équations ko, + pw, = o qui sont de la troisiéme classe, ce que
nous avions déja établi directement (n° 10).

[45] On peut employer directement, pour l'intégration d'un systéme de Pfaff
de deux équations & six variables, la méthode de Monge, lorsqu’il existe deux com-
binaisons intégrables pour les équations différentielles de I'un des systémes d’élé-
ments singuliers. Nous nous appuierons pour cela sur la proposition suivante :
Si df = o est une combinaison intégrable des équations différentielles de Uun des sys-
témes d’éléments singuliers, la classe du systéme de Pfaff s’abaisse de deux unilés,
quand on vy fait f =G, df = o.

(*) E. Goursat, Sur une classe d'équalions aux dérivées partielles du second ordre, et sur la
théorie des intégrales intermédiaires. (Acta Mathematica, t. 19, 1895; pp. 285-340.)

(%) E. Cartan, Les systémes de Pfaff & cing variables et les équations aux dérivées partielles
du second ordre. (Annales de U'Ecole normale supérieure, 3¢ série, t. 27, 1910; pp. 109-192.)
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Cet énoncé signifie que si 'on a fait un changement de variables de facon &
prendre la fonction f poﬁr une des nouvelles variables, y par exemple, le systéme
de Pfaff, oti I'on fait y = C, dy = o, est de quatriéme classe.

Pour le démontrer, supposons d’abord que df = o soit une combinaison inté-
grable des équations différentielles d’'un systéme d’éléments singuliers, correspon-
dant & une équation singuliére de classe cinq. Comme on I'a remarqué plus haut
(n°'7), on peut supposer que cette combinaison intégrable est dp = o, et le systéme
" de Pfaff peut étre ramené a la forme

dz — pdx — qdy =o, Pdp + Qdg + Ydy=o;
le systéme obtenu en posant p = C, dp = o,
d(z—Cx)—qdy=o0, "~ Qdg+ Ydy=o }

. - . Y
est bien de quatriéme classe, caril n’y figure que les quatre variables ¢, y, z — Cx, ~.

Q

Si le systéme de Pfafl peut étre ramené & la forme (II), on sait que les équa-
tions différentielles du systéme d’éléments singuliers correspondants admettent
trois combinaisons intégrables distinctes. Ayant pris I'une de ces combinaisons
intégrables pour dx = o, le systéme de Pfaff peut étre ramené i la forme

dz — pdx =o, Xdx + Ydy + Pdp 4 Qdg =o;
si l'on y fait x = C, dx = o, le systéme obtenu
dz=o, Ydy + Pdp + Qdg=o

est bien de quatriéme classe, car la derniére équation, ou ne figurent que quatre
“variables y, p, ¢, u, est de troisiéme classe.

Réciproquement, supposons qu’en posant f = C, df = o dans les  équations
w, =0, w, = o d’'un systéme de Pfaff de sixi¢éme classe, on obtienne vn nouveau
systéme de quatridme classe; df = o est alors une combinaison intégrable des équa-
tions différentielles de U'une des familles d'éléments singuliers du systéme de Pfaff.
Pour la démonstration, nous pouvons supposer que 'on a effectué un changement
de variables de telle facon que I'on ait /=% y. Le systéme obtenu en faisant y =,
dy = o dans les équations du systéme donné o, =— o, w, = o étant de quatriéme
classe, ce systéme auxiliaire peut étre ramené a I'une des formes canoniques (VIII)
ou (IX), par un choix convenable des variables autres que y. Le systéme de Pfaff
lui-méme pourra donc étre ramené 4 'une des formes

(VI w,=dz — pdx — fdy =o, w,=dp — ¢dx — {dy=o,
(IX') - w‘“‘_—dz—fdy:O, w,:dp—cpdx-—"dy——-o.
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Le systéme de Pfaff étant de la forme (VIII'), si , v, z, p, J forment un systéme
de cing variables indépendantes, on peut poser f= ¢, et I'on a un systéme de Pfaff
ramené i la forme (19)

dz — pdx — qdy = o, dp — edx — Ydy —o;

>les équations correspondantes (26) admettent bien la combinaison intégrable dy = o.
Si f ne dépend que de x, y, z, p, on voit immédiatement que les équations

dx=o, dy =o, dp=o, dz=o0

définissent une famille d’éléments singuliers, et le systéme ést réductible 4 la forme
canonique (IV).
Lorsque le systéme de Pfaff est de la forme (IX'), I'équation », = o est de troi-
“siéme classe, et il lui correspond une famille d’¢léments singuliers qui admet les
trois combinaisons intégrables dy = o, dz = o, df = o.

Cela étant, supposons que les équations différentielles de I'une des familles
d’éléments singuliers admettent deux combinaisons intégrables distinctes du = o,
dv = o. Toute intégrale M, du systéme est un lieu de caractéristiques de Monge,
c'est-a-dire de multiplicités M, dont tous les éléments linéaires sont singuliers;
u et v conservant la méme valeur tout le long d'une de ces caractéristiques, il s’en-
suit que l'intégrale M, satisfait & une relation de la forme v = ¢ (u). Quelle que soit
la fonction ¢(u), d(v — ¢(u)) = o est aussi une combinaison intégrable des équa-
tions différentielles des éléments singuliers. Si donc on pose, dans les équations
w, = 0, w, = o du systéme de Pfaff, v = ¢ (u) + w, et que I'on fasse ensuite dans
les équations transformées w = o, dw = o, on est conduit & un systéme de qua-
triéme classe, dont toutes les intégrales s’obtiennent par la réduction i une forme
canonique, ce qui n’exige que l'intégration d'un systéme d’équations différentielles
ordinaires. .

[46] Soit S un systéme de Pfaff de sixiéme classe, possédant deux familles dis-
tinctes d’éléments singuliers, telles que les équations différentielles de chacune
d’elles admette au moins une combinaidn intégrable; si l'on ajoute aux deux équa-
tions du systéme S les deux équations df, = o, df, = o, qui définissent ces deux
combinaisons intégrables, le systéme oblenu

w,=o0, w,=o0, df,=o, df,=o
est complétement intégrable.
La propriété est évidente si le systéme S est réductible & la forme canonique (III).
b

.



SUR LE PROBLEME DE BACKLUND. 109

Prenons le cas ou l'une au moins des équations singuliéres du systéme est de cin-
quiéme classe, les équations différentielles du systéme d’éléments singuliers corres-
dant admettant une combinaison intégrable. Ce systéme peut alors (n° 7) étre
ramené 4 la forme

w,=dz — pdx — gdy =o,

w,=dp — udx — fdy=o,

et les équations différentielles des éléments singuliers
dy=o, dz =pdzx, dp = udx, dg = fdx

admettent l'intégrale y = C.

Pour avoir les équations différentielles du second systéme d’éléments singuliers,
il suffit d’écrire que les éléments (du, o, pdx, udx, fdx, du) et (3z, 3y, pdxz + 4¢3y,
udx + f3y, 3¢, 3u) sont en involution, quels que soient dx et du, ce qui conduit

aux relations

Q . 2 . d
3x + f3y:0, oZ:((]——p%)Sy, op:(f——u%)sy,

8u___<bf Y o 2

(36)
| aﬁpsﬂ‘a;”ﬁ)gy-

Toute intégrale premiére de ce systéme F = C doit étre indépendante de g. Les

quatre équations
37) dz — pdx=o, dp — udxr=o, dy=o, dF=o

L]
ne renferment que cing varirbles x, y, z, p, u, et leurs différentielles, et par suite
forment bien un systéme complétement intégrable.

Remarque I. — La proposition ne serait pas exacte si df, = o, df, = o étaient
deux combinaisons intégrables du méme systéme. Supposons par exemple que le
systéme (35) admette une intégrale premiére F — C* différente de y. Ainsi qu'on
I'a vu au n° 7, la fonction F, indépendante de u, contient la variable ¢, et par suite
le systéme (36) ne peut étre complétement intégrable, car le covariant bilinéaire
de (dp — udx) ne peut étre identiquement nul en tenant compte de ces équations
elles-mémes.

Remarque II. — 11 est évident que les équations (36) ne peuvent admettre I'inté-
grale y = C. Toute autre intégrale de ce systéme est indépendante de ¢, et par con-
séquent ne peut étre une intégrale pour le premier systéme d’éléments singuliers.' :
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R

[47] En étudiant certaines transformations des surfaces & courbure totale cons-
tante, M. Bicklund a été conduit & I'étude du probléme suivant, que j’appelle pour
abréger le Probléme de Bdcklund (") :

Trouver deux multiplicilés & deux dimensions d’éléments de contact m,(x,y,z,p,q),

et M,(X,Y, Z, P, Q) se correspondant élément par élément, de telle facon que les élé-
ments correspondants vérifient quatre relations données & I'avance

(38) F(,y,z2,p,¢;X,Y,Z,P,Q)=0 (i=1,2,3,4).

Nous supposerons que l'on ne peut déduire de ces quatre équations une ou
plusieurs relations ne contenant que les variables (x, y, z, p, ¢), ou les variables
X,Y, Z, P, Q, cest-a-dire que les mineurs & quatre lignes déduits du tableau

XN T F
ne sont pas tous nuls identiquement, ni les déterminants & quatre lignes déduits
du tableau analogue au précédent, ot I'on aurait remplacé les grandes lettres par
les petites lettres correspondantes. Soit F,(x, v, z, p, ¢; X, Y, Z, P, Q) une fonction
telle que le jacobien
D(,,F,,F,,F,,F)
DX,Y,Z,P, Q)

soit différent de zéro. Si I'on adjoint aux relations (38) ure nouvelle relation F,=u,
on peut remplacer le systéme (38) par un systéme équivalent

(39) X=/f(x,y,2.p,¢; 0), Y=/ -0 Q:fs(x»y:%l’,q?u)»

u étant une variable auxiliaire, et il est évident que cette transformation peut étre
effectuée d’une infinité de maniéres, car on peut dans les formules (39) remplacer u
par. une fonction arbitraire de x, y, z, p, ¢ et d’'un nouveau paramétre.

De méme, si l'on adjoint aux relations (38) une nouvelle relation F, = U,
F, étant une fonction de x,y, z, p, ¢, X, Y, Z, P, Q, telle que le jacobien

‘D(F;’ Fz’ FafFch)
D(x,y,2,p,9)

(*) Backlund (A. V.). Om ytor med konslant negativ krokning (Lunds Universilels Arsskrift,
t. 19; 1883).
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ne soit pas nul, on peut remplacer le systéme (38) par un autre systéme équivalent
(40) x=09,X,Y,Z,P,Q; U, RN g=¢,X.Y,Z,P,Q; U),

U désignant une variable auxiliaire. On peut prendre par exemple la méme fonc-
tion F, = F, dans les deux cas, et 'on a alors U = u, mais cette hypothése n’est
pas nécessaire.

Inversement, les formules (3g) conduisent a un systtme de quatre relations dis-
tinctes entre x, y, z, p, ¢ et X, Y, Z, P, Q pourvu que u figure dans 1'une au moins
des fonbtionsﬁ.

Pour définir un probléme de Bicklund, on peut donc partir de 'un quelconque
des systémes de formules (38), (39) ou (40). Pour passer d’un systéme de la forme
(39) 4 un systéme de la forme (40), il suffit d’ajouter & ce systeme (39) une autre
relation ‘

U=f.(w-‘y,z,p,q;u), :

la fonction f, étant choisie de telle fagon que le jacobien

D(f11f17f3’fl’f5st)
D(x,y,2z,p,q,u)

ne soit pas nul, et de résoudre ensuite le syst¢tme des six équations

Bo)  X=f, Y=f, 2=/, P=f, Q=/, U=/,

par rapport & x, ¥, z, p, ¢, u, ce qui conduit & un systéme de la forme (40), avec une
équation de plus ou figurent les deux variables auxiliaires u et U,

(40,) x:@t(X’Y’Z’PiQ;U)’ y:?a’ Z:cps, p:cPU q::P“ u:?‘.

Cela étant, considérons le probléme de Bécklund défini par les formules (39);
les coordonnées x, y, z, p, ¢ et X, Y, Z, P, Q de deux éléments correspondants des
multiplicités m_ et M,, ainsi que le paramétre u, doivent étre des fonctions de deux
variables indépendantes, vérifiant les relations (3g) et les équations

(41) dz = pdx + qdy,
(42) dZ = PdX + QdY.

Si on remplace, dans I'équation (42), X, Y, Z, P, Q par leurs expressions tirées
des formules (39), on est conduit & une équation linéaire par rapport aux différen-
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tielles du, dy, dz, dp, dq, du, o I'on peut remplacer dz par pdz -+ qdy, et finale-
ment on est conduit & un systéme de deux équalions de Pfaff & six variables

(41) w, = dz — pdr — qdy = o,
(43) w, = hdu + adp + bdg + cdx + edy = o,

a, b, ¢, e, h étant des fonctions de x, y, z, p, ¢, u. Toute intégrale & deux dimensions
du systéme S donne évidemment une solution du probléme de Bicklund, et réci-
proquement. '

En partant du systéme de formules (40) équivalent au systéme (39), on raméne-
rait de méme le probléme de Biicklund & I'intégration d’un systéme de Pfaff

‘(45) Q= HdU + AdX + BaY + CdP 4+ EdQ = o;

mais les deux systémes de Pfaff S et S, sont évidemment équivalents, et se ramé-
nent I'un & I'autre par les formules de transformation (3g) ou (40).

La résolution du probléme de Bicklund se raméne donc ¢ la recherche des inté-
grales & deux dimensions d'un systéme de deux équations de Pfaff & six variables.

Ce probléme admet donc toujours une infinité de solutions dépendant de fonc-
tions arbitraires. Pour fixer les idées, supposons que h ne soit pas nul. Si I'on se
donne trois fonctions arbitraires y = o,(x), p = ¢,(x), ¢ = 4,(x), l'intégration du
systéme S, ol I'on considére z et u comme fonctions de la variable x, donne deux

autres fonctions
Z:(P&(m’CA’CJ’ u:?s(x7cl>cg)

qui, jointes aux précédentes, représentent une intégrale & une dimension m, du
systtme S. On sait que cette intégrale m, appartient en général & une intégrale m,
et & une seule. A cette intégrale m, correspond une solution du problémé de
Bicklund. ,

Réciproquement, i tout systéme de deux équations de Pfaff & six variables corres-
pondent une infinité de problémes de Bicklund, pourvu que ce systéme soit au moins
de quatriéme classe.
~ Soient en effet v, = 0, v, = 0 deux équations quelconques distinctes de ce sys-
téme, dont chacune est de cinqui¢me classe. Supposons-les ramenées i une forme

7
canonique

0,=dz —pdx —qdy=o, w,=dZ — PdX — QdY =o,

X,Y, Z, P, Q étant fonctions de a, y, z, p, ¢ et d’'une sixiéme variable u, indépen-
* ,

dante des premiéres,
N

X=f(x,y,2,p,q; ), Y=/, EER) Q=/f(z,y,2,p,q; u).
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L’élimination de u entre ces cinq équations conduira en général a quatre. rela-
tions distinctes entre X, Y, Z, P, Q, «, y, z, p, ¢, et il est clair que I'intégration du
systéme w, — 0, w, = o fournira la solution du probléme de Bicklund correspon-
dant. Nous dirons que tous les problémes de Bicklund qui conduisent a des systé-
mes de Pfaff équivalents forment une seule classe. Pour que deux problémes de
Bicklund appartiennent & 1a méme classe, il suffit, d’aprés cela, que les deux sys-
témes de Pfaff correspondants puissent se ramener I'un & l'autre par un changement

des variables.

E
(48] Nous allons appliquer ces généralités & quelques exemples :

Exemple I. — Considérons le systéme de quatre équations
X=xz, , Y=y, P=—sin(Z—z)—p, Q=sin(Y +2) +g¢,

qui se présente dans I'étude des transformations des surfaces & courbure totale
constante. Le systéme de Pfaff correspondant est ici, en prenant u = Z,

L]

dZ ———pdx + qdy’
dZ =[sin(Z — z) — p]dx + [sin (Z + z) 4 q]dy;

. /‘/
nous reviendrons plus loin sur ce systéme, qui peut étre ramené de deux fagons
différentes a la forme (I).

