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SUR LA DEFORMATION DES QUADRIQUES

ET LES SURFACES CONJUGUEES

PAR RAPPORT A UN COMPLEXE DU SECOND DEGRE,

Par M. L. ROUYER,

Professeur au Lycée d’Alger.

PREMIERE PARTIE.

[4] 1l existe sur deux surfaces applicables un réseau conjugué commun. M. Gui-
chard (*) a étudié d’une facon approfondie ces réseaux auxquels il a donné le nom de
systémes cycliques ou systémes C. Il a, en particulier, établi les résultats suivants
que nous envisagerons seulement dans 'espace & trois dimensions :

Tout réseau harmonique & une congruence O (congruence de normales) est C; il
existe une infinité de congruences O, harmoniques & un réseau C.

Si on joint un point fixe O aux deux centres de courbure C, et C, d’une surface S,
les deux droites OC, et OC, définissent un réseau point paralléle & une infinité de
réseaux C; en d’autres termes, ces droites sont paralléles aux tangentes d’une infinité
de réseaux C.

Soient X, Y, Z les coordonnées d’un point de S, ¢, ¢', ¢" les cosinus directeurs de
lanormale, X,, Y,, Z, et X,, Y,, Z, les coordonnés des centres de courbure, R,, R, les
rayons de courbure principaux: nous poserons :

2q=X"+Y' +72, p=cX+cY+Z.

(1) Sur les systémes cycliques et les systémes orthogonaux (Annales de I’Ecole Normale,
1897-1898-1903).
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Le systéme
X de X de

(I) _+R4_=O’

du du dv T v
admet les quatre couples de solutions
Xe), (Y, (Ze).  (qp)-

Soient, d’autre part, x, y, z les coordonnées d’un point d’'un réseau C dont les
tangentes sont paralleles & OC, et OC, (le point O étant pris pour origine); on a :

( M dy az
\ . m du
) X, 7Y, T
2 )
) oo dy 2z
v v v
l\ X{ o 1 o Zl
On peut donc écrire :
) iy & .
) S=A(X4eR),  To=u(X+ R

en formant la condition d’intégrabilité, il vient

N 2 omy 2 ok
(M—E)w[ﬁu )= R | =o.

Cette équation doit subsister quand on y remplace X et ¢ par Y et ¢’ ou par Z
et ¢’, elle doit donc étre identique, et on voit alors que si dans les équations (3) on
remplace X et ¢ par un couple quelconque de solutions du systéme (1), la condition
d’intégrabilité est toujours satisfaite.

D’aprés ce qui précéde, on peut poser

26 K]
=, =,
‘ u ! Qv
)
R,=F,  R=22
T M T
et il vient
te 20 2e
du du du
dx 26 do
—_ X — c—
Qv Bv+ v’
d’ou

dr=Xd0 + cdy.
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On a donc le systéme
S de=Xdb + cdy,
5) tdy =Ydb 4+ c'dy,
dz=172d0 + c'ds.

D’ou on tire, en faisant la somme des carrés,
dx® + dy* + dz* =do* + 2(qd) + pdg)dh.
On peut poser
(6) dy = 2(qdb + pdy),

car, d’aprés ce qui a été dit plus haut, le second membre est une différentielle
exacte; et on a :

de® + dy* + d2* = dy* + dody.

La forme de cette équation montre que 'on obtient un couple de surfaces appli-
cables, ou, d’une facon plus précise, deux réseaux C applicables.

[2] On peut fonder sur ces remarques une méthode de recherche des surfaces
applicables sur une surface donnée X en cherchant & déterminer la surface S de
facon que le réseau point C correspondant soit paralléle & un réseau de =, qui sera
nécessairement aussi un réseau C.

Supposons la surface = définie par son équation tangentielle
(7) P=f(U,V, W),
I'équation du plan tangent étant :
Ux + Vy + Wz — P =o.
Les quatre coordonnées U, V, W, P vérifient une méme équation de Laplace de la

forme

YU U AU
dudv +A du + BDT+C[J:O'

Pour que cetle équation admelte quatre solutions liées par la relation (7), on
doit avoir :

R R R Y ) 4

- 2f U WU Ly »f <D\‘ W )V DW> Y
UM v du

En remarquant que la fonction f est homogéne ct du premier degré, on a des
identités de la forme
. . 2’2‘/‘

rf
NIE v

UIW

+ W o
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ui permettent d’éliminer ¥ bf et ¥ et I'équati cédent *écrit al

qui p 0 v ¢ W équation précédente, s’écrit alors :
W W W VN Y

8 *U —_—— W— — —

®) (V w \u> (V ) w >avaw

Si le réseau tracé sur I est paralléle au réseau point OC,, OC,, le plan tangent
a ¥ est paralléle au plan OC,C,; on a donc : »

172

© v vV W
9 YZ,— VY2, 7X,—X,Z, XJY,—YX,

On a également :
UX, + VY, + WZ, = o.