Exemple 1I. — Le systéme de quatre équations

’ X=uz, Y=y, Z=z+p, Q=yq,

auquel. on ajoute la relation P = p + u, conduit & un systéme de Pfaff

dz = pdx 4+ qdy, dp = udx,

qui admet une seule résolvante s = o. La solution générale du probléme de Biick-
lund est donnée par les formules

z=f@)+9(), p=f®), ¢=9¢), Z=/@)+[f (@) + @),
P=f@+/"(®), Q=4+,

f et ¢ étant deux fonctions arbitraires.
Fac. des Sc., t. X. : . 15
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Exemple 11I. — Le systéme classique de la théorie des fonctions analytiques
X=u, Y=y, P=—yq, Q=—p,
conduit au systéme de Pfaff
dz = pdx + qdy, dZ. = qdx — pdy,
que I'on peut mettre sous la forme canonique (III)
d(7 + iz) = (q + ip)d(@ + iy),
d(Z—iz) = (g —ip)d(x — iy).
C’est, sous une autre forme, le ré‘sultatb classique.
" Exemple IV. — Le sysléme
N=x, Y=y, Q=g P=y+p
est de méme équivalent au systéme de Pfaff
dz:apdx+qdy, d(Z — z)=ydx,

qui est de la forme canonique (IV). L’intégrale générale est représentée par les for-
mules '

Z—z=[f(x), y=[(®), =9, p+ef(®)=9¢®),

les variables indépendantes étant et ¢. On remarquera que dans ce cas les multi-
" plicités m, et M, ont pour supports ponctuels deux courbes; m, par exemple est
définie par les formules ‘ ‘

y=/f'(®), z=9@). p=4g¢@®—q/" (@).

11 suffirait d’une transformation de contact pour les remplacer par deux multi-
plicités formées des éléments de contact de deux surfaces.

Exemple V. — Soit ,
‘ ) X—2 Y—y Z—z
P= , ) =— , = o
p ‘Q q » p —

les formules définissant un probléme de Bicklund. En désignant par u la valeur
commune des derniers rapports, on est conduit & un systéme de Pfaff de la forme
canonique (V)

dz=pdz + qdy,  d@uy/1+p +¢)=o.
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La multiplicité m, peut donc étre choisie arbitrairement, et I'on a ensuite

C

U= —/—————=

Vit +d
L’interprétation géométrique est évidente.

Exemple VI. — Le systéme de quatre équations
X=ux, Y=y, P=p, Z=z+p.
auquel on ajoute la relation Q = ¢ + u, conduit au systéme de Pfaff
dz = pdx + qdy, dp = udy,
qui est de classe cinq et admet la résolvante r = o, car on peut Iécrire
d(z — px) — (¢ —ux)dy=o0,  dp—udy=o.
L’intégrale générale est donnée par les formules
i=af(y) + o), p=/W), ¢=af' N+ @), Z=xf)+S0)+ 90,
si l'on a pris « et y pour les variables indépendantes.

Exemple VII. — Considérons le systéme de quatre équations

X=Qy——a—c-_q‘——, Y=z—pzx, P=p, Z=PX +vy,

d’ot I'on peut tirer X, Y, Z, P en fonction de x, y, z, p, ¢ et de Q = u. Les relations

. dz = pdx 4 qdy, dZ=PdX + QdY |
peuvent s’écrire

d(z—px)=qdy —xdp, . d(Z—PX)=QdY —XdP.
On a donc

dy~=—Xdp+Q3qdy—wdp%,

dp

o=l fo 052

ou
dy:x;”dp.
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On est donc conduit & un systéme de Pfaff de quatriéme classe du type (VIII)

d(z — px)=ydp, dy p

dont l'intégrale générale est

z=px + f(p), y=S"(p), x=qf"(p)—S'(p),

les deux variables indépendantes étant p et ¢. On a ensuite

X=uf'(p)—f"(p), Y=Ap), Z=wpf(p)+S(p)—pf"(p), P=p, Q=u.

Les deux multiplicités d’éléments m, et M, ont pour supports ponctuels deux
cylindres dont les génératrices p =— G* se correspondent. Mais il y a une infinité de
facons de faire correspondre les éléments un & un, car on peut choisir pour u une
fonction arbitraire de ¢q. Ce résultat s'explique aisément. Toutes les fois que la
résolution d’un probléme de Bicklund conduit & un systéme de Pfaff de quatriéme
classe, lintégrale générale de ce systéme est représentée par.trois relations seule-
ment entre x, v, z, p, ¢, u. On peut donc leur ajouter une relation de forme arbi-
traire pour avoir une multiplicité m,. Dans le cas actuel, cette gelation ne change
pas les multiplicités m, et M,, mais seulement le mode de correspondance entre
leurs éléments.

Exemple VIII. — Prenons cinq relations
X=x, Y=z, Z=y, P=f(x,y,2,p,q;0), .chp(zc, Y, 2, D, q; W)
les deux équations de Pfaff
dz = pdx + qdy, dy = fdx + ¢dz
nous donnent en général des formules équivalentes

dy=F(x,y,2,p,q; wde,
dZ:(i)(wy y, Z,P» q; u)dﬂ?,

c’est-a-dire une forme canonique du type (VII). La solution générale est donnée par
les formules
y=9(x), z=h(=), F=g¢'(x), b =H(x),

qui permettent d’exprimer p et g et par suite X, Y, Z, P, Q au moyen des deux
variables x et u. ‘
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Exemple IX. — Le systéme des quatre relations

X=ux, Y=z, L=y, P4+ Qp=o
conduit & un systéme de Pfaff de classe quatre du type (IX)

dy(1 —Qq)=o, dz=pdx.

On en tire

y=C, z=f), p=f@), X=w, Y=fz), Z=C, P+ Qf(z)=o.

Les deux multiplicités m, et M, se correspondent encore, élément par élément,
d’'une infinité de maniéres, comme dans l'exemple VII.

[19] Considérons maintenant le cas général ou le systéme de Pfaff correspon-
dant & un probléme de Bicklund donné peut se ramener de deux fagons différentes
A la forme (I). Ce systtme admet alors deux résolvantes distinctes E,, E,, et nous
voyons que, dans le cas général, la solution d’un probléme de Bdicklund se raméne de
deux fagons différentes & Uintégration d'une équation aux dérivées partielles du second
ordre admettant une famille de caractéristiques du premier ordre.

Inversement, toute équation du second ordre de cette espéce peut étre considérée
comme la résolvante d'un systétme de deux équations de Pfaff & six variables.
L’intégration de cette équation fournit donc la solution d’une infinité de problé-
mes de Bicklund, de la méme classe. A une équation de Monge-Ampére, ayant ses
deux familles de caractéristiques distinctes, on peut rattacher une double infinité
de probléemes de Biicklund, correspondant aux deux familles de caractéristiques de
cette équation.

Soient S un systéme de deux équatibns de Pfaff de sixiéme classe, pouvant étre
ramené de deux fagons différentes a la forme (I), E,, E, les deux résolvantes de ce
systéme. Les intégrales de ces deux équations se correspondent une i une d’une
fagon univoque, et nous allons ¢tudier ce mode de correspondance. Soient

(I) dzl_pldxl—qldyizo’

' Pidpa + Qadqa + dewl + Yldy|:O’
(I) g‘dzz_pzdwz_qzdy2=07 -

: Pzdp: + diqe + deirz + Yadyzzo’

\

les deux formes réduites du systtme S; X,, Y,, P,, Q, sont des fonctions de zx,, y,,
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J
2,5 P;» ¢, et d’'un paramétre u,(i = 1, ). Par hypothése, on passe du systéme {I), au
systéme (I), par un changement de variables

(46) 00%=f,(x,,y,,2,,p,,q,,'u,), .=, u, = f(z,,...,u,)

les fonctions f; étant indépendantes. A uune intégrale I, de I'équation E, correspond
une intégrale du systéme de Pfaff et par suite une intégrale I, et une seule de E,.
Pour préciser davantage, a un élément de contact (z,, y,, z,, p,, q,) de I, corres-
pond une valeur de u,, et par suite un systéme de valeurs de x,, v,, z,, p,. q,, u,,
et enfin un élément de contact (®,s ¥5» 24 Ps» qg)' de I,. Mais les coordonnées de
cet élément s'expriment au moyen de x,, y,, z,, p,, q,, 4,; I'élimination du para- °
métre u, conduira donc & qualre relations entre les coordonnées de deux éléments
correspondants des intégrales I, et I,. On a donc ainsi la solution d’un probléme
de Bicklund, pour lequel les multiplicités d’éléments se correspondent une 4 une
d’une fagon univoque. |

Mais les équations qui définissent le probléme de Bicklund faisant correspondre
une & une les intégrales des deux équations E,, E,, sont d’une forme particuliére.
En effet, soient '

(47) X=/f(z,y,2p qu), v Q=f(x,y,2,p,q; )

les équations de définition d’'un probléme de Bicklund.
Pour que le systéme de Pfaff correspondant

dz = pdx + qdy, dZ =PdX + QdY

soit de la forme réduite (I), il faut et il suffit que du n’entre pas dans la seconde
équation quand on y remplace X, Y, Z, P, Q par leurs expressions (47). S’il en est
ainsi, la relation dZ = PdX 4 QdY est une conséquence des relations x = x,,
Y=Y, 2=2,, P = P 9§ = q,, et par conséquent a un élément quelconque
(, ¥, 2, p, q) les formules (47) font correspondre o' éléments (X, Y, Z, P, Q) for-
mant une multiplicité M, d’éléments unis. ‘

Inversement, pour que le systéme de Pfaff

dz,—pldac‘—q,dy, =0, dzz'—pzd';"z—qsdyz:()’

ou l'on prend w,, v,, 2,, p,, g, pour variables soit de la forme (I),, il faut et il suffit
qu'a un élément (x,, y,, 2,, p,, ¢,) correspondent co' éléments (x,, y,, z,, p,, 4,)
formant une multiplicité M, d’éléments unis.

- En résumé, étant données quatre relations entre les coordonnées de deux sys-
témes d’éléments (x,, ¥,, 2,, P,» q,) et (%,, ¥,, Z,, P, q,) tels qu'a chaque élément
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de 1'un des systémes correspondent co' éléments de l'autre systéeme formant une
multiplicité & une dimension d’éléments unis, le probléme de Biicklund correspon-
dant conduit & une équation aux dérivées partielles du second ordre E, pour déter-
miner les multiplicités engendrées par I'élément (x,, y,. 2,, p,, 4,), et & unc autre
équation du second ordre pour déterminer les multiplicités engendrées par 1'élé-
“ment (x,, y,, 2,, P,, ¢,)- Les intégrales de ces deux équations se correspondent une
A une d’une facon univoque.

Nous dirons, suivant la classification de Clairin, que ces deux équations se cor-
respondent par une transformation de Bicklund B,. D'aprés la fagon méme dont
nous avons été conduits a ces transformations, nous pouvons énoncer les proposi-
tions suivantes : , ' N

a) Pour qu'une équation aux dérivées partielles du second ordre provienne d'une
transformation de Bicklund B,, il est nécessaire qu’elle admette une famille de carac-
téristiques du premier ordre.

b) Celte condition est en général suffisanle.

Soit en effet E une équation aux dérivées partielles. du second ordre ayant deux
familles distinctes de cal:actéristiques, dont une seule est du premier ordre. Cette
équation E peut étre considérée comme la résolvante E, d’'un systéme S de deux
équations de Pfaff ayant deux familles distinctes d’élémehts singuliers (n° 43). Si
cette équation E, n'admet pas d’intégrale intermédiaire ddpendant d’une fonction
arbitraire, le systtme S a une autre résolvante E, qui n’est définie qu'a une trans-
formation de contact prés, et les deux équations E,, E, se correspondent, nous
venons de le voir, par une transformation B,. De l'équation E ou E, on peut donc
déduire par une transformation B, une autre équation E, et une seule (*), si on ne
‘considére pas comme distinctes deux équations qui se déduisent l'une dé¢ l'autre
par une transformation de contact. La démonstration explique en méme temps
quelle est la méthode & suivre pour obtenir cette transformation. La seconde famille '
d’éléments singuliers de S se' détermine par un calcul linéaire, et I'on a ensuite a
ramener une équation de Pfaff & une forme canonique. Ce dernier probléme admet
bien une infinité de solutions qui se déduisent toutes d’une solution particuliére
par une transformation de contact.

¢) A une équation de Monge-Ampére, ayant deux familles de caractéristiques
distinctes, on peut faire correspondre deux autres équations aux dérivées partielles
du second ordre par deux transformations de Bicklund essentiellement distinctes.

(*) J. Clairin avait démontré, dans sa thése (Annales de UEcole normale, 1go2) que si 'on
peut déduire de E deux équations E’, E” par des transformations B, déduites du méme
systéme de caractéristiques, on passe de E' & E” par une transformation de contact. 11 a
établi aussi depuis d’une fagon générale I'existence de la transformation B, pour toute
équation admettant une famille de caractéristiques du premier ordre, par une méthode

toute différente de celh/e de ce Mémoire. (Annales de UEcole normale, 1913.)
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Une de ces transformations, ou méte les deux a la fois, peuvent disparaitre, si
I'équation de Monge-Ampére admet une ou deux intégrales intermédiaires.

d) Siléquation E a ses deux familles de caractéristiques confondues, ces carac-
téristiques sont forcément du premier ordre, et le systéme S correspondant n’admet
pas d’autre résolvante que 1'équation E, & moins que cette équation E n’appartienne
a la classe particuliére considérée au n° 44. Le systéme S admet alors une infinité
de résolvantes, mais toutes ces équations peuvent se déduire de 1'une d'elles par
une transformation de contact, comme I'a démontré M. Cartan dans le Mémoire
déja cité.

Remarque. — Tout systéme de deux équations aux dérivées partielles du pre-
mier ordre, & deux variables indépendantes «, y, et & deux fonctions inconnues z
et Z,

oz

P/
Q_D—y'y

F.(@,y.2.2;p, ;P Q =0, F.(2y,2ZpqP, Q=0 P=—,
se raméne 4 un systéme de quatre relations de la forme (38), si on lui ajoute les
deux relations X = x, Y ='y. L'intégration de ce systé;ne peut donc se ramener
en général de deux maniéres différéntes a 'intégration d’'une équation aux dérivées
partielles du second ordre.

On peut, dans certains cas, obtenir une résolvante par un calcul d’élimination,
si le systéme proposé est d'une forme particuliére. Si I'on remplace dans les rela-
tions précédentes x, y, z, p, ¢ par des constantes x,, ¥,, Z,, p,, ¢,» on obtient
co' éléments (X, Y, Z, P, Q) définis par les quatre équations

X:wo’ Yzyo-’ Fi(wo’y(w’Zu"Z;po’qo!P>Q):01_ F2=0;

" pour que ces o' éléments forment une multiplicité M,, il faut et il suffit que I'on
ait aussi dZ = o, puisque dX = dY = o, c’est-d-dire que Z puisse s’exprimer uni-
quement au moyen de x, y, z, p, ¢. S'il en est ainsi, le syStéme proposé peut s’écrire
sous la forme équivalente

L=®(x,y,z,p, Q> W(x,y,2,p,q; P,Q)=0o,

et il est évident qu’en remlpla(;ant dans la seconde équation P et Q par leurs expres-
sions déduites de la premiére

W W W D P JPY SUP SEY:
—_— — - —_— —
P=pt Pyt eyttt

on obtient une équation aux dérivées partielles du second ordre pour déterminer z,
les variables indépendantes étant x, y. G’est une des résolvantes du systéme.
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- Si les équations proposées peuvent se mettre sous la forme

L=1%>®(x,y,2,p,9), z=W¥(x,y,%4,P,Q),

_ Iélimination de z conduira de méme i une éjuation aux dérivées partielles du
second ordre pour déterminer Z. On obtient ainsi directement les deux résolvantes
du systéme, qui se correspondent bien par une transformation B,.

[20] Nous allons appliquer la théorie a quelques exemples.

Exemple 1. — L’équation du second ordre
E)  s=[flx,y,2,p,9

peut étre considérée comme une résolvante du systéme S

o, =dz — pdx — gqdy=o, w,=dp — udx — fdy =o. '

Pour trouver la seconde résolvante E, du systéme, cherchons d’abord les deux
familles d’éléments singuliers. On a

o', =fdydz + (dg — fdx)3y — dy3q,
oo B[ e Pl

'f dy8q — dx3u, (mod w,, w,).

’

Les deux équations ', = o0, o', = o peuvent se réduire & une seule de deux
facons :
1° En supposant ', = o, ce qui donne le premier systéme d’éléments singuliers

dy—o, dq = fdx, dz = pdx, dp = udx,

correspondant a la résolvante E ;
-2° 8i o', n’est pas identiquement nul, quels que soient 3x, 3y, 3g, les deux équa-
tions o', = o0, o', = o ne peuvent se réduire i une seule que si I'on a dx = o,

o

et o, — -—-m devra étre identiquement nul, ce qui donne les équations différen-

tielles du second systéme d’ élements smguhers

. dx=o0, dz=gqdy, dp=/fdy, du:[—i%-{-" bf ]d

Fac. des Sc., t. X.
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La seconde équation singuliére du systéme S est

b o o N
o=, — o =dp— dz-—( —-—p—> (f ¢ )dy__o_,

qu’il faudra réduire & une forme canonique pour en déduire la seconde résolvante E_;

Si par exemple f ne contient pas ¢, on a immédiatement «, sous la forme cano-
nique

v, =dp —udx — fdy=o.
Le probléme de Biicklund défini par les formules
X=uw, Y=y, Z=p, Q=/(x,y,2,p), P=u

conduit bien & I'équation E, pour déterminer z en fonction des variables indépen-
" dantes x et y. Si fcontient z, on tire aussi de ces équations *

r=X, y=Y, z=9(X,Y,Z,Q), q=1UU, p=~14
et le systdme S peut aussi s’écrire

dZ—PdX——QdY:o,

b*’ tax 4 ‘? Y + (PdX+QdY)+ Q P (SdX + TdY) = ZdX + UdY

et la seconde résolvante E, s’obtient en égalant les coefficients de dX dans les deux
membres

équation de la forme

S=AX,Y,Z,QP +B(X,Y,Z,Q).
Exemple II. — Si la fonction f est linéaire en p, ¢q, z;
f=—a®,)p—0b(x,y)9—c(=,y)z,
E, est identique & I'équation de Laplace

s+ap+bq+cz£o,

et 'équation w, = o devient

w,=dp + bdz — (u + bp)dx + (ap + cz)dy = o.
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On la met facilement sous une forme canonique

b db
d(p+bz)—[z—b7——ap—cz]dy—|:z % +bp + u]dac_o.

11 suit de 13 que ’équation linéaire donnée provient du probléme de Bicklund
définie par les relations

b

X=u, Y=y, Z=p+ bz, Q:i——ap——cz;
ay

. . NI
d’ott 'on tire inversement, si k = o + ab — c¢ n’est pas nul,

,__Q+adl _ 5 bQ+az)
=T PELe—g—

L’élimination de Z condﬁit bien & I'équation s + ap + bg 4+ ¢z = o, tandis que
Iélimination de z conduit & I'une des transformées de Laplace.

Les généralisations de la transformation de Laplace, dues & Imschenetsky, Gomes
Teixeira, J. Clairin, s’obtiennent aisément de la méme facon.

Exemple 11I. — L’équation d'Imschenetsky
(E,) - s=A@,y,2,p)9+B®,y,2,p)
peut é&tre considérée comme une résolvante du systéme de Pfaff

o, = dz — pdx — qdy = o,
w, = dp — udx — (Aq + B)dy = o.

On a dans ce cas f = Aq + B, et I'équation v, = o est
w,= o, — Aw,=dp — Adz — (u — Ap)dx — Bdy =o.

Pour avoir la seconde résolvante du systéme S, il faut d’abord ramener cette
équation A une forme canonique. Soit ¢(x, y, z, p) une intégrale de 'équation

et u la valeur de
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’r " 7 .
L’équation w, peut s’écrire

d
wdp + —%dz—y.(u—Ap)doc— wBdy =o,

2

ou

o o
dp — [D_:} + w(u— Ap):| dx — [% + p.B] dy=o,

et l'on obtient un probléme de Bicklund qui conduit au systéme de Pfaff S en
posant d

X=xw. Y=y, Z=cqw(x.y,2,p), Q:i—;——&- uB

L’élimination de Z conduit bien & I'équation d’Imschenetsky, tandis que 1’élimi-
nation de z conduit en général & une autre équation du second ordre, qui est la
seconde résolvante de S. Supposons en effet que les deux derniéres équations du
systéme précédent puissent étre résolues par rapport & z et & p

e=4(2,7,2,Q), p=y,y.2,0Q);

en éliminant z on est conduit & I'équation

qui est de méme forme que la premiére
S=M(z,y,Z2,QP + N(x,y,Z,Q),

sauf la permutation des dérivées du premier ordre.

Dans le cas particulier oli 'on ne peut résoudre le systéme écrit plus haut par
rapport & z et & p, la fonction Z satisfait & une équation aux dérivées partielles du
premier ordre, et par suite 'équation E, admet une intégrale intermédiaire dépen-
dant d’une fonction arbitraire.

Exemple IV. — L'équation de M. Gomes Teixeira -
(E) : S:A(xry’zrp)q+B(w:yrz’P’r)
est une résolvante pour le systéme de Pfaff

w,=dz — pdx —qdy = o,
/' o,=dp — udx — (Aq + B)dy =o,
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r étant remplacée par u dans B(x, vy, z, p, r). L’équation
o,=w, — Ao, =dp — Adz — (u — Ap)dx — Bdy =o

est encore une équation singuliére pour le systéme S. En effet, la variable ¢ ne
figurant pas dans cette équation, les variables caractéristiques ne dépendent que
de x, vy, z, p, u, et par suite les éléments caractéristiques annulent bien o, et w,.
Pour obtenir la seconde résolvante du systéme S, il suffira donc de ramener I'équa-

- tion o, = o & une forme canonique. Soit, comme-tout & I'heure, ¢ (x, y, z, p) une
intégrale de I'équation
A % + % =o,
op oz
et p. la valeur de )
dg 1 o
w o A2

L’équation », = o peut encore s’écrire, dn multipliant tous les termes par .,
d [aqﬁr (u A)]dx [a"°+ B |dy=o
¢ N T P dy s y =0.

La seconde équation singuliére du systéme S est donc ramenée & une forme
canonique, et I'on en déduira la seconde résolvante du systéme par un calcul d’éli-
mination. On peut former directement cette équation en observant que le systéme S
correspond au probléme de Bicklund défini par les relations ' '

\

Yo )
X=z, Y=y, Z=q(x,y,2,p) P::\%%—p(u-——Ap), QZ;—;P,--’:— B,

ou figure le paramétre u. L'élimination de Z conduit bien a I'équation E,. Nous
savons a priori que Z satisfait aussi en général & une équation du second ordre.
Pour V'obtenir, il suffit de résoudre les trois derniéres relations

-~/

¢
X

a,
Z=9, P=—14puu—Ap), Q:%HLB

o/

par rapport a z, p, u; soient
! Z:“P(‘T)yrz; P?Q)!
p=y,y,Z; P,Q)

les expressions ainsi obtenues. La fonction Z satisfait & I’équation du second ordre -

TR A TR 2T . A
S aZP+bPR+SGS_/"
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qui est linéaire en R et S. Si on ne pouvait résoudre les équations de la transfor-
mation de Bicklund par rapport i z, p, u, on verrait, comme dans I'exemple pré-
cédent, que I'équation E, admet une intégrale intermédiaire dépendant d’une fonc-
lion arbitraire, et Z serait une intégrale d’'une équation aux dérivées partielles du
premier ordre.

I3

Exemple V. — Prenons encore 1'équation de Clairin

E) - ‘ s=A@,y,z,p, g+ Blx,y,2z,p,r),

ou r figure dans A et B. Cette équation est unc résolvante du systéme de Pfaff

o, = dz — pdx — qdy.: o,
( 0,=dp— udx—(Aq + B)dy = o,

ou r est remplacé par u dans A et B. Pour la méme raison que plus haut, I'équa-
tion
©, =0, — Au:\’ =dp — Adz — (u— Ap)dx — Bdy=o0

est la seconde équation singuliére du systéme S, et il suffira de ramener cette équa-
tion 4 une forme canonique pour avoir la seconde résdlvante.

En appliquant la méthode générale a cette équation, on retrouve les résultats
obtenus directement par J. Clairin.

[24] L”intégration d’un systéme de Pfaff de deux équations A six variables
peut, dans certains cas, se ramener d'une autre facon a I'intégration d’'une équation
aux dérivées partielles du second ordre. Etant donné le systéme S de deux équa-
tions w, =0, w, =0, soit Q, = ro, + pw, = o une équation non singuliére de ce
systéme; elle est nécessairement de classe cing. Supposons qu’on I'ait ramenée &
une forme canonique o

Q,=dz — pdx — qdy —o;

la seconde équation du systéme contient nécessairement la différentielle du de la
derniére variable u, puisque par hypothése Q, = o n’est pas une équation singu-
litre du systéme. On peut donc supposer que ce systdme S est de la forme

Q, =dz — pdx — qdy =o,

8
(49) Q, =du— Xdx — Ydy — Pdp — Qdg =o, ‘

X, Y, P, Q étant des fonctions de «, y, z, p, ¢, u. Soit M, une multiplicité intégrale:
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A deux dimensions de ce systéme, telle qu’il existe une seule relation entre x, y, z;
si Ton prend x et y pour variables indépendantes, cette multiplicité M, est donc
représentée par un systéme de quatre équations

~

o
, 2 d
(49) z=f(x,Y), p:%, q=3—f, u=gy(x,y)-

Remplagons, dans ), = o, dp et dq par rdx + sdy, sdx + ldy respectivement,
r, s, t étant les dérivées secondes de f(x, y); nous voyons que la fonction u = ¢(x, y)
doit étre une intégrale de I'équation aux différentielles totales

(50) C du=(X + Pr+ Qs)dx + (Y + Ps + Qu)dy.

En développant la condition d’intégrabilité, on obtient la relation

2 a2 2
L P+Q _Q Q:l(rlmsﬂ)

Y w p d

u
I~ dP Y P Y
e~y ‘W‘P-au]’
CX : X dQ
. —_ Q— ———NX t
®n +._Dq T du dx A du
X PN dQ R ) oY dP _ P
sl P‘a;*"w“au—aq—(?'a;—zﬁ—%u]‘
' dX X dY Y '
R e N
ou .
d 2 d .
o wtElt Ty Tt

En général, l’équation (51) contient I'inconnue u; en tirant u de cette relation,
et en écrivant que u est une intégrale de I’équation (50), on obtient deux équations
renfermant x, y, z, et les dérivées partielles de z jusqu’au troisiéme ordre. La fonc-
tion f(a,y) doit étre une intégrale de ce systéme de deux équations simultanées
du-troisiéme ordre; ce systéme n’est pas quelconque, puisque nous savons a priori
qu’il admet une infinité d’intégrales. '

. Gest 14 le cas général ol les fonctions X, Y, P, Q ne satisfont & aucune condition
particuliére. Mais il peut arriver que les rapports des coefficients de r, s, ¢, rt — s
et du terme indépendant de r, s, ¢ ne contiennent pas la variable u. Dans ce cas,
nous voyons que la condition (51) est une équation de Monge-Ampére E', é laquelle
-doit satisfaire la fonction f(x, y). A toute intégrale de E’ correspondent une infinité
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de fonctions u = ¢(x, y), dépendant d’une constante arbitraire, que I'on obtiendra
par lintégration de I'équation complétement intégrable (50), et par suite une infi-
nité d’intégrales 4 deux dimensions du. systéme de Pfaff (48). Nous dirons que
I'équation de Monge-Ampére E' est une résolvante de seconde espéce du systéme de
Pfaff. Les équations E, et E, déja définies sont les résolvantes de premiére espéce.

Ainsi qu'on I'a déjd remarqué (n° 40), le systéme (48) est toujours de sixiéme
classe; par conséquent, un systéme de Pfaff de classe inférieure & six ne peut admet-
tre de résolvante de seconde espéce.

Tout systéme de Pfaff provenant d’un probléme de Biicklund est mis immédia-
tement sous la forme (48). La condition d’intégrabilité (51) (*) a été mise sous une
forme élégante par M. Darboux lorsque le probléme de Biicklund est défini par les
relations (38).

[22] Soit S un systéme de Pfaff de sixiéme classe admettant une résolvante de
premiére espéce E, et une résolvante de seconde espéce E'. Ce systéme peut d'une’
part étre ramené A la forme

S édz——pdao——qdy:o,
' Xdx + Ydy + Pdp + Qdg=o,

\

v

X, Y, P, Q étant des fonctions de , y, z, p, ¢, u, et d’autre part & la forme

g dz' — p'dx' — q'dy’ = o,
) du' —X'dx' — Y'dy' — P'dp' — Q'dg' =o,
X', Y, P', Q' étant des fonctions de ', y', 2, p', ¢', @, telles que la condition d'inté-
grabilité de
dul — (XI + Plrr + ler)dxl J‘_ (YI + P!sl + Qltl)dyl

ne renferme pas u'; cette condition d’intégrabilité est précisément une résolvante de
seconde espéce E'. Soit E, la résolvante de premicre espéce obtenue en éliminant u
entre les deux équations

X+ Pr+Qs=o, Y+ Ps+ Ql=o;

A toute intégrale de E, correspond une multiplicité intégrale & deux dimensions du
systéme de Pfaff et par suite une intégrale de E'. Au contraire, & une intégrale de E'
correspondent oo intégrales du systéme de Pfaff, et par suite o' intégrales de E,,

() Legons sur la Géomélrie, tome 111, p. 43g.
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dépendant d’une constante arbitraire. A toule intégrale de E, correspond par consé-
quent une intégrale et une seule de E', tandis qu’a une intégrale de E' correspondent
oo intégrales de E,, dépendant d’'une constante arbitraire.

Il est facile de voir comment sont liés les éléments correspondants des deux
intégrales. Par hypothése, on passe des équations de S, aux équations de S' par un
changement de variables ‘

(52) w':./;(J?,y,Z,[),(],ll), y’:f_»()7 B ([’:,/(), lL':j:;,
d’ou 'on tire inversement
(G2)  m=q, @y, W), y=9.0.), . g=g.(.), u=gy,.

En éliminant u entre les cing premiéres relations (52), ou «’ entre les cing pre-
mieres relations (52), on obtient un systéme de quatre équations distinctes entre
les éléments correspondants (x, y, z, p, q), (', ¥, 2', p', ¢') des intégrales de E, et
de E'

(53) Fiw,y,z,p,q: 'y, 2, p',¢) =0 (i=1,2,3,4);

' les formules (52), (52", (53) définissent un méme probléme de Bicklund, condui-
sant aux deux systémes de Pfaff équivalents S, et S'. Nous dirons, avec M. Clairin,
que I'on passe de I'équation E, a I'équation E’, ou inversement, par une transforma-
tion de Bdacklund B,. :

La famille d’éléments singuliers du systéme S, qui correspond A la forme ré-
duite S,, donne une famille de caractéristiques de I'équation E, et aussi de 1'équa-
tion E'. Nous dirons que la transformation B, correspond A cette famille de carac-
téristiques de E'.

Supposons que le systémes S admette deux résolvantes distinctes de seconde
espece, c’est-a-dire qu’on puisse le ramener  la forme

{ dz" —p"dm” . q”dy” =o,

S”
dll” —_— X”dwll —_— Ylldy” — Plldpll —_ Q”dqll,
par un changement de variables qui ne se réduise pas A une transformation de
contact effectuée sur les variables «', y', 2, p', ¢/, combinée avec un changement
du paramétre u'. Si la condition d’intégrabilité de I'équation aux différentielles

totales
du”: (Xll + P{I,JI + Q”S”) dxll + (YII + P”S” + Qﬂrll)dyll

ne renferme pas u’, cette condition d’intégrabilité donne une équation aux dérivées
partielles E" 4 laquelle doit satisfaire la fonction 2" = (", y") pour qu’on puisse
Fac. des Sc., t. X. 17
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en déduire une intégrale & deux dimensions du systéme de Pfaff. C’est encore une
résolvante de seconde espéce de ce systéme. A toute intégrale de E” correspondent
une infinité d’intégrales du systéme S, et par suite une infinité d’intégrales de E',
dépendant d'unc constante arbitraire, et inversement. D’autre part, on voit immé-
diatement que les éléments correspondants de deux intégrales correspondantes de E'
et de E’ vérifient quatre relations distinctes, indépendantes de «' et de u”. Nous
dirons avec Clairin que ces deux équations se déduisent 1'une de l'autre par une
transformation de Béicklund B, .

En résumé, deux résolvantes de premiére espece d'un systéme de deux équalions
de Pfaff & six variables se correspondent par une transformation B,. Une résolvante
de premiére espéce et une résolvante de seconde espéce se correspondent par une
transformation B,. Deux résolvantes de troisiétme espéce se correspondent par une
transformation B, .

[28] Réciproquement, si deux équations aux dérivées partielles du second ordre
se rameénent I'une & autre par une transformation de Backlund de 1'une des trois
espéces, ces deux équations sont des résolvantes, de premiére ou de seconde espéce,
d’un méme systéme de deux équations de Pfaff & six variables indépendantes.

Supposons en effet que les formules (38), ou les formules ¢quivalentes (39),
fassent correspondre les intégrales de deux équations aux dérivées partielles du
second ordre, I'une e définissant z comme fonction des variables indépendantes x
et y, lautre E définissant Z comme fonction des variables X et’Y. Les éléments
correspondants de deux intégrales correspondantes z = f(x, y), Z = F(X, Y) de ces
deux équations ¢ et E doivent vérifier les quatre relations (38). La recherche des
fonctions f(x,y) est équivalente (n° 47) & la recherche des intégrales & deux dimen-
sions d’un systéme de Pfaff S .