Différentions par rapport & u en tenant compte des équations (1) et en remar-
quant que I'on a
UX+VY4+ WZ =o,
Uc + V' + We"=o,

il vient
U AV W
Xt Ty =
et, par suite,
Xl Y4 — Zi
2 - )
WV—~VDW W U vcU__UbV,
u u u u u u
et, de méme,
Xz . Yz _ Zz
dV QW W W U V.
/ A" —U
v hDJ U v —w v v v

En vertu de ces relations et des équations (g), 'équation (8) s’écrit :

. ¥

.(10) SXX,(YZ, — Y, i AW O

Les dérivées partielles étant homogeénes, on peul y remplacer U, V, W par les
valeurs proportionnelles tirées de (g). L’équation (10) est alors une relation homo-
géne et symétrique par rapport aux coordonnées des deux centres de courbure prin-
cipaux de S et peut servir & déterminer cette surface. Celle-ci étant connue, on
obtiendra par de simples quadratures une surface applicable sur X. En effet, on
connait les coordonnées du plan tangent & ¥; on en déduit celles du point de con-
tact x, y, z; alors les équations (5) et (6) déterminent les fonctions g, 0, ¥ qui défi-
nissent une surface X,, applicable sur X.
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Remarquons d’ailleurs que ces équations sont indépendantes du choix des varia-
bles; il n’est donc pas nécessaire d’avoir déterminé les lignes de courbure de S.

L’équation (10) étant homogéne par rapport a chacun des groupes de variables
X, Y, Z
surface paralléle ou inverse par rapport & I'origine: ces transformations ne donnent

, et X, Y,, Z, est encore vérifiée quand on remplace la surface S par une

pas de nouvelles solutions du probléme.
Considérons d'abord une surface paralléle & S. Les nouvelles fonctions 6, et ¢,
doivent vérifier des équations de la forme

do = (X + ch)do, + cdo,,
h désignant une constante; on a donc

h, =0, ¢, + ho, =g,

¢, est déterminée par I'équation
dy, = 2(X + ch)’do, + 2Zc(X + ch)dp, = d} + h’d6, + 2hdy,.

On a, par suite,

6, =86, 9, =¢ — ho, =1 = k0 4 ahy.

1

Cette transformation, qui n’altére pas la forme ¢* + 64, équivaut & une rotation
de X,.
Remplacons maintenant la surface S par une surface inverse; les formules de

transformation sont :

X
X,:f—, C,:C——BX,
2q q
k* kp
‘1.——4(1’ p‘—_z_q',

On déterminera g, et 0, par des équations de la forme

. de = X,db, + ¢, dy,
ou
kX
de ="~ do, — P Xdy, + cds,.
?q (1 ‘ 4
En identifiant avec les équations (5). on a :
kdd, — apds, = 2¢qdb, dy, = dy.

d’ou A
kdb, = 2qdb + apdy = d.

D’autre part,

d :ﬁdﬂ —A—p
29 ' q

11

dy, = kdb.
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En définitive, on a

T4

- g, 0:—, [ s
%, ¢ . A Y ko

cetle transformation n’est pas autre chose qu'une symétrie.

Aux systémes plusieurs fois C correspondent des surfaces S ayant leurs centres
de courbure principaux en perspective par rapport & l'origine, -mais qui ne se dédui-
sent pas I'une de I'autre par I'une des transformations précédentes.

Les normales correspondanteé a deux de ces surfaces sont dans un méme plan
passant par l'origine et les développables se correspondent; le point d’intersection
de ces deux normales décrit donc un réseau qui par suite est 20.20. On voit ainsi,
comme I'a déja établi M. Guichard, que la recherche des systémes plusieurs fois G
est équivalente & celle des réseaux 20 . 20.

Dans tous les cas, & une surface S correspond un réseau G et, par suite, une sur-
face X, applicable sur ¥.