: = pde +qdy,  dZ=PdX + QdY,

X,.Y, Z, P, Q étant exprimées au moyen de x, y, z, p, ¢, et d'un paraméti‘e auxi-
liaire u. Si la seconde relation ne contient pas du, la fonction f(x, y) est une inté-
grale d’'une équation résolvante de premiére espéce du systeme de Pfaff S. Si la
seconde équation contient du, il faudra que I'élimination de u conduise & une seule
équation aux dérivées partielles du second ordre pour.déterminer z = f(x, y), et
cette équation sera précisément une résolvante de seconde espéce du systéme S.

De méme si la fonction Z = F(X, Y) est déterminée par une seule équation du
second ordre, ‘cette équation est une résolvante de premiére ou de seconde espéce
d’un systéme de Pfaff équivalent au systéme S.

Comme un systéme de deux équations de Pfaff & six variables admet en général
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deux résolvantes distinctes de premiére espéce, on est conduit aux propositions
suivantes : »

«) Si une équation de Monge-Ampére E' peul étre déduite d'une équation K, par-une
transformation B,, faisant correspondre & une intégrale de E, une intégrale et une
seule de E', cette équation E' peut en général se déduire d'une autre équation E,, dis-
tincte de E,, par une aulre transformation de Bdicklund B, faisant correspondre d
une intégrale de E, une intégrale et une seule de E'. ‘

8) St deux e’quatiohs de Monge-Ampére E', E', peuvenl se déduire U'une de’l'autre
par une transformation B,, cette transformation B, peut en général s oblenir, de deux
Sfacons différentes, par une combinaison de deux transformations B, .

La démonstration est immédiate. Si le systéme de Pfaff, dont E' et E” sont deux
résolvantes de seconde espéce, admet deux résolvantes distinctes de premicre espéce,
la transformation B, peut évidemment étre obtenue en effectuant les deux transfor-
mations B, et B', par lesquelles on passe de E' & E,, puis de E, a E’, ou les deux
transformations de méme nature qui conduisent de E' & E, et de E, & E". '

Les cas ot ces propositions sont en défaut se présentent d’eux-mémes. Il en est
ainsi si le systéme de Pfaff n’admet qu’une résolvante de premiére espéce, ce qui
arrive lorsque les deux familles de caractéristiques de cette équation sont confon- .
dues, ou lorsque cette équation admet une intégrale intermédiaire dépendant d'une
fonction arbitraire. La seconde proposition est aussi en défaut, lorsque le syst(‘:nie
de Pfaff n’admet pas de résolvante de premiére espéce. On a vu (n° 42) que ce syé—
téme, et par suite les équations E', E', sont alors intégrables explicitement.

Remarquons qu’une équation de Monge-Ampére peut étre une résolvante de
seconde.espéce pour des systémes de Pfaff essentiellement distincts (voir n° 29).

La correspondance entre les caractéristiques de deux équations du second ordre
qui se déduisent I'une de l'autre par une transformation de Bécklund a été étudiée
en détail par J. Clairin dans sa Thése. On retrouverait aisément ses résultats au
moyen des considérations précédentes, en les rattachant aux propriétés des deux
familles d’éléments singuliers d’'un systéfne de deux équations de Pfaff a six varia-
bles.

[24] Beprenons‘par exemple le systéme de Pfaff de la page 113 (n° 18)
E dz=pdx + qdy, dZ=/{sin(Z —z)— pldx + [sin(Z + 2) + q]dy

on trouve facilement les deux équations singuliéres de ce systéme, car il est équiva-
lent au systéme

‘ dz,=sin z,dx + [sin z, + 2q]dy,
dz, = [sin z, — 2p]dx 4 sin z,dy,
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oulonapost Z4z=z, Z—z=z,, et il est évident qud les éléments caractéris-
tiques de chacune de ces équations annulent les deux équations, car les éléments
caractéristiques de la premiére par exemple sont données par les relations

dr=o, dy=o, dz, =o, dz,=o, dq=o.

Pour avoir les deux résolvauntes de premiére espéce, il suffit de remarquer que
Pon est encore .conduit au systeme de Pfaff qui précéde, ou & un systéme équiva-
lent, en se proposant d’intégrer les deux équations simultanées du premier ordre,
de la forme considérée au n° 19,

(54) -—=sinz,, * —sinz,.

et I'élimination de z, & I'équation

1
E o'z, . ( 2z, )
D ~—=sinz, \/1— Sl
* dxdy ¢ dy

On a ainsi les deux résolvantes de premiére espéce du systéme de Pfafl' S, et les
intégrales se correspondent une & une par les formules (54).

On est conduit & une résolvante de seconde espéce, en écrivant que I'équation
dZ = [sin (Z — z) — p)}dx + [sin(Z 4 z) + q]dy

est complétement intégrable; Z ne figure pas dans la condition d’intégrabilité, qui
donne I'équation en g
d'z sin 2z
E —_—
() Wy 2

Le systéme S peut aussi s’écrire

dZ. = Pdx + Qdy,

dz = [sin (Z — z) — P]dx + [Q —sin (Z + 2)]dy,
et la condition d’intégrabilité de la seconde équation donne une nouvelle résolvante
de seconde espéce, '

YZ  sinaZ
drdy a

(E")

qui ne différe de E' que par le changement de z en Z.
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oy . .z
D’une intégrale z, de E, on déduit une intégrale z, — arc sin — de E,, ct par
1 1 2 am t

suite une intégrale de chacune des équations E' et E’,

.9z, Lz,
Z, + arc sin — zZ,—arcsin —
‘ dx
Z— —— 7 =
2 2

On passe de E’4 E" par une transformation B,, et par suite de toute intégrale de F'
on peut déduire, par l'intégration .d’une équation aux différentielles totales, une
infinité d’intégrales de la méme équation dépendant d’une constante arbitraire.

Cette proposition, comme il est bien connu, a de nombreuses appllcatlons dans
I'étude des surfaces & courbure constante. .

Remarque. — L’équation E, admet pour intégrales singuliéres toutes les inté-
’ . . 2zZN -, L . ..
grales de 1'équation du premier ordre 3, ) = 1 & ces intégrales singuli¢res ne
&

correspond aucune intégrale de E,, ni par suite de E' et de E".

[25] Parmi les problémes qui s’offrent naturellement dans cette théorie, nous
allons d’abord examiner le suivant :

Etant donné un systéme S de-deux équations de Pfaff & six variables, admet il
des résolvantes de seconde espéce? ;

Pour qu’il en soit ainsi, il faut et il suffit qu’on puisse, par un choix convenable
des variables x, y, z, p, g, u, mettre le systéme sous une forme (48) telle que les
rapports des coefficients de rt — s*, r, s, ¢, et du terme indépendant de r, s, ¢ dans
I'équation (51) soient indépendants de la variable u. On est conduit aux mémes
conditions dans 1’étude d’une autre question. Le systéme S étant mis sous la
forme (48), cherchons & déterminer les éléments singuliers. On a

Q', = 3pdx — dpdx + 3qdy — dq3dy,

- dx X dY Y ] 5

=T+t Y| @y —drio)
dpP P 7] o

v " dw X | @t —dpiw)

X - X dQ Q7 ., .
+[*—37+Q3{;———X— (dxoq—dq&r)

dx u _| dQ“Q
p [ p2L 4P P sp — dps ot S 8
| W dy gu—J(yp—py)
Y Y  dQ QT .
+ TQ-a-u——*d?—‘YE— (dydq — dqz3y)
P P Q
+ aq+QT_$_ —] (dpdq — dqdp).
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Le systéme des deux équations Q', = o, Q', = o est équivalent au systéme
obtenu en remplagant, dans Q',, dy3q — dq3y par dp3x — 3pdax (en tenant compte-
de Q', = o), de sorte que dans la nouvelle équation obtenue les coefficients de

dxdy —dysxz, dxdp—dpdx, drdq—dg3x, dydp—dpdy, dpiq— dgdp
sont identiques aux coefficients de I'équation (51). Les deux‘équations Q' = o,
', = o peuvent donc &tre remplacées par deux équations équivalentes dont les
coefficients ne dépendent que de «, y, z, p, ¢, et ot ne Jigurent ni u ni du, sile sys-
téme S admet une résolvante de seconde espéce. Les racines de 'équation en ), n
(n° 3) qui déterminent les éléments singuliers du systéme de Pfaff S ne dépendent
donc que de x, y, z, p, ¢, et par conséquent les équations qu’il faut ajouter a
Q, = o0, Q, = o pour avoir les équations différentielles d’une famille d’éléments
singuliers ne renferment que les variables x, y, z, p, ¢ et leurs différentielles
dx, dy, dz, dp, dg. Comme il en est de méme de I'équation Q, = 6, on est conduit
a la conclusion suivante :

Pour qu'un systéme S de deux équations de Pfaff & six variables admelte une
résolvante de seconde espéce, il faut que du systéme de quatre équations différentielles
qui définissent une famille d'éléments singuliers de S on puisse déduire un systéme
de trois équations de la cinquiéme classe. ‘

Cette condition sera d’ailleurs vérifiée pour les deux familles d’éléments singu-
liers, si elle ’est pour l'une d’elles.

Réciproquement, supposons que, parmi les quatre équations différentielles qui
définissent I'une des familles d’éléments singuliers du systéme de Pfaff S, on puisse

en trouver trois de distinctes v, = 0, », = 0, v, = 0, ou ne figurent que cinq varia-
bles indépendantes et leurs différentielles. Deux de ces équations o, = o, v, = o,
par exemple, forment avec , = o, Q, = o un systéme de quatre équations dis-

tinctes, et w, = o est une combinaison de celles-1a
o, = )‘1Q4 +2,Q, 4+ o, + W0,
A, et ), n’étant pas nuls i la fois. Réciproquement, on a
Q,=23Q, +31Q, =0, —po, —uo,.

Supposons de plus que, dans I'équation Q, = o réduite & sa forme canonique
ne figurent que les variables caractéristiques du systéme w, =0, v, = 0, 0, =o-
et leurs différentielles, ce qui aura lieu si les multiplicateurs p., et p., ne dépendent
eux-mémes que de ces variables. L’équation Q, = o étant supposée mise sous forme-
canonique

Q,=dz—pdx —qdy = o,
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par hypothése les deux équations v, = o, v, = o ne renferment que x, y, z, p, q et
leurs différentielles '

©, = Xid:l} + Yldy -+ Z‘dZ + P’dp + Q’dq =o,

w, = X,dx + Y,dy + Z,dz + P,dp + Q,dqg = o,

X,,
du systéme S, elle contient la sixiéme variable u et sa différentielle du, puisque le

..., Q, ne dépendant que des variables x, y, z, p, g. Quant 4 la seconde équation

systéme S doit étre de sixiéme classe.
Toute intégrale & deux dimensions b, du systéme S est donc représentée par des
formules telles que

z=fx,y), p.:;i, q_—_if—, u=19(x, y),

o dy

a et y étant prises pour variables indépendantes. Cette intégrale contient une mul-
tipficité M, d’éléments unis, qui est représentée par les trois premiéres formules
précédentes. Mais la multiplicité (b, est un lieu de multiplicités  une dimension [b,,
.dont tous les éléments linéaires sont des éléments singuliers (n° 1); chacune de
ces multiplicités lb, contient une multiplicit¢ M, & une dimension d’éléments de
contact (x, vy, z, p, q) satisfaisant aux deux relations », = 0, », = o. La multipli-
cité M, est donc un lieu de multiplicités & une dimension M,, satisfaisant aux trois
relations
Q:KIO, w, =0, w,=0;

il en résulte que la fonction f(x,y) est une intégrale d’'une équation de Monge-
Ampére (*), dont les caractéristiques sont définies par les trois relations précédentes.
Cette équation de Monge-Ampere est évidemment une résolvante pour le systéme
de Pfaff, de seconde espéce si la seconde équation du systéme contient du, de pre-
miére espéce dans le cas particulier ot cette équation ne contiendrait pas du.

Exemple. — Les équations différentielles
(o) dy—=—o, dz=pdx, dq:sinz\/l——p”"dx, dp = udzx,

définissent une famille d’éléments singuliers du systéme 'S considéré plus haut
(n° 24)

) dz — pdx — qdy =o, dp — udx — sin z\/1 — p*dy =o,

(') Voir, par exemple, mes Lecons sur Uinlégralion des équalions aux dérivées partielles
du second ordre, tome 1, pa\ge 9.
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qui admet la résolvante de premiére espéce

E s=sinz\/1 —p’.

1

Des quatre équations («), on peut déduire un systéme de trois équations et de
cinquiéme classe,

dy=o, d(q + sinz):[siHZ\/l —p* + pcosz]de=sin(z + ¢)dx,

22
d(z + <.°)=[p + ‘_2_|dac,
__.p_

Vi

ou ne figurent que les cinq variables
.
i’
Vi—p

en posant o = arc sin p. Une combinaison des deux équations du systéme S ne
renferme que ces cinq variables

x, Y, q+sinz, z+9, p+

T

d(z + ?):<p+ _L)dawr(q + sinz)dy.

Vi—p

Si donc on pose

Z —
7= +U, P:p-{——u— Q=g +sinz £-U

= ’ U= 1
2 \/I—p' 2

le systéme S peut s’écrire sous la forme équivalente

dZ=PdX + Qdy,

dU:[zsinZ_U—- P:ldac+ [Q—zsinZ+U:ldy,

2 2

qui ne différe que par un changement de notations du systéme considéré plus haut
(n° 24) et conduit A la résolvante de seconde espéce

PZ

=sin Z.
Y

%

Les trois équations dy = o, dz = pdx, dp = udx forment de méme un systéme
de trois équations a cing variables x, y, 2, p, u, et la derniére équation du systéme S
ne renferme que ces cing variables. On retrouve ainsi la seconde résolvante de pre-
miére espéce du systéme.
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On obtient encore une résolvante de seconde espéce en observant que y ne figure
pas dans les trois derniéres équations («), ni dans I'équation

dz:'<p_ —_@_—_> de + ——L— ap
sin z\/1 — p* sin zy/1 — p*

qui est une combinaison des deux équations de S. En posant

X=x, Y=p, Z=¢z, P:p———;ﬂ___, Q:—.q_-_.’
: sin z\/1 — p* sin z\/1 — p*
le systéme S devient
dZ="PdX + QdY, ,
) P—Y ’
dy TPy PXEQN_p X dy
q q q q Q.sin Z\/1 — Y* sinZy/1—Y*

et il est clair que la condition d'intégrabilité de la derniére équation condmra a une
equatlon de Monge- Ampere pour la fonction Z de X et de Y.

[26] Nous sommes ainsi conduits & rechercher les conditions nécessaires et
suffisantes pour qu’un systéme de trois équations & six variables soit de cinquiéme
classe. Ces conditions sont faciles & obtenir. Soit en effet

w, =0, w,=—=0, W, =0

un systéme de trois équations de Pfaff & six variables x,, x,, ..., z,, que neus pou-
vons supposer résolues par rapport i trois des différentielles, dx,, dx, dx, par exem-
ple. On a alors

o', _A(dex — dx,3x,) + B;(dx,3x, —dxaoc)—}—C(dwoa; — dx, 3x,)

1_123

et la relation o, — o exprime que les trois points de coordonnées homogénes
(A;» B;,
éléments caractéristiques, il faut évidlemment que les trois points (A;, B;, C,) coin-

G), (dx,, dx,, dx ), (3x,, 3x,, 8x,) sont en ligne droite. Pour qu’il y ait des

cident, ce qui conduit & un systéme de quatre conditions auxquelles doivent satis-
faire les coefficients du systéme proposé.
Cela étant, soient

un systéme X de quatre équations de Pfaff A six variables, et T, un systéme de trois
Fac. des Sc., t. X. ' a8 :
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combinaisons distinctes de ces quatre équations qui soit-de cinquiéme classe. Sup-

posons par exemple que ce systéme X, ne renferme aucune relation indépendante
de o,; on peut alors le mettre sous la forme

o, +)\‘U)*:o, m‘:—}—)\.__m,l = o, o, +_‘Az=u)“:o,

et les trois coefficients indéterminés %, %,, ), doivent satisfaire & un systéme de
quatre équations. Le probléme n’admet donc pas en général de solution.

Remarque I. — Si le systéme X renferme un systéme 2, de trois équations et de
cinquid¢me classe, le systéme dérivé X', de X, est formé de deux équations qui font
évidemment partie du systéme dérivé £’ de £. On pourra donc chercher d’abord
dans X' un systéme de deux équations de cinquiéme classe.

Remarque II. — Dans le cas particulier ou le systéme de Pfaff S admet une
transformation infinitésimale, ce syst®éme admet toujours une résolvante de seconde
espéce (*). En effet, on peut toujours choisir les six variables x, de fagon que le sys-
téme admette le groupe de transformations 4 un paramétre

U !