[8] La considération des réseaux C et des congruences O harmoniques peut éga-
lement conduire a I'équation de M. Weingarten. Supposons connue la surface I,
rapportée aux coordonnées o, b, 6. La surface auxiliaire S est précisément celle a
laquelle conduit la méthode de M. Weingarten pour la détermination des surfaces
applicables sur X, . '

L’équation aux différentielles totales (6) montre que I'équation du plan tangent
a X, est de la forme

Y =290 +2pg +r,

r étant une fonction de p et ¢,

r=/f(p. q);

cette derniere équation est I'équation tangentielle de ¥, dans le systéme de coordon-
nées adopté. Les courbes de paramétres u et v étant conjuguées, p, g et r vérifient une
équation de la forme

p D_p LB op

+ A — =—o.
u v du dv

Pour que cette équation admette la solution r, il faut et il suffit que

O dp 3p Y 02wty Sag
p* du dv - JpYg <b dv - dv du ¢ du dv
Or.
d N d d
4___ R P, 9_ gL,
du du Qv dv
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En substituant dans I'équation précédente, il vient :

Def D“:f‘ ‘\a B . )
i~ BRI+ RR =0,

1 2 2 Y
Q

C’est I'équation de M. Weingarten a laquelle satisfait la surface S. La surface %,

applicable sur T, se déduit des formules (5).

[4] Les formules élablies aux paragraphes (1) et (2) permettent de résoudre dif-
férents problémes relatifs aux réseaux C en cherchant les surfaces pour lesquelles
ces réseaux jouissent de propriétés particuliéres.

Cherchons, par exemple, les surfaces sur lesquelles I'une des familles de courbes
du réseau est formée des courbes de contact de cylindres circonscrits. Supposons que

ce soient les courbes u=ct*. On a:

Q dy 2z
u u u
X, o Y, o Z,

Ces équations définissent la tangente & la courbe v=ct*; celle-ci conserve une
direction fixe quand v varie seul; les rapports mutuels de X,, Y,, Z restent donc
constants. Comme le point C, ne décrit pas une droite passant par l'origine, il faut
et il suffit que C, soit fixe. L’'une des nappes de la surface focale de S se réduit a une
courbe.

Si les deux familles du réseau possédent la méme propriété, les deux nappes
focales de S se réduisent a des courbes qui sont des coniques. Les droites joignant
I'origine aux centres de courbure décrivent des cones qui peuvent se réduire a des
plans. ' '

Dans ce cas, I'équation du réseau conjugué est

PR
o °

et la surface X est une surface de translation.

La discussion conduit & étudier la nature des points d’intersection des coniques
focales avec le plan de I'infini. Soit y I'un de ces coniques; si elle coupe le plan de
I'infini en deux points distincts ou confondus non situés sur le cercle de I'infini, la
surface S est une cyclide de Dupin.

n y aurait lieu d’envisager également les cas suivants :

1° v rencontre le plan de I'infini en deux points distincts, dont 'un est situé sur
le cercle de I'infini:

2° v est tangente au plan de l'infini en un point situé sur le cercle de I'infini;
3° y est tangente au cercle de U'infini.
Fac. de 7., 3¢ S., 1II. 50
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Sans entrer dans une discussion détaillée qui n’offre aucune difficulté, considérons
le cas le plus général ot la surface focale de S se réduit & une ellipse et une hyper-
bole focales I'une de I'autre.

Les équations de ces deux courbes peuvent s’écrire :

(=) =8,
a b

(—a)' (—y
e
y I$ o ’ a2 b2 b‘z

z—y=o,

I —= 0.

Posons :
a=\a*—b*.

On peut exprimer les coordonnées des centres de courbure par les formules

X,=a+acosp,, X,=2+4 a'cosp,,
Y,=8+ bsing,, Y, =8,
Z, =y, Z,:‘\{—}—bisinp’.

Les rayons de courbure sont, & une constante prés :
— ! —_—
R,=a’cosp,, R,=acosyp,.

On a pour les coordonnées d’'un point de ¥ des équations de la forme

~

x : dx

~

2 1°?
2 %,
et u sont donc respectivement des fonctions de p, et p, :

n=TF(), b= D(p,).

et on peut écrire :

ac:f(z + acosp,)Fds, + /(u + d'cos g,)Ddp,,

y=f(.3+bsin P,>Fd.°l+.3f‘l>d9,v
Z—*(depl +f(~(+bi sin ) Do, .

Ces formules déterminent la surface X. Pour obtenir la surface X, applicable

sur X, reportons-nous aux équations (4) :

o o6

:)‘: F(P;)’ == (1)(92)’

~/

~
[}

”
%y 2

d
P

9
¢,

-

=nR,=a'T(;,) cos p,,

s

-

~

=pR,=ad(p,) cos g,.
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Pour calculer §, remarquons que I'on a
dz® + dy* + d2* = dy* + dod;

en identifiant, on trouve immeédiatement

\M = (h 4 2a2 cos p, + 2b8 sin ¢,)F(p,).
%
o , e
= (k + 2a'xcos p, + 2b'yi sin p,) D (p,),
Ps .
en posant
h:a’+ﬁ’+‘{2+b2. k:m’—i—lﬁ’-{—«(’——b’.
On a alors :

OZ/de‘—k-/Cde,,
?:a’chos p‘dp‘-}—afd) cos ¢,dg,,

q,.:/(gaa cos g, + 2b8 sin p, + h)Fdo, + f(ga'acos o, -+ abyisinp, + k)Ddp,.

Ces formules définissent une surface de translation £, applicable sur .
On peut aisément faire disparaitre les signes de quadrature en posant
Pi P2
=tg—, V= Itg —;
u g 2 g 2
F:Um(l _{__us)n’ ‘I):V"’(I -I-Uz)’,

U et V désignant des fonctions arbitraires de u et de v. On n’aura plus alors qu'a
effectuer des quadratures de la forme

/U"’du —
/uU’”du — 2 U"— U,

/u’U"’du = u’'U"— 20U +2U.

On pourrait développer des calculs analogues quand les focales sont des para-
boles. Nous montrerons plus loin que cette méthode fournit une infinité de surfaces
applicables sur le paraboloide quelconque.

Dans le méme ordre d’idées. proposons-nous de chercher les surfaces sur les-
quelles un systéme C est formé de lignes de longueur nulle, ce qui revient 4 la
recherche des surfaces minima applicables les unes sur les autres.
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Dans ce cas, les centres de courbure de S sont sur le cone isotrope, avant pour
sommet l'origine; les lieux des centres sont des sections du cone par des plans iso-
tropes. Soit, en effet, y I'une de ces courbes, si son plan n’est pas isotrope; y est un
cercle, le second lieu des centres est alors une droite et la surface ne répond pas & la
question.

Donc v doit étre tangent au cercle de l'infini. Soit
r—iy=—a
I'équation de son plan. Si on considére une sphére dont le centre décrit cette courbe,
le plan de la deuxiéme courbe focale y" a pour équation
(X —2)a" + (Y =)y + @ =2 41— @y + ) =0

-en prenant pour variable le rayon de la sphére (*).
De I'équation
4y 4+ =0
on lire par différentiation :

xx" +yy' +z2" 4+ ¥+ 2 =o.
Iéquation de y' s'écrit alors :
X"+ Yy +Z2" + 1 =o,

elle doit représenter un plan isotrope; on a donc

x4y 42" =o,
d’ott
I'équation du plan est en définitive

X"+ Yy "+ 1=o0
ou

X—iY + =o.

el x" doit étre constant.

On peut donc prendre les équations des plans des deux focales sous la forme

X, —iY,=a,
X,—1Y,=b.
Posons
Z,=au,
il vient :

X, + iY,= — au’.

(') Darsoux, Legons.
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T T

on aura de méme :

1

b bi
X,=—@—0), Yizf(l Lo, Z,=bv.
La distance des deux centres est donnée par I'équation
d*=3X,—X)* =ab(u—v)*;
on peut donc prendre pour les rayons de courbure
R,—u\/ab, —w/ab.

Les coordonnées d’un point de £ sont données par des équations de la forme

~J

N
Y =nX,, =X,
u v

o/

% et w sont respectivement des fonctions de u et v. Posons :

1 1
A EF(u), pL:BG(v).

On obtient les formules connues qui expriment les coordonnées d’un point d’'une
surface minima :

(x:_;_f(l_ue)l;‘(u)du_l_éf([—vi)G(v)d‘v,
i

(11) ‘y*_—;/(x +u’)l’(u)du+;if(1 + v*)G(v)dv,

\z: qu(u)du + /vG(v)dv.

Pour obtenir la surface X, applicable, remarquons, comme précédemment, que
Iona:

20 I L] 1
—_— :—F —_— ) = — 5
=i=lFw. S =u=160)
do b .
D_l_z:AR': aub(u),
do a ,
ﬁ:UR‘Z ZU(J(U)
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On calcule Y au moyen des équations

d9\* 36

(@)h—uﬁ—"*
acp>2 200
(ﬁ LTS Tkl

qui donnent :

o/

" R 21 b"!'___ 2
e bu’F (u), Ty G(v).