—_— . 7 4 /)
x, =x, RN €T, =x,, xr,=x +a,

de sorte que la variable x, ne figurera dans les équations de ce systéme que par sa
différentielle. On peut donc toujours supposer ce systéme mis sous la forme

Q, =o, de,+ Q,=o,
Q, et Q, étant des expressions de Pfaff a cinq variables. La premiére équation étant

ramenée a une forme canonique, on peut encore écrire les équations du systéme

dz — pdxr — qdy=o,
du — Xdx — Ydy — Pdp — Qdg —=o,

X, Y, P, Q étant des fonctions de x, y, z, p, ¢. La condition d’intégrabilité de la der-
niére équation ne renferme pas u, et conduit par conséquent en général i une équa-
tion de Monge-Ampére.

[27] Nous avons supposé, dans les paragraphes précédents, que la condition
d’intégrabilité (51) n’était pas vérifiée identiquement. Ce cas peut effectivement se
présenter pour certains systémes de Pfaff, que nous allons déterminer. '

(*) Cest le cas que javais étudié dans mon Mémoire Sur quelques transformations des
équations aux dérivées partielles du second ordre. (Annales de la Faculté des Sciences de Tou-
louse, 2° série, t. 1V, pp. 299-340.)
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Pour qu’il n’y ait pas de terme en r{— s* dans la condition (51), il faut et il suﬁit
que les fonctions P et Q vérifient la relation

aP QL WQ
(85) 4 QTE_D_,T—I —

Cette'relation exprime que 1’équation aux différentielles totales
du="Pdp + Qdq,

ou l'on regarde x,’y, z comme des. parametres, est complétement intégrable; Si
U(x, y, 2, p, q; u) = G représente I'intégrale générale, on a '

U
_ > o %
(56) P=——5> Q=— g
u u

remarquons que la fonction U(x, y, z, p, ¢, u) n’est pas unique, mais peut étre
remplacée par une fonction arbitraire de x, y, z, U.
L’équation (48) qui donne du s’écrit alors
U U U

U
™ du + — » —dp + % q % (Xdx + Ydy),

_ou

(..U U YU U U dU
U= Xa—u+$+$1’§dx+3‘fm+sy+$q dy;

si l'on prend U pour variable a la place de u, on a une équation de la forme
®7 du=f(x,y,2,p,q,0)dx + ¢(®,y,2,p,q,u)dy.

Inversement, la condition d’intégrabilité de cette équation ne contient pas de
terme en rt—s®, quelles que soient les fonctions f et ¢. Pour que la dérivée seconde s
figure seule dans cette condition, il est clair que f ne doit pas dépendre de g, ni ¢
de p, et le systéme de Pfaff peut étre ramené & la forme

(58) dz = pdx + qdy, du=f(x,y,z,p,w)dx + ¢(x,y,2,q, u)dy.
La condition d’intégrabilité est dans ce cas

5 (Y N\ de  df b/
9 (E_E)s‘%_dy PR
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pour qu’elle se réduise a une identité, il

faut et il suffit que les fonctions f et ¢
vérifient les deux conditions ’ '

(60) ..?f_: o
d}p g’
of f o do o d
6 YooY PR ST & i
(61) 3y+czq u ¢ ba:+bzp+buf
of  do
La valeur commune des dérivées —%, —:—(—I— ne doit dépendre que des variables
[ d

x, v, z, u. On a donc
f:A(-T’y,Z:u)P+B(w’y,2,u),
o=A(x,y,z,u)q +C(x,y, 2,0,

et, en portant ces valeurs de f et de » dans I’équation (61), on obtient les trois rela-
tions

(62)

B

du
A

B
u

dC
Y
dC
iz

A

Y

pLY

u
C
u

A
u

qui expriment que I'équation aux différentielles totales

(63)

est complétement intégrable. Soit

Pintégrale générale de cette équation; on a

A=—

et par suite

f=—

OF
2
0F

u

G

dx

du

B=—

F

dz

)

XF
| —
x
g’

u

du=Bdx + Cdy + Adz

F(x,y,z,u)=0Ct

29

)

’

0F
u

XF
oy

g’

du

0F

w %
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- La secondé des équations (58) est donc

2F " 0F XF
u dx dy

XF
dy + > (pdx 4+ gqdy) = o

et le systéme de Pfaff proposé peut dtre ramené & la forme canonique (V)
(64) dz — pdx — qdy =o, dF —o.

Il est évident, dans ce cas, que 1'on peut choisir arbitrairement la fonction z des
variables x et y, et Uintégrale générale du systdme dépend d’une fonction arbitraire
de deux variables et d'une constante arbitraire. ' )

Supposons qu’ﬁn probléme de Bicklund défini par les relations (38), ou les for-
mules équivalentes (3g), conduise & un-systéme de Pfaff de la forme (64). Il faut et
il suffit pour cela que Ton ait identiquement

(65) dZ — PdX — QdY =1dF + p.(dz — pdx — qdy),

X,Y, Z, P, Q étant remplacées par les fonctions f,, ..., f, des variables x, v, z, p, q, u,
et les coefficients ), p. pouvant étre des fonctions quelconque de ces variables. Si
I'on ajoute aux cinq relations (39) I'équation-F(x, y, 2, p, ¢, u) = C, d’ott I'on peut
tirer u en fonction de x, v, z, p, q et de la constante C, on obtient des formules

(66) =9y 2pq: 0, .., = 9%, 5,2,p,¢; C)

ou les cing fonctions X, Y, Z, P, Q satisfont & la relation
(65" dZ — PdX — QdY = u.(dz — pdx — qdy)..

Les formules (66) définissent donc une transformation de contact, d(pendant‘
d’un paramétre arbitraire C. : )
Inversement, si les formules (66) deﬁmssent une transformatlon de contact,
dépendant d'un paramétre arbitraire C, en remplacant C par une sixiéme variable u,
les fonctions X, Y, Z, P, Q des six variables x, y, z, p, ¢, u vérifient une relation de
la forme : '
dZ — pdX — QdY = u.(dz — pdx — ¢dy) + \du;

le. probléme de Bicklund défini par les formules (66) ou G est remplacé par u,
condult donc & un systéme de Pfaff de la forme canonique (V)

dz——pd:)c——qd&_—_o, du=o.
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Il est évident que 1'on peut choisir arbitrairement la multiplicité m,; & chacuné
d’elles correspondent oo’ multiplicités M, qui se déduisent de m, par une transfor-
mation de contact.

Exemple. — Soit
X=ux + pu, . Y=y + qu, I=u—z, P=—p, Q:——r/:.
on a
dZ —PdX — QdY = du(1 + p* + ¢*) + u(pdp + qdq) — (dz — pdx — qdy)
=Vi+p +q*d(1{\/1 + P+ ') — (dz— pdz — gdy).

Le systéme de Pfaff correspondant est

dz —pde —gdy=o, d(uy/1 +p' + ¢*) =o.

11 est évident, géométriquement, que I'on a ainsi une famille de oo* transforma-
tions de contact, mais ces transformations ne forment pas un groupe.

[28] Pour que les termes qui contiennent r et ¢ disparaissent dans la condition
d’intégrabilité (51), il faut et il suffit, d’aprés le calcul que nous venons de faire,
que le systéme de Pfaff soit de la forme (58)

(58") dz=pdx + qdy, do= f(x,y, z, p, w)dx + 9(x, v, z, ¢, w)dy.

11 s’ensuit que toutes les fois qu’une équation du second ordre

(67) : b - s=Y(x,¥,2,p,9

est une résolvante de seconde espéce pour un systéme de Pfaff, ce systéme peut étre -
ramené o la forme (58) par un choix convenable de la variable u. Mais les fonc-
tions f et ¢ ne doivent pas étre quelconques pour que 1a condition d’intégrabilité
conduise & une résolvante de seconde espéce de la forme (67). Il faut en outre que-
le quotient

do daf  df
W Ty W
g
)

soit indépendant de u.
Par exemple le systéme

dz=pdx + qdy, du=p*dx + 3f(z)dy
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admet la résolvante de seconde espéce
s =f(2).

Il peut aussi arriver que la condition d’intégrabilité (51) ne renferme aucune
“dérivée du second ordre de z, sans se réduire & une identité. D’aprés les calculs du
paragraphe précédent, le systéme de Pfaff peut alors étre ramené a la forme (58);

o

pour que le coefficient de s soit nul aussi. il faut de plus que l'on ait IETE
° d (

c’est-a-dire que f et 9 soient de la forme

S=A(x,y,z,u)p + B, v, 2, u),
o= A(x,y,z,u)qg + C(x,y, z. u).

Le systéme de Pfaff est alors
‘o, =dz — (pdx + qdy)=o0, o,=A(x,y, 2z u)(pdx + qdy) + Bdx + Cdy —du=o

et la condition d’intégrabilité es$ linéaire en p et ¢

A A ¢ G ) | OB B A 0A
= —C — —— - A————
H=p dy du iz du A § 1932 du ox u
B B 2C 2C
dy u A7 u B=o

Dans ce cas particulier, le systéme de Pfaff renferme une équation
o, =du— (Adz + Bdx + Cdy)=o

-ou ne figurent que les quatre variables x, y, z, u; elle est donc de troisiéme classe,
et le systéme peut étre ramené & la forme canonique (IV). On a en effet, comme le
prouve un calcul facile,

o', =dpdx —dx3p + dg3y —dydq, o', =H(dxdy —dydx) (modo,, »,),

et l;équation A\, w) = o du n° 3 se réduit & »' = o. Dans ce cas, les intégralcs
qui satisfont & la condition H — o sont des solulions singuliéres, puisque tous leurs
éléments annulent «',. Ces solutions dépendent d’une seule fonction arbitraire d’une
variable; mais l'intégrale générale du systéme de Pfaff est représentée par quatre
relations dont deux ne renferment que les variables x, vy, z. On satisfait en effet 4 la
premiére relation en posant

c=f@), y=e@), p=f(z)—q'@, -
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« et g étant les deux variables indépendantes, f et 9 deux fonctions arbitraires,
et u est déterminée par I'équation différentielle

du=[A(x, 3, /, u)f'(év)+B(w o, [ u) + C(=, 2, f, w)o' du

[29] La recherche des transformations de Bicklund B, ou B, permettant de passer
d’'une équation donnée E’' de Monge-Ampére & une autre équation du second ordre
peut donc, d’aprés ce qui précéde, se décomposer en deux proBlémes distincts :

1° L’équation E' étant connue, trovver tous les systémes de Pfaff de deux équations
a six variables dont E' est une résolvante de scconde espéce.

2° Trouver toules les résolvantes de seconde espéce d’'un systéme de¢ Pfaff donne S
de deux: équations a six variables.

On a vu plus haut comment le dernier probléme se rattache a une question rela-
tive aux systémes d’équations différentielles qui définissent une famille d’616ments
singuliers (n° 28). Le premier probléme peut lui-méme se rattacher & une question
concernant les éléments singuliers. Supposons, pour fixer les idées, que E' renferme

un terme en rt — s*, et soient

w,=dz —pdx —qdy=o0, o,=dp—adx—bdy=o0, o =dq—adx—fdy=o,

les équations différentielles d’un des systémes de caractéristiques de E', a, b, «, 8
étant des fonctions de x, y, z, p, ¢. Pour que E' soit une résolvante de seconde espéce

du systéme S composé de deux équations

©w,=o0, w,=du — (Xdx + Ydy + Pdp + Qdp)=o,

il suffira que les quatre équations o, = o (i =1, 2, 3, 4) définissent une famille
d’éléments singuliers du systéme de Pfaff S. En développant les calculs, on trouve
bien les conditions obtenues plus haut (n° 21).

On peut aussi ramener au premier probléme la solution de la question suivante :

3 Etant données deux équations aux dérivées partielles du second ordre E, E/,
reconnaitre si on peut passer de Uune & U'autre par une transformation de Bicklund
B,ouB,. '

-

Supposons que l'on sache résoudre le probléme I pour ces deux équations, et

soient ¥, ¥’ les deux ensembles de systémes de Pfaff qui admettent respectivement

E ou E’ pour résolvante de premiére ou de seconde espéce. Il faudra, pour que I'on
puisse passer de E 4 E' par une transformation B, ou B,, que I'on puisse trouver
dans £ un.systéme S équivalent & un systéme §' de X'
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[30] Laissant de cdté ces problémes généraux, je me bornerai & quelques remar-
ques sur les systémes de la forme (58)

(58) w,=dz—pdx—qdy=o0, o,=du—f(x,y,2,p,u)dr—¢(x,y, z,q, u)‘dy;_—o,

A laquelle on peut ramener tout systéme de Pfaff admettant une résolvante de
seconde espéce ou ne figure que la dérivée du second ordre s. Pour avoir les élé-
" ments si(iguliers de ces systdmes, appliquons la méthode générale du n° 3; on a
ici
o', = dpdx — dx3p + dgdy — dysq,
3 mod (o,, »,)
o, = H(dydx — didy) + % (dpdx — ddp) + % (dgsy — dysq) '

en posant
po 4 _dz A

dy dx = u ¥ T

" Pour que 'on ait identiquement X', 4+ o', = 0, quels que soient 3z, 3y, 3p, 3¢,
il faut que ), g, dx, dy, dp, dq vérifient les quatre conditions

y.de-i—()\-}—yub )dp_..o,
—pHda:-}-(?\—l-p.bq)dq—o,
()\-i-y. ‘f) r—=o0,

()\—}-p.a )dy_o

I'équation A(%, ») = o est, dans ce cas,

. ] J
(e (e =

Les deux équations singuliéres du systéme sont donc

L4

3 :
o, =du — fdx — gdy —%(dz—pdx-f gdy)=o,

Yy o , 2
Q,:m,——sgmizdu—fdx-cpdy—%(dz»—pda:—qdy):o,

Fac. des Sec., t. X. . 19
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et les éléments singuliers correspondants sont définis respectivement par les deux
systemes d’équations

Al D
dy =o, dz = pdx, du= fdx, < ° ‘f) dg = Hdx,

q P
dn=o, dz=qdy, du=od % YN gy —Hay.
x=o0, z = qdy, u=ody, 3 )p = Hdy.

Nous laissons de c6té le cas singulier dont il a été question au numéro précé-
dent, ou 'on a

Pour qu’'un syslérhe de Pfaff S de deux équations a six variables puisse étre ramené
a la forme (58), il faul et il suffit que ce systéme posséde deux familles distinctes
d’éléments singuliers, et que les équations différentielles de chacune de ces familles
admeltent une combinaison intégrable.

La condition est évidemment nécessaire. Elle est aussi suffisante. Soient en effet
df,= o, df,= o les combinaisons intégrables relatives aux deux familles d’éléments
singuliers. D’aprés une proposition établie plus haut (n° 46), le systéme des quatre
équations

w, =0, w, =0, df,:o, dj;:o

est complétement.intégrable. Soient dF, = o, dF, = o deux autres combinaisons
intégrables de ce systéme, distinctes de df, = o, df,—=o; le systéme proposé v, =o,
w, = o peut alors étre écrit sous la forme

dF, + Adf, + B,df,=o,
dF, + A,df, + B,df,=o,

d’une infinité de maniéres, car on peut remplacer F, et F, par deux fonctions arbi-
traires de f,, f,, F,, F,, pourvu qu’elles soient distinctes quand on les considére
comme fonctions de F,, F,. Nous pouvons donc supposer qu’aucune des équations
précédentes n’est une équation singulitre pour le systéme S. Cela posé, les cinq
fonctions f,, f,, A,, B,, F, doivent étre indépendantes, car, dans le cag contraire,
la premiére équation serait de classe inférieure & cing et serait par conséquent une
équation singuliére du systéme S. Posons

la premiére équation devient
dz = pdx + qdy.
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La fonction F, doit & son tour étre indépendante de x, y, z, p, ¢, car autrement
Péquation précédente serait une équation singuliére du systéme. On peut donc
poser F, = u, et le systéme de Pfaff prend la forme

w,=dz—pdx —qdy=o, w,=du — fdx — gdy=o.

Il faut en outre (n° 45) que ce systéme se réduise a un systéme de quatriéme
classe, quand on y fait y = C, dy — o, c’est-d-dire que le systéme

dz — pdx=o, du— Jdx=o

soit de quatriéme classe, quand on y regarde y comme un paramétre. Il faut évidem-
ment pour cela que f ne dépende que de x, y, z, p, u et soit indépendant de q.
On verrait de méme que ¢ doit &tre indépendant de p, et le systéme est bien de la
forme (58).