(4

Pour rapporter la surface & des coordonnées cartésiennes, posons :

.’L"—iyiz\/ae, $l+iy‘:—l——-u]/, z,=g9.
Vab
On a

dx, 1 . de, 1 .

‘u__;m(l——u)F(u), E_R(I—U)G(v),

i Lo+ u)F () Wi LG

du T 2 ’ W am V)G Q)
1= muF(u) s ! vG(v)
- . % = (v

On voit qu’on obtient les coordonnées d’'un point de =, en remplagant dans les
. . I \

formules (11) les fonctions F(u) et G(v), respectivement, par mF(u) et ;G(v), ou m
désigne un paramétre arbitraire (*). Le réseau C est ici plusieurs fois C.

M. Guichard a déterminé les réseaux C dans lesquels les courbes d'une famille
sont planes (3).

Supposons que ce soient les courbes v =ct*; on peut alors déterminer trois fonc-
tionsdev : A, B, C, telles que

dc d Az
AZ B Ll =y,
du du du

cette équation exprime que la tangente a la courbe v=ct® est parall¢le & un plan
fixe. D’aprés les relations (2), on a

AX, + BY, + CZ,=o.

(1) Darsoux, Legons, t. 1.
(3) Comples rendus, 27 mars 1911.
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c’est-a-dire que, quand u varie seul, le centre C, décrit une courbe plane dont le plan
passe par l'origine. Le probléme revient donc & déterminer une surface telle que sur
la surface focale une famille de géodésiques a pour conjuguées des courbes planes
dont les plans passent par un point fixe.

On peut aisément obtenir des solutions particuliéres. Supposons que I'une des
nappes de la surface focale se réduise & une courbe; I'autre nappe est un lieu de
coniques; si on considére la surface comme I'enveloppe d’une sphére variable et si
on désigne par x. y, z les coordonnées du centre en prenant pour variable indépen-
dante le rayon, 1'équation du plan d’une de ces coniques s’écrit :

X—2)x"+Y—9)y"+Z—2)2"+1— (2" +y*+ ) =o0.
Pour que ce plan passe par l'origine, on doit avoir
xx" +yy' 4+ 22"+ +y*+2*—1 =0,

d’ou, en intégrant,
'+ y*+2°=R*+ 20R + b:

en ajoutant & R une constante, on peut écrire :
x4y + 2 — R =ct°.

La surface S est alors I'enveloppe d’une sphére qui coupe orthogonalement une
sphére fixe.

Le réseau C correspondant contient une famille de courbes planes qui sont en
méme temps les courbes de contact de cylindres circonscrits.

On obtient également des solutions particuliéres en supposant la surface S
engendrée par une courbe plane y dont le plan P roule sur une développable D. Les
normales & y dans une de ses positions forment une développable réduite & un plan;
ces normales touchent la développable D en des points situés sur une génératrice
rectiligne; on peut donc regarder ces points comme situés dans un plan passant par
I'origine.

[5] L’équation générale (10) est assez compliquée; on peut toutefois, en déve-
loppant les calculs, I'obtenir sous une forme explicite relativement simple.

Ecrivons I'équation tangentielle de la surface donnée T sous la forme

U—Vi U4V
1’_Wf< w ”\V_>
et posons
U—Vi U+ Vi
. —“‘—r—-— . —‘&r—_— U, ‘V——- w.
ona:

p=wf(u, v).
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On obtient aisément les équations suivantes :

Yp i ¥f f

WV w (aw"w)’

r__ S LY
STHOW — —[u—+(u+v)\ o ”ﬁ?
. _[ ”f > v/
VW w \u'av \v

Portons ces valeurs dans I'équation (10), elle devient

WZZ(Qf —y—f,> iUXX[uD—f—(u )Nf _vb’f

Qv u’ U hEs

+ VY)Y,

—o,
\u\v \v:l

ou en ordonnant, par rapport aux dérivées partielles et en tenant compte des valeurs
deuetv:

31{; (UU—=VHXX, +iVU—-V)YY,—WZZ)]
¢
3f . . o
+ > = [—U0U + V)X X , VU +V)YY, + WZZ,)
+ 2l )

X ,Y,) UV =o.
bubv (\1X2 + \1Y2) o

Remarquons que l'on a :
WZ,=—(UX, + VY)),
WZ,=— (UX, + VY.