Pour avoir les résolvantes de premiére espéce de ce systéme (58), il suffit de .
ramener les deux équations singuliéres Q, = o0, Q, = 0,4 une forme canonique.
Ce probléme se simplifie, car si I'on fait par exemple y = C, dy = o dans I'équa-’
tion Q, = o, I'équation obtenue :

of
du— fdx — —‘—p—(dz — pdx),

ne renfermant que les quatre variables «, z, p, u et leurs différentielles, est de troi-

siéme classe. Si 'on réduit cette équation & une forme canonique, I'équation Q,
elle-méme sera ramenée 4 une forme canonique

Q,=dZ—PdX —Qdy=o.

Comme dy = o est une combinaison intégrable des équations du systéme cor-
respondant d'éléments singuliers, le systtme de Pfaff peut étre complété par une
équation

dP + udX + Fdy = o,

2
/]

et la résolvante E, ne renferme pas la dérivée du second ordre 3
\
Y

Si f(x, v, 2z, p, u) est une fonction linéaire de p, I’équation

d ———b—f—dz=o
op

obtenue en faisant x = C, y =C', de =dy = o dans Q, = o est de premiére classe,
\



148 _ E. GOURSAT.

car elle ne renferme que u, z, du, dz. Si on la réduit & une forme canonique, I'équa-
tion Q, = o sera elle-méme réduite 4 une forme canonique

(68) : Q,=dZ—Pdx — Qdy=o.

On peut encore compléter le systéme de Pfaff en ajoutant une équation de la
forme

dP + udx 4+ Fdy —o.

-

La fonction F ne doit pas dépendre de u, car le systéme
dZ — Qdy =o, dP 4+ Fdy=o

doit étre de quatriéme classe quand on y regarde x comme un paramétre. La résol-
vante E, est donc de la forme
A/

NN/
(El) b—w——a:—y-{-F(.’E,y,Z, ,—)—0.

Inversement, pour que l'équation Q, = o puisse étre ramenée i une forme

canonique (68), il est nécessaire que cette équation se change en une équation de
d
premiére classe quand on y fait x = C, y = C', dz = dy = o, ce qui exige que (Tp
ne dépende pas de p, c’est-d-dire que f soit une fonction linéaire de p. Si ¢(x,7,z,
¢, u) est aussi une fonction linéaire de ¢, la seconde résolvante de premitre espéce est

aussi de la forme

37 N/ A
: 7, L A,
(E,) dx dy +F, (w, Yl 3 dy ) °

les variables x et y étant les mémes pour les deux équations. '
On a vu plus haut (n° 419) que toute équation de la forme

(69) s=f(x,y,z,p,q)

est, de deux facons différentes, une résolvante de premiére espéce pour un systéme
de Pfaff, dont les deux familles d’éléments singuliers admettent chacune une com-
binaison intégrable, mais ce ne sont pas les syst¢tmes de Pfaff les plus généraux de
cette espeéce. Si l'on prend un de ces systémes, la seconde résolvante de premitre
espéce du systéme ne sera pas en général de la forme (69). '
On démontrera facilement, en se reportant 4 I'expression de la seconde équation
singuliére (n° 49), que f doit étre linéaire par rapport & p ou 4 ¢. Si f est bilinéaire
en p et en ¢, on peut la faire correspondre, de deux facons différentes, par une
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transformation B, 4 deux équations de la méme forme (60), mais qui ne sont plus
en général bilinéaires en p et g. Par exemple, I'équation s = sin z est une résolvante
de premiére espéce pour le systéme de Pfaff '

dz == pdr + qdy, . dp=udx + sin zdy;
1a seconde équation est précisément une équation singuliére, et si 'on pose
i
Z=p, P=u, Q=sinz,
le systéme de Pfaff devient

d
0Z—Pde +Qdy,  —2 — 7dw + qdy,

Vi—Q

et la seconde équation résolvante du systéme est -

J
*Z — 7 1 — _Z> )
QX dy dy

Elle est bien de la forme (60), mais n’est plus bilinéaire par rapport aux dérivées

du premier ordre.

Ainsi qu'on l'a déji remarqué, le systéme (58) ne change pas de forme quand
on remplace z et u par deux fonctions distinctes de x, y, z, u. Siles équations diffé-
rentielles des deux familles d’éléments singuliers n’admettent pas respectivement
d’autres combinaisons intégrables que dx =0, dy = o, on obtient ainsi toutes les
transformations qui ne changent pas la forme du systéme. D'une fagon plus précise,
supposons que le systéme (58) puisse s’écrire d'une autre fagon

dZ = PdX + QdY,

(70) .
{dU = F(X, Y, Z, P, U)dX 4- ®(X, Y, Z, Q, U)dY ;

par hypothése, les équations différentielles des deux familles d’éléments singuliers
n’admettent respectivement que les intégrales premiéres x=0C, y=_C'". Il faudra
donc, pour que les formes (58) et (70) soient équivalentes, que X par exemple soit
une fonction de x seulement, et de méme que Y ne dépendeque de y. On peut donc
supposer X = «x, Y = y. Le systéme complétement intégrable

dr=o0,  dy=o, dz=o, du=—o
devant étre équivalent au systéme
dr—=o, dy=o, dZ =o, dU =o;

il faut nécessairement que Z et U soient des fonctions de «, v, z, u.
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Cette remarque permet de poser d’une facon un peu différente le probleme de la
recherche de certaines résolvantes de seconde espéce d'un systéme de la forme (58),
lorsque les équations différentielles des éléments singuliers n’admettent pas d’autre
combinaison intégrable que dx = o, ou dy = o. Une mtegrale M, du systéme (58)

étant représentée par les formules

_ _ _ % _ %
' Z-k]z(w.y), u="0(x,y), p_bac’ Q—Dy )
les dérivées secondes —— k yu sont données par les relations
b:c\y \:ray
Yu df df o+ of 'z
Wy dy ' YT p Wy
Yu dy \? f do 'z
dxdy T du g 3y’
d’ott l'on tire '
, dp df & 2 b? bf
Yz de . H
dwdy \f qu Y %’
Pp g p g
af dp 9 of
du [/ ¢ ]+fbp . ' dg du —K(z,y, 2 W)
y dof - =B LP W

, op _“b_q-

of
op
résolvante de seconde espéce. Pour que u soit aussi une intégrale d'une résolvante
de seconde espéce, il faut et il suffit que I'on puisse éliminer p, ¢, z entre les trois-

i
Si le quotient H : ( g—;‘;-> est indépendant de u, z est une intégrale d'une

équations
2

u
Wy K(x,v, 2 p, ¢, u),

du du
—_—f(x Ys % Dy u), 'a‘y-: (?(.’L‘,y, 24, ll),

c’est-a-dire que 'on ait

D(f) c?’ K) —_—
(7 D p )

Cela étant, nous pouvons, en posant v = F(x, y, z, u), écrire le systéme de Pfaff”

dz = pdx + qdy,

® ) F F F
dy=—do + —D—y-dy + 55 (pde +qdy) + < (fdo + 9dy);
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.c’est un nouveau systéme de méme forme que le premier ou f et ¢ sont remplacées
respectivement par \

F _QF L OF . QF OF L OF
- 2P dy w1

9.

En écrivant que la condition (71) est vérifiée pour le mouveau systéme, on est
conduit & une équation aux dérivées partielles du troisiéme ordre a laquelle doit
satisfaire la fonction F(zx, y, z, u) pour que I'élimination de z conduise a une résol-
vante de seconde espéce du systéme. Comme cette fonction F est indépendante de p
et de ¢, cette équation est équivalente & un certain nombre d’équations distinctes
que l'on obtiendra en égalant & zéro les coeflicients des diverses puissances 'de p et

de ¢ dans I'équation (62) développée. Pour que le systéme admette une résolvante

;e v,
de seconde espéce ne renfermant que la dérivée du second ordre ST il faudra que
, X

ces équations soient compatibles.

Par exemple, si f est une fonction linéaire de p et ¢ une fonction linéaire de ¢,
K sera une fonction bilinéaire de p et de g, et la fonction F devra satisfaire i quatfe
conditions. La résolvante de seconde espéce correspondante sera elle-méme bili-
néaire en p, q.

Je me bornerai a ces indications, que je développerai dans un autre Mémoire.

I

s

[34] A tout systéme S de deux équations de Pfaff 4 six variables, et de classe six,
correspondent deux systémes, distincts en général, de quaire équations de Pfaff &
six variables, qui définissent les deux familles d’éléments singuliers de S. Inverse-
ment, tout systéme X de quatre équations de Pfaff & six variables peut, d’une infi-
nité de maniéres, étre considéré comme définissant les élél}lents singuliers d’'un
systéme de deux équations de Pfaff & six variables.

Tout systéme X de quatre équations de Pfaff peut étre, et d’une infinité de fagons,
ramené a la forme

(63) ‘ i 2= 3:_5:_._"—th

a,, a,, ..., a, étant des fonctions des six variables x,, ..., =,, et ¢ désignant une
variable auxiliaire introduite uniquement pour plus de symétrie dans les calculs.
11 suffit de choisir les variables x; de facon que les équations

xlzcl’ wz:C;’ oy x,=GC

1 5
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représentent une famille de courbes intégrales du systéme X. Le probléme i résou-
dre peut alors étre formulé ainsi : Déterminer cing fonctions A,, A, ..., A, des varia-
bles x;, satisfaisant & la condition

(64) , Z Ag,=o
i=x
lelles qu’en posant
(65) w’:AldJ}‘—{—Azdx,‘{- oo+ Adr,—=o
léquation o', = o, ou lon remplace dx,, ..., dx;, par a,, ..., a.s respectivement, se

“réduise & une seule relation linéaire entre les 3x,, en tenant compte de la condilion
IA,8x, = o.

Le systéme formé par I'équation », = o, et la nouvelle équation obtenue ot I'on
remplace 3x; par dx;, est bien un systéme de Pfaff admettant une famille d’éléments
singuliers définis par les équations (63), et I’équation w, = o est I'équation singu-
liére correspondante.

On a
= 2 Z A, (dz 5z, — dxkox) + E
i=1 k=1 :
ou
W, A,
M=, T

la premiére sommation étant étendue a toutes les combinaisons deux & deux des
indices i, k. En remplacant dx,, ..., dx, par a,dL, ..., a, dt respectivement, 1'équa-
tion o', = o devient

(66) 1'3‘830,+...+B58w5§dt+<2 g )s dt — 2 {a0,da, = o,
ot I'on a posé
67) B, = E A

La relation (66) doit étre vérifiée, quels que soient dt et dx,, et ne doit pas ren-
fermer 3x,. Il faut donc que les coeflicients A, vérifient la condition

(68) : oA,
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et de plus que les trois équations *

5 5

5
QA
\!  » CONY o Y
(69) 2‘ B,‘O-T,- = 0, :\?E_towi =o, Z Aio.,C‘ =0
6
1

I . 1

se réduisent & deux relations distinctes. )
Supposons d’abord que l'on puisse choisir les coefficients A; de fagon que les
deux derniéres relations soient identiques. 1l faut et il suffit pour cela que I'on ait

dlogA, dlogA, __dlog A,
x, e, T

B
[

c’est-a-dire que le rapport de deux quelconques des coefficients A, soit indépendant
 de x,. Comme on peut multiplier ces coefficients par un méme facteur sans changer
l’équatidn w, = 0, on peut donc supposer ces coefficients indépendants de la varia-
ble x,. On aura donc une solution du probléme si I'on peut déterminer cinq fonc-
tions A,, indépendantes de x,, vérifiant la relation (64)

Aa + ... +Aa =0,

le systéme S correspondant est formé des deux équations

S 0, =Adx, + ... +A,dx, = o, -
m2=B‘dx‘ + ...+ B.,‘daca_—_o;

remarquons que la relation

~ O/, DA .
ZBi(li—Z <Dx‘ ——-a;k— aa,=—o
ik

est vérifiée idenliquement.
Pour qu’il existe une solution de cette espcce, il faut et il suffit, d’aprés la théo-

rie classique, que le déterminant de Wronski, formé par les cinq fonctions a, et
leurs dérivées par rapport d x, jusqu'au quatriéme ordre, soit nul identiquement.
Si tous les mineurs du premier ordre correspondant aux éléments de la derni¢re
ligne ne sont pas nuls identiquement, il y a un systéme de fonctions A; et un seul
répondant & la question, abstraction faite d’un facteur indépendant de «,. Si tous
ces mineurs sont nuls, il y a plusieurs solutions distinctes. Nous ne reviendrons pas
sur cette théorie qui est exposée en détail dans tous les Cours d’Analyse, a propos
des équations différentielles linéaires.
Fac. des Se., t. X. 20
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. Pour qu’il existe d’autres solutions, il faudra que la premiére des équations (69)
soit une combinaison linéaire des deux autres, c’est-a-dire que 'on ait identique- -
ment '

A,
B =7 —i
(70) =y

6

+ uA,,

X et w étant deux nouvelles fonctions indéterminées, et 'on est ramené & chercher
sept fonctions inconnues A, ..., A, %, u des six variables x;, satisfaisant aux sept

équations (64), (68) et (70). Ayant obtenu une solution de ces équations, le systéme
de Pfaff formé des deux équations

__— \} Jop e
w, = Z :\idﬂ,‘i o,
=i 0A,;
w, = L —dx‘. =0
¢ dx,

satisfait & toutes les conditions du probléme, pourvu qu’il soit de sixiéme classe.
Nous pouvons évidemment remplacer le systéme des deux équations (64) et (68)
par le systéme équivalent

\

J ) \a
(71) Lo V:EAL(%:O» Vi:ZAi ;x;:o,

i=1 i=1

D’autre part, nous avons

2, A, M, AN
Bi:<_'— ')a‘—}—...—}—("— -,

o, dx, X, X,
—— S Ras Ta
d, ¢ YA
k k

on a aussi

W da, A,
dw Z Ay oz, + Z % dx,
K

' k

et, en tenant compte de la condition V = o, on peut éerire

. da,
Bi="-}19(Ai)—EAkfb?i'
k
en posant
R d I I
MO=a g v g o N T
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- Les équations (70) peuvent donc s’écrire

;ak
k \x

(72) D) + ‘/\

'fo.
(l: i, 2;?”[5, 5)"

et le systéme des équations (64), (68) ct (70) peut &tre remplacé par le systéme équi-
valent formé des équations (71) et (72). On peut encore, dans ces derniéres équa-
tions, supposer u. = o. Si en effet on pose A, = ¢a;, I'équation (72) devient

do du; ) da
i ~ ~ ) i = N k .
P+ adble) + e+ Py e e T = O
4 k

si 'on prend pour ¢ une intégrale non nulle de I'équation

A(s) + % D‘°

K

+pe=o,

on sera conduit a une équation de méme forme

; da; da
() + N ot M,
k

-

Nous supposerons, par la suite, que 1'on a fait cette transformation et nous écri-
rons les équations (72) sous la forme plus simple

\ak

=o0.
k\E

A,

(t=r, 2,3, 4, 5).

[32] Nous allons d’abord appliquer ces généralités a quelques cas simples.-

1 Si le systtme X est complétement intégrable, on peut supposer

On doit alors avoir A, = o, et I'’équation o, est de la forme

o, =Ade, + A, de, + A dr, + A, dr, = o.
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Si les coefficients A,, A,, A,, A, ne dépendent pas de a,, la seconde des équa-

tions (69) se réduit & une identité, et la premiére devient

) A _ dA
w,:-( ’dl“—k... —'—da;:o.
b (4N D.’L‘s

Les deux équations », = 0, », = o forment un systéme de cinquiéme classe,
et il semble que le probléme proposé n’admet pas de solutions. Mais cette conclu-

sion est en défaut, lorsque les coefficients A,, A,, A,, A, ne dépendent pas de x,.
I'équation o, = o qui est de troisi¢éme classe, et

Le systéme (69) se réduit alors
I'on peut prendre pour v, = o une autre équation quelconque

w,=B,dx, + B,dx, + B, dx, + B,dx, = o,

formant avec w, = o un systéme de sixiéme classe. L’équation v, = o étant de troi-
siéme classe, on peut supposer que I'on a choisi les variables a; de fagon qu’elle

soit mise sous la forme canonique
w,=dr, —x,dr, =o,

les raisonnements du n° 8 prouvent que la seconde équation peut étre ramenée 4 la

forme
o, =dx, + x dr, + x,dr,=o0.

4

Nous retrouvons bien la solution évidente a priori.
Si tous les coefficients A,, A,, A,, A, ne sont pas indépendants de x,, les équa-

tions (73) deviennent
(i=1,2,34)

DAi h=——-=0
) ox,

et prouve que les quatre coefficients A; sont fonctions de x,, x,. z,, x, et de I'un

d’entre eux, A, par exemple. Si I'on prend ce coefficient A, pour la variable x,, on

est ramené & I'hypothése qui vient d’étre examinée.
2° Supposons que le systtme ¥ admette trois combinaisons intégrables distinc-

tes da, = o, dx, = o, dx,= o; la derniére équation du systéme peut alors &tre

ramenée A la forme canonique dx, = a,dx,. On peut donc prendre dans ce cas

a,=a,=a,= o, a, =1,

Les équations (71) et (73) deviennent

A, +A x> =o, A =o,
M. A, A, _
- AT R Wil R (i=1,2,3).
a"rﬂ

13
+x, —
G
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On peut trouver une infinité de systéhles de solutions de ces équations ; mais le
‘systéme
o,=A,dx, + A, dx, + A, dx, = o,
d A, A
dx, 2
d e, + .

[ 6

I

;\
tdx, +
Tl}

W, = dx3 =0

ne peut étre de sixitme classe, puisqu’il ne renferme que trois différentielles.

Pour obtenir une véritable solution du probléme, on doit donc supposer que
A, A, A, A, A, sont des fonctions indépendantes de x, satisfaisant aux relations

5

A, +Ax,=o,- A, =o,
d’oti l'on tire'A, = A, = o. Le systéme cherché est alors

o, =A, dx, +A‘,d.7c + A, dx,=o,

WA
[Oa— 'd’)"—{—

t

pour la méme raison que tout a I'heure, ce systéme ne peut étre de sixiéme classe.
11 ne reste donc qu'une hypothése possible; A,, A,, A, doivent étre indépendants
de x, et de x,, et 'équation », = o est de troisiéme classe. Il suffira de lui adjoin-
dre une autre équation’

w,=B,dx, + B,dx, + B, dx, + B,(dx, — x,dx,)=o0

formant avec w, = o un systéme de sixiéme classe. On retrouve en poursuivant les
résultats du n° 8.

-

3° Supposons que le systétme ¥ admette deux combinaisons intégrables distinc-
tes dx, = o, dx, = o; les deux autres équations du systéme X forment un systéme
de quatriéme classe quand on y fait x, =C, x, = C/, dac = o0, dx, = o. On peut

donc le ramener & la forme canonique
dx, = x dx,, de,=x dx,,

et prendre pour les a, les valeurs a, = a,=o0, a, =1, a, =, a, = x,. Les équa-
tions (71) donnent
JE— ) S —
A,=o, V=A +Ax,=o,

tandis que les équations (73) deviennent

bA DA, 0A,;
AR e
cw‘

‘T, —!—7\—56_—:0 (i=1,2,3,4).
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On en déduit
PAY IV V. W
—_— :I‘.. — N
o, R

el par suite A, = o, A, = o. _
On doit donc supposer, pour avoir une véritable solution du probléme, que les

coefficients A; sont indépendants de x,. Ces coefficients doivent vérifier les deux
relations

As—kA‘x;—l—Aﬁd“:o, A, =o.
On peut évidemment prendre A, =1, A, = x,, et I'équation o, prend la forme
o,= A, dx, + A, dx, + x,de, — dx,=o,

A, et A, ¢tant des fonctions arbitraires de z,, x,, z,, x,, x,.
La seconde équation du systéme est alors

A A A A, A A
m:( L4 ‘oc,+—'—acs>dx+ 4, —2 4 —’—)dx
* de,  dx, f dx, ! o, *x, S, :

+ «,dx, — dx, = o;

~la solution obtenue dépend, comme dans les cas précédents, de deux fonctions
arbitraires de cinq variables.

[33] Aprés ces cas particuliers, ou la solution est bien facile, proposons-nous
d’étudier, d'une maniére générale, le systéme des équations (71) et (73) ot les incon-
nues sont A,, A,, A,, A, A, et X. Nous chercherons pour cela & quelles conditions
doit satisfaire la fonction A pour que les équations (73) admettent un systéme d’in-
tégrales A, = F,(x,, «,, ..., x,) vérifiant les deux relations

V:ZA.-%:O» V|:ZAi§—:;';;:o.

i

A’J(V) = vAi'v‘%(ai) + Eai'jb(Ai)’
vV —$A. da, Ta A,
o, L, Lz,

)

et par suite

N JA) L 2l
.%(V) + )\—’)76-—— Za,. eg}l)(Al) + /\—DEG-S + "‘Ai l'%(a,-) + A Yo .

[
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. A
Mais Zaq, [Jlg(A,.) + i ;—3—'] est égal, d’aprés les équations (73) elles-mémes, & -

__.E EA ‘akz—zf\ Z ——ZA,‘Jb(a,‘)

et la nouvelle équation s’écrit

oV .
(74) ' AV) + 1 ==V,

de sorte que V, = o est une conséquence des équations (73) et de V== o si ) n’est
‘pas nul.

D’une fagon générale, soient A, A,, ..., A, A un systéme de solutions des equa-
tions (71) et (73) et P une forme lmeaxre a coefficients quelconques

P=p A + oA+ ... +p,A,;

on a

P M) 0, |, 2%,
8P+ 1= Mo | 2y +3 5+ | e+ 22 .

A,
En remplacanl dans le second membre. L(A,) + X % par son expression tirée

des formules (73), ce second membre se change en une nouvelle forme linéaire par

)

rapport aux A,

3 : P
(75) ,%(P)-}-)\—Sx—z_c‘A‘ +oA, + ... +cA,
ot I'on a
76 5= Mo(e) + Zpk S
k
Cela étant, soient A, = F,(«x,, ..., =,) un systéme de solutions des équations (73)
satisfaisant & la condition V, = o; ces fonctions F, satisfont aussi & I’équa-

V.
tion b (V,) + 2 \_w’ = o, et par suite annulent la forme linéaire V, que I'on déduit
‘, 6

de V, par I'opération précédente

a7 .V,=;A,~gzﬂo<§i> -—Z B:z; bw

J{O(V)Hi

6
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De I'équation homogéne V, = o on déduira de méme une nouvelle équation
homogéne V, = o, ou
oV,
w0

[

(78) V, = A(V) 4+
enfin de V, = o on déduira, par 'application du méme procédé, une aulre ¢quation
homogeéne

. LV,
(79) V/. - 'jb(vx) + A ‘\x =o.

9

Remarquons que les coeflicients de V, renferment le paramétre 2, les coefficients
de V, dépendent de % et de ses dérivées partielles du premier ordre, tandis que les
coefficients de V; dépendent de X et de ses dérivées partielles jusqu’au second ordre.

Tout systéme d’intégrales A, = F,(x,, ..., «,) des équations (73) satisfaisant aux
deux conditions V=V, = o annule aussi les trois formes homogénes V,, V,, V..
Comme ces fonctions ne sont pas toutes nulles, la fonction inconnue % doit donc
étre une intégrale de I'équation aux dérivées partielles du second ordre

(80) D() =o

obtenue en égalant & zéro le déterminant de ces cinq formes linéaires.
Réciproquement, & loule intégrale % de Uéquation D()) = o correspond au moins
un systéme de solutions des équations (71) et (73).
Supposons d’abord que cette intégrale A(x,, x,, ..., x,) n'annule pas tous les
mineurs du premier ordre de D()\) correspondant aux éléments de la derniére ligne.
Alors les quatre équations

81) V=—o, V,=o, V,=o, V.—=o

sont linéairement distinctes, et la forme V, est une combinaison linéaire de V, V,,
V,, V,, de sorte que I'on a identiquement

(82) V,=hV +hV, +hV,+hV,,

quand on remplace A par l'intégrale considérée de D (%) = o.

Les quatre équations (81} déterminent les rapports de quatre des inconnues A, a
la cinquiéme. Soient

(83) A=d(x, ..., ), R A= (x, ..., x)

un systéme de solutions non toutes nulles de ces équations, I'une des fonctions ®,
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pouvant étre prise arbitrairement. II suffit de multiplier ces Sonctions ®, par un
méme facteur pour avoir un systéme de solutions des équations (73).

En effet, soient «, ..., x un systéme de valeurs dans le voisinage, duquel les
fonctions a,, %, ®,, h; sont holomorphes, le coefficient a, par exemple n’étant pas
nul pour ce systéme de valeurs. Les fonctions ®, se réduisent pour x, = x,° i cing

fonctions ¢,, ¢,, ..., 9, des variables x,, ..., z,, qui sont holomorphes dans le

domaine du point x.’, ..., x’, et les équations (73) admettent un systéme d’intégrales
A=F(x,...,x), Cee A =F(x, ..., x),

holomorphes dans le domaine du point (z,, ..., «,°) et se réduisant & Dy weer @, TES-

pectivement pour x, = x,’. Soient U, U,, U,, U, les fonctions obtenues en rempla-
cant A, ...; A, par F,, ..., F, respectivement dans les formes !inéaiies V,v,...,V,;
d’aprés les conditions initiales, ces fonctions U, U, .. -» U, sont nulles pour x, = x,°.
D’autre part, on a, d’aprés la fagon méme dont les formes V,, V., V, ont été défi-
nies, et I'identité (82),

[ AU) + =,

6

U

Jb(Ug) + )‘ Dx: :I'Tw
(84) < )
: U .
‘RO(U) + )\_—:U;,’
U, )
M(U,) + e =M+ AU+ AT, + 1T,

Or ce systéme (84) n’admet pas d’autres intégrales holomorphes s’annulant
pour x, =x,° que U, = o, U, =0, U, = o, U, = 0. Les cinq fonctions F, satisfont
donc aux relations (82), et par suite ne différent des fonctions @, que par un méme
facteur 0. On peut donc prendre pour I'équation singuliére w, = o du systéme S
cherché

o,=®dr, + P dx, + ... + $ dr,=o0

et pour la seconde équation du systéme

5

=V 2 g, — o,
Vs T A dx ’;_O’

Y

ce sysléme fournira une solution du probléme, pourvu qu'’il soit de sixiéme classe.
Supposons en second lieu que, pour une intégrale % de I’ équation D(A) = o, les
Fac. des Sc., t. X. ) 21
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quatre équations (81) ne soient pas linéairement distinctes, mais que les trois pre-
miéres le soient, de lelle sorte que I'on ait identiquement '

o - .V
(82" : V,=kV +EV, +EV,.
Choisissons encore un systéme de valeurs (x,°, ..., «,") satisfaisant aux mémes
-conditions que tout & I'heure, st soient ¢,, ¢, ..., o, cinq fonctions holomorphes

des variables x,, ..., «,, satisfaisant aux relations

V=o, V,=—o, V., —o,

\ . 1
oti I'on aurait remplacé x, par x,"; deux de ces fonctions peuvent étre choisies arbi-
trairement. Les équations (73) admettent encore un systéme de solutions A; = F,,

holomorphes dans le domaine du point (x, ..., x,’) et se réduisant & o,, ..., ¢,
respectivement pour ®, = x,". Les fonctions U, U,, U,, obtenues en remplacant
A,, ..., A, par ces intégrales F,. ..., F, dans V, V,, 'V, salisfont au systtme d’équa-
tions

. U

HU) + Dw; = U,

(84) MUY =y

! e, T

U S !
\ AU, + 2 m = U, = kU + kU, + kU,

et sont nulles pour x, = x,". Elles sont donc nulles identiquement, et les intégrales
A, =T, du systéme (73) déterminées par les conditions initiales précédentes annu-
lent les formes linéaires V et V,. On obtient donc de cette facon un systéme d’inté-
grales des équations (71) et (73) dépendant de deux fonctions arbitraires de cingq
variables. On en, déduira, comme dans le premier cas, une solution du probléme
proposé dépendant d’une fonction arbitraire de cing variables, avec la méme restric-
tion relative & la classe du systéme de Pfaff obtenu.

On verra de méme que si une intégrale » de D(A) = o est telle que les trois
équations V= o, V, = o, V, = o ne soient pas linéairement distinctes, et si les
deux premiéres sont distinctes, & cette intégrale correspondent une infinité de solu-
tions des équations (71) et (73) dépendant de trois fonctions arbitraires de cinq
variables, et par suite une infinité de solutions du probléme proposé, dépendant de
deux fonctions arbitraires de cinq variables.

Les deux formes V = o, V, = o sont linéairement distinctes, 4 moins que I'on
n’ait

dloga, dloga,  Qloga,,

e, 2z,

)
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C’est le cas traité au n° 32, ou le systtme X est complétement intégrable.
Remarquons ue le déterminant D(2) est alors identiquement nul, et il en est de
méme dans les autres cas particuliers examinés au précédent paragraphe.

[34] L'inconnue auxiliaire A a une signification trés simple, qui explique bier .
le r6le important de cette fonction dans le probléme. Nous pouvons en effet poserla
question dont il sagit d'une fagon un peu différente, en cherchant & déterminer
une équation de Pfaff ’

(-)’—“‘Aldw-l—- o+ Azdacszo

dont les éléments caractéristiques soient définis par un systéme d’équations -

85) t— ==

les inconnues étant A, A,, A,, A, A, A. On a toujours

5 5 5
~ o~ A\l BAI ~
o, =Y WA, (dria, —dodz) + = (dox, 3, — dor, 3,),
i=1 k=1 i=1

et il faudra qu’en remplacant, dans o', = o, dr,, dx,, ..., dx,, dx, par a,, q,, ..., a,, :
respectivement, 1'équation obtenue soit identique & I'équation , = o, ou l'on
aurait remplacé dx; par 3x;. Aprés cette substitution, il vient

5 5 \ 5
A, A,
w’:—zax.[EAla A ‘]-}—Ea.——‘ax =o0;
1 i ik k+ D:JUG i B-’Da 6
. =5 1

i=1 k=

il faudra donc que I'on ait

-(\i\- 1
i I —
Va, =0 MYA,q,=o,
.

N .
ZAika,{—l—)\%—l—gAi:o (i=1,2,3,4,5),
k G ‘

et nous retrouvons bien le systéme (71) et (72).
11 suit de 1a que toutes les équations w, = o, qui correspondent & une méme
intégrale X de D(A) = o, ont les mémes éléments caractéristiques. Si les coeffi-



164 ) E. GOURSAT.

cients A, sont indépendants de x,, les éléments caractéristiques sont définis par les
équations

-

et 2 doit étre regardé comme infini. On voit comment ce cas particulier, que nous -

‘avons examiné le premier, se rattache au cas général.

[(35] Exemple I. — Soit a, =x,, a,=x,, a, =}, a,=x,, a,=1.
Posons pour abréger
of of of . of 3 Af of
= A= — —_— e P :
BU)Y =)+ dx, - e, T dx, + d, T X, + o, + dx,’

les équations (71) et (73) sont ici

BA)=o0. BA)+A,=o, BA)=o, BA)=o0. BA)=o0,
V:A‘:I:E—l—A,_,."EG—{—AQ:EGE—i—A‘xG"—I—As:o,
Y& =A,+2Ax, +3A,x°=o0.
£

De I'équation $(V,) = o on tire une nouvelle relation linéaire et homogéne
V,=2), + 6)A x, — A, =o;

la condition $B(V,) = o donne de méme une relation qui peut s’écrire, en tenant
compte de la précédente
‘ V,=6A2" + RO)A, =o.

.

Enﬁn I'équation B(V,) = o donne une derniére relation
V,=18A,2B0) + BY (WA, =0, ot  BYO)=B(RM)).

Pour que les deux derniéres équations soient compatibles, il faut que X soit une
intégrale de I'équation
D) =32 [BO)]* — 2R () =0,

Soit 2, une intégrale différente de zéro. Les équations V=0, V,=o0, V,=o0, V=0
déterminent complétement les rapports des fonclions inconnues A;, et par suite
I'équation v, = o corresponda‘nte est déterminée.

Si % est nul, les deux équations V = 0, V, = o sont vérifiées identiquement,
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et la précédente donne A, = o. Il reste pour déterminer les quatre coefficients
A, A, A A, le systétme d’équations

J{()(A:):O, 0%(1\3):0' ‘HO(AA):O’ ,RQ(AS)ZO,
v=Ax"+Ax +Ax’+A =o,
/ v4=A,+ 2A,3.”C6 -+ 3A‘acf:o.

I1 suffira de prendre pour A, et A, deux intégrales de Jo(f) = o, et les deux
autres inconnues A, et A, sont données par les relations v = o, v, = o.

Exemple II. — Soita, = x,, a,= x,, a,= x,, a, =, a4, = X,.
Le systéme & intégrer est ici, en posant comme dans le premier exemple
VAR VAN VAN VAN 1)

— . A
g‘))(f)“w’b_a:’—i-m“ o, o Xz, + dx, +w“a—w;+)\ e,

RA)=0, BA,)+ A, =0, BA)+A,=o0, BA)+A =0, RA)+A,=o,
V=Ax,+ Az +Ax +Ax +Ax —o, V,=A,=o,

et on en tire successivement A, =0, A, =0, A, =0, A, = 0. On n’a donc de solu-
tions du probléme qu’en supposant A infini, ou, ce qui revient au méme, les coeffi-
cients A, indépendants de x,. On doit avoir encore A, = o, et on prendra pour les
autres coefficients des fonctions de x,, ..., x, satisfaisant & la condition

Ax,+Ax, +Ax +Ax, =o.

On aurait un résultat tout pareil en supposant

Remarquons que, dans ces derniers cas particuliers, comme dans ceux qui ont
6té examinés au n° 32, le systéme X est intégrable explicitement. Il y a cependant
une différence essentielle entre les derniers exemples traités et ceux du n° 32.
Tandis que pour les premiers I'équation D(A) = o se réduit & une identité, pour
T'exemple II au contraire cette équation conduit & une impossibilité.

v

[36] La méthode employée dans la premiére partie pour I'étude des éléments
singuliers d'un systéme de deux équations de Pfaff i six variables s’étend aisément



166 E. GOURSAT.

A tout systéme de deux équations de Pfaff & un nombre quelconque de variables,
mais le nombre des cas particuliers qui peuvent se présenter croit naturellement
avec le nombre des variables. J'examinerai en quelques pages les circonstances les
plus générales.

Soit S un systéme de deux équations de Pfafl & n variables

(86) w,=ade, + ... + a,dx,= o,.
bdr, + ... + b,dx,=o0;

), N

l

nous supposerons, pour fixer les idées, que l'on peut résoudre ces deux équations.
par rapport a dx,_, et & d,. Dans les covariants bilinéaires o', et »’,, on peut ne
laisser que les différentielles du; et 3x; dont I'indice est inférieur ou égal 3 n — 2

.

[ ~ ~
o, =Asx, + ... +A,_%,,,

(mod o,, »,)
m"__ = Bigl‘l + ...+ Bn_gg'L‘ i

n—2?

A, et B, étant des formes linéaires en dx,, dx,, ..., dx

n—2

A o de, + ... + “i,n~adm,;—z:
Bi ﬁildxl + M + A(si,n—‘zdwu-—e'

I

i

(i=1,2,...,n—2)

Les deux covariants ', et ', étant identiquement nuls quand on y remplace 3,
par dx;, les coefficients «, et 8,, vérifient les conditions

%+ 2 =0, Bix + Bu=0.
Tout élément intégral du systéme 8 (dzx,, dx,, ..., dx,_,) est en involution avec une
infinité d’autres éléments linéaires intégraux du méme systéme (3x,, 3x,, ..., 8x,_,),

" satisfaisant aux deux équations o', = 0, ', = 0. Nous laissons de cdté le cas ou
les covariants o', et ', seraient nuls identiquement, et aussi le cas ou les deux
équations précédentes se réduiraient & une seule. Le systéme S serait complétement
intégrable dans le premier cas, et, dans le second cas, il serait de quatriéme classe
ou admettrait une combinaison intégrable.

Ces cas exceptionnels écartés, si nous considérons 3x,, ..., 3x comme les

n—e
coordonnées homogénes’d’un point dans un espace 4 n — 3 dimensions, nous voyons.
que tout élément linéaire intégral du systéme est en involution avec une infinité
d’autres éléments linéaires intégraux qui sont figurés par les points d’une variété
plane & n — b5 dimensions.

Cétte conclusion est en défaut si, pour'élément linéaire considéré (dx,, dx,, ..., dx,),
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les deux équations o', = 0, ', = o0 ne sont pas distinctes. Il faut pour cela que

Ton ait
Al - A: o - An—z

T = T = . =y,

B B B

1 2 . n—2

en désignant par — —*;— la valeur commune des rapports précédents, on doit avoir

les n— 2 relations
(87) ()\1“ + p'lBil)dwl + ot + (xai,n‘z + Mﬁi,n—%)dxu—::o (l: L 2,...,n— 2)'

Pour que ces équations admettent un systéme de solutions non toutes nulles

n—e?

Py
en dx,, dz,, ..., dr le rapport — doit annuler le déterminant A(}, w) des coeffi-
: " :

.cients de dx,, ..., dr,_, dans ces équations. Or ce déterminant est un déterminant
symétrique gauche d’ordre n — 2, et les résultats sont tout différents suivant la
parité de n.

Nous supposerons d’abord qué n est un nombre pair 2p + 2. Le déterminant

A(\, w) est alors le carré d’'une forme de degré p en i, p, AQA, p) = [F(\, )],

A
et le rapport — doit satisfaire & I'équation de degré p
- [J. .
(88) FO\, ) =o.

~ Soient %, p. un systéme de solutions de cette équation. Les 2p équations (87) se
réduisent alors en général & 2p — 2 équations distinctes, et les coordonnées de
Télément singulier (dx,, dx,, ..., dx,) dépendent de deux paramétres arbitraires
d'une fagon homogéne et linéaire. Le point de coordonnées homogeénes décrit donc
une variété plane & une dimension dans l'espace & 2p — 1 dimensions. Nous voyons
donc que tout systéme de deux équations de Pfaff & ap + 2 variables admet, Ex GENE-
RAL, p familles distinctes d’éléments singuliers, les éléments singuliers d’'une méme
famille correspondant aux points d’une variété plane & une dimension.

A toute famille d’éléments singuliers correspond une e’qdation singuliére du systéme
de Pfaf. '
? Si %, p forment un systéme de solutions de I'équation (88), les éléments singu-
liers de la famille correspondante satisfont a la relation

(Ao, 4+ pow,) =0
quel que soit I'é1ément intégral (3x,, 3x,, ..., 3x,_,). Nous dirons encore que I'équa-

tion
do, + pw,=o0
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est une équalion singuliére du systéme de Pfaff. Supposons d'abord, ce qui est évi-
demment le cas général, que cette équation singulitre soit de classe 2p + 1, et ima-

ginons qu’on lait ramenée 4 une forme canonique par un changement de variables

Ql:dynﬂ—l -—yp—de;_yp«l‘:dyz— A —.-yepdyp‘:o;

on peut compléter le systéme par une équation ne contenant pas dy, .,

Q,=Bdy, + ... +B,dy,, + B, .dy, =o.

La relation
Q’i:dyp—!—aayl_dyiayp—ﬂ + te + dyzspgyp— dypgyep:o

doit étre vérifice, quel que soitI'élément intégral (3y,, ..., 8y,,,,), pourvu que 'élément

(dy,, ---, dy,,.,) soit un élément singulier. Ceci ne peut avoir lieu que si B, ., = o. °

2p-t2

En effet, si B, ,, n’était pas nul, 8y,, ..., 8y,, pourraient étre choisis arbitrairement,
et I'équation ', = o ne serait vérifiée identiquement qu’en prenant

dy,=o, R dy,,—o;
on aurait ensuite dy,, , = o, dy,, = o, d’aprés les équations méme du systéme.
Il n’y aurait donc pas d’éléments singuliers correspondant & I'équation Q, = o.

Au contraire, si B,, = o, I'équation ', = o sera identique a I'équation

B‘Byl + Bzayz+ te + szaygpzo

pourvu que dy,, ..., dy,, vérifient les relations
(89) dy, _ dy, _ _ dy, _ v, dy,
_ Bp oo Bp+2 —_ Bip B, Bp

Ces relations, jointes & Q= o, déterminent une famille d’éléments singuliers
correspondant a I'équation singuliére Q, = o. Nous voyons, comme dans le cas
ou p = 2, que les éléments caractéristiques de I'équation singuliére QO = "o sont
des éléments intégraux du systéme de Pfaff.

Le théoréme du n° 5 peut alors étre généralisé comme il suit : Tout systéme de
deux équaltions de Pfaff & ap + 2 variables peut, EX GENERAL, élre ramené de p facons
différentes a la forme suivante

Q4 :dyap-n - yp—{-idyl - yp-‘adyz_ s _yepdy\p:“o’
Q,=B,dy, + B,dy,+ ... + B, dy o,

2p @Yap =

(90)

les coefficients B, élant des fonctions des 2p + 2 variables Yis Yor woor Yapaa-
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~ Onpeutencore prendre un des coeflicients B, égal & un, et un autre égal a y,, ., de
sorte qu;il ne reste dans la forme réduite que ap — 2 fonctions arbitraires, comme
on pouvait le prévoir a priori.
" Cet énoncé ne s’applique naturellement qu’aux circonstances les plus générales,
cest-a-dire au cas ou les coefficients du systéme ne satlisfont & aucune condition
d’égalité particuligre. '

On peut obtenir directement I'équation (88) qui détermine les p familles d’élé-
ments singuliers, en conservant les équations du systéme de Pfaff sous la forme
générale (86). Le covariant bilinéaire de hw, + po, a alors pour expression

(o, + po,) = E Z aikdx,.axk_,
i k
N A o b .

o, =\a, O, a, ——a, — ; —_— -_—
ik Lk‘+l b1k+ i Bx,_ . Tk Dac,. + i ka k (\’L‘i

Si I'élément intégral (dx,, ..., dx,) est tel que I'on ait (Ao, + po,) = o, ciuel que
soit le second ¢lément intégral (3z,, ..., 3x,), on doit avoir identiquement, quels
que soient les 3x;,

(ho, + wow,) 4+ u E a;6x; + v E bixr, = o,

i

u et v étant deux coefficients indéterminés. Par suite, les coordonnées dx, d’'un élé-

ment singulier et les paramétres u et v doivent vérifier les relations

a,de, + ... + «,dx, + ua, + pb,=—o, (i=1,2,...,n)
adr, + ... +a,dx,=o,
bdx, + ... +b,dr,—o.

l.e déterminant

o %, «, a b

a, ) w4 .

A |
Wy %y, o a, b,

a, a, a, o o

. b, ., O O

doit donc étre nul, et I'on démontre, comme au n° 5, par quelques combinaisons
Fac. des Sc., t. X. . 22
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-

de lignes et de colonnes, que cette condition peut s'écrire

o, ha, +uwb, ..o ra,, +wb,,, a, b,
Aa,, + ub,,, 0, ... ha,, + pb,,, a,, b,
(91) A | e =o.
K, b, ha, +ub,,, oo o, a, b,
a,, a,, .. a,, 0,0
b, b,, b,, o, 0

[37] Pour traiter complétement le probléme ('), comme on I'a fait lorsque n =26,
il resterait & examiner tous les cas particuliers qui peuvent se présenter. Pour une
famille d’éléments singuliers, il y a lieu de considérer trois nombres entiers : 1° le
degré de multiplicité de la racine de I'équation (88) ou (91) qui fournit cette famille
d’éléments singuliers; 2° la classe de I'équation singuliére correspondante; 3° le
nombre de dimensions de cette multiplicité d’éléments singuliers. Je me bornerai

“& quelques indications.

Remarquons que, si une équation iw, + po, = o du systéme est de classe infé-
rieure & ap + 1, elle est certainement une équation singuliére du systéme. Soit en
effet Q, = o une équation du systéme de classe ap — 2¢ + 1 (¢ > 0) que nous sup-
poserons mise sous forme canonique

(92) gzl = dyvzp—?.q»!»l - (yp—‘ﬂd.yi + cot + yep—qdyp—q) =o0.

On a

Q" = dyp—;—layl - dyl apr-i + R + dyz'p——qayp—q - dyp—qsy:p—q’

et tous les éléments linéaires intégraux définis par les ap — 2¢ + 2 = n — 2q rela-
tions
(93) dy,=o, dy,=o, ..., dy,_,=o, dy,.,=o, ..., dy

ap—q — 0 Q,=o, Q,=o0

sont des éléments singuliers; 1'équation Q, = o est donc une équation singuliére
du systéme. Il y a donc au plus, dans le systéme S, p équations de classe inférieure

]

an—iI.

() Je laisse de coté le cas ou I'équation F (X, u) = o serait vérifiée identiquement. Le

h

systéme est alors de classe inférieure & ap + 2, et la réciproque est évidente.



SUR LE PROBLEME DE BACKLUND. 171
Pour avoir les équations qui déterminent les éléments singuliers correspondant
a I'équation (), = o, nous avons deux cas a dislinguer :
1° Nous pouvons toujours supposer que la seconde équation du systéme Q, = o
ne contient pas dy,, ... Si cette équation contient quelques-unes des différentielles

AY pgine oo Ay, dy,, o1, o dy e Yy g o Yy -

les équations (g3) sont précisément les équations cherchées, qui définissent une
famille d’éléments singuliers & 2¢ — 1 dimensions.

2° Si Q, = o ne contient que les différentielles

dy57 R dyp-q’ dyp4|’ trt dyep—q’
Q,=Bdy,+... +B,_dy, ,+B, ,dy,. . +...+B,,_dy, =o,

pour qu’un élément soit singulier, il faut et il suffit que les deux équations Q', = o

et

B3y, + ... +B,_ 8y, + B, , +... +B, 8, ,=o

ne soient pas distinctes, c’est-a-dire que l'on ait

B B B

1 p—q P+ 2p—q

(94) (‘l.ypH S - dyzp—q S _—dyl . __—_dyp—q.

 Les 2p — 2g = n — aq — 2 équations (92) et (94) représentent une famille d’élé-
ments singuliers a4 2g + 1 dimensions.

Cette seconde hypothése n’est admissible que si le nombre total des différen-
tielles qui figurent dans Q, et Q, est.supérieur ou au moins égal au nombre mini-
mum des différentielles qui figurent dans un syst¢me de classe n = 2p + 2. Or si
un systéme de deux équations renferme seulement r différentielles, il est clair que
la classe est au plus égale & r + 2(r — 2) = 3r — 4. On doit donc avoir

3(ep—2q+1)—4>ap + 2 ou 4p — 3 > 6q,

et, comime 1’égalité est impossible,

4p—3
q<L__.'

6

Le nombre des dimensions d'une multiplicité d’éléments singuliers est donc
n —3
inférieur & bp 3 +1 = %1—)
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Le cas que nous venons d’examiner ne peut se présenter si p — 2, car 6

est inférieur 4 un. Si p = 3, on peut avoir ¢ = 1. Tel est le cas du systéme
Ql - dy7—y&dyq_ysdyz =0, £2.' - dyl =+ yzxdy‘: + ycdyé + ysdys =0;

I'équation singuliére Q, — o correspond & une racine triple de I'équation F(A, n) = o,
et les éléments singuliers correspondants définis par I'équation Q, = o, jointe aux
relations

dy, _dy, dy, dy,
T A

’

forment une multiplicité & trois dimensions.
L’équation singuliére Q, = o du systéme

"“1:dy3_yzdy1:0’ ‘2«3-,':dy6 +y.1dy5+y7dyi+ysdy2:0

correspond aussi 4 une racine triple, et les élémenls singuliers définis par les rela-
tions ' ‘
dy,=o, dy,=o, dy,=o, dy, + y,dy,=o

1 v 3

forment encore une multiplicité & trois dimensions.
Le systéme

Q!—_—dyg—yzdyl:o, szdys+yLCIY5+yﬁdy7:0

a deux équations singuliéres, I'une provenant d'une racine double, I'autre d’'une
racine simple.

[38] Les résultats sont tout différents pour un systéme de deux équations de Pfaff
4 ap + 1 variables. Le déterminant A (), u), qui est un déterminant symétrique gauche
.d’ordre impair, est alors identiquement nul, et toute équation Q = o, + po, = o0
peut &tre condidérée comme une équation singuliére du systeme.

Quelles que soient les valeurs de % et de ., les 2p — 1 relations (87) se réduisent
4 ap — 2 relations distinctes en général, et permettent d’exprimer les rapports des

différentielles dx,, ..., dx,,

L1 , .o A
_, & 'une d’elles au moyen du paramétre arbitraire—.
132
Il y a donc une infinité d’éléments singuliers; mais ces éléments singuliers, au lieu
de former p multiplicités distinctes comme dans le cas d'un nombre pair de varia-
bles, forment en général une seule multiplicité & une dimension.

11 existe dans ce cas une infinité d’équations du systéme qui sont de classe 2p —1.
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Soit en effet ;
o =adr,+ ... +a,dx, (n=12p + 1)

une forme de Pfaff & un nombre impair de variables.
Pour que 1'équation » = o soit de classe 2p — 1 ou de classe inférieure, il faut
- et il suffit que la forme o soit au plus de classe 2p, et 'équation » = o doit étre
une conséquence des relations ‘

a,de, + ... +a,dx,=o (i=r1,2,...,n)

qui comprennent au plus ap relations distinctes. Tous les déterminants obtenus en
supprimant une ligne du tableau

A au a, n
a,, ay, azn
ni Qo nn

a, a, a,

a, a, e a, a
a?i aﬁz azn a2

H=/| .. ... ... . ..
ni a"? s an a”

a, a2 a, (o]

soit nul. En appliquant ce résultat & I'équation v, + po, = 0, on voit qu’il-existe

. sur ) )\ Yy .
une infinité de valeurs du rapport — pour lesquels cette équation est de classe ap — 1

au plus.