En substituant ces valeurs dans I'équation précédente, il vient, aprés réductions
et en divisant par UV :

2 . R . : 2 .
3o O D O — 00 o o O+ ) (X, Y — 2 e (X, V.Y =

En employant les coordonnées symétriques (*), on a :
Xa—'iYAZS + \/;;'
X, + iY,=—aB(s + Vrt) + 2p + g —&,
X, —iY,=s—\/rt,
Xz + iYe;:—laB(s— \/7‘[) + op + ﬁq—&

(') DarBoux, Legons, I, p. 245.
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Si on porte ces valeurs dans la derni¢re équation, les coefficients des dérivées par-
tielles deviennent respectivement
" —rt,
W(ST—rl) —axfs(ap + B¢ — ) + (ap + pg— 2
—2a8(s"—rf) + 2s(xp + Bg—E).

et 'équation s’écrit finalement :

D!-/‘ b’;/' 2n2 a’;f 2
‘ <Du’+21'83ubv+ap b?) S

2 ( N Y
\~2S(ap+.8q—5)(aﬁbug+aubv>+(<xp+.6q—;)wz@-

Ainsi que nous allons le montrer. u et v sont indépendants de r, s, {, de sorte
que cette équation est une équation de Monge-Ampére.

Ona:
U=YZ—Z2Y,, V=1X,—XZ., W=XY,—YX,.
D’ou
U— Vi=i[Z,(X,—iY,) —Z,(X, — iY,)| = — i(p + q)\/rt.
De méme,
U+ Vi=i[(x+ 8)(op + Bg—5) — (p + q)ab]V/rL.
Enfin,
W:é[(X‘ +0Y,) (X, — iY,) — (X, — i) (X, + iY,)]
=—i(ap+8g—3)Vrt.
On a donc :
__p+a
ap + g —%’
p=BP+ D=+ BEp+Eg—Y

ap+Bg—2
Appliquons & I'équation (12) la transformation de Legendre en remplacant

aetf par petgqg,
petg par xety,
ap+8¢g—% par oz
Fac. de T., 3¢ S., III. 51
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L’équation prend la forme

. .‘ b’ Dg (\k 32 ag bg
(13) Z“(rt~8')‘;§+2Z<pq /+ f>s—<p’q*;—£+2pq / +—J:>=o,

v dudv ud
oulon a:

x4 x +
p="T v=pq—z—y—(p+q)~-

Z

Si la surface X est un paraboloide de révolution, / a la forme

S = auv.
Alors,
&
W °
L’équation (13) se réduit &
sz—pg=o

que l'on sait intégrer.
Supposons que f soit linéaire par rapport & v; la surface X est une surface réglée
4 plan directeur isotrope; on peut écrire

p=w[f(u) +vo(u)]
el I'équation (13) devient

(52— pq)o'(w) —f"(w) —vy'(w) = o,

c’est-a-dire ,
sz—pqg—F@w)—ovd(u) =o.
Posons :
z, = rry
z
11 vient
_ o (x+yt
u——’zl' v—pi(L Z:I Z"
) _ 4y 1.
$I—pg= P ('Saza paqa) Zj ’
I'équation prend alors la forme
F(z)

Sl:piql(l)i(za) + (w + y)z *
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Enfin, en prenant pour fonction inconnue une fonction convenablement choisie
de z,, on fait disparaitre le terme en pg et on raméne I'équation & la forme plus
simple
(14) | s=7L12

(x+7)

qui différe par le changement de y en — § de I'équation étudiée dans les Legons de

M. Darboux ().

[6] M. Darboux a déterminé la forme de f pour laquelle I'équation (14) est inté-
grable par sa méthode, en se bornant aux intégrales intermédiaires du second ordre.
On peut se poser & ce sujet un probléme analogue & celui que Sophus Lie a résolu

pour I'équation

s =/(2)

et chercher si I'équation (14) peut admettre des intégrales intermédiaires d’ordre
quelconque. Nous laisserons de c6té le cas ol la fonction f serait constante ou
linéaire. .

On constate facilement (?) que si d¢ est une combinaison intégrable de I'un des

systémes de caractéristiques, ¢ a I'une des deux formes :

9(Ly Y Py Pas -5 Pu)»
G(L, ¥ 4 ys +ovr Q)

Supposons que ce soit la premiére; p,, p,. ..., p, désignent les dérivées partielles
de z par rapport &  seulement jusqu’a 'ordre n.
¢ doit vérifier I'équation

i d  p, d p, d p,
(15) :P \i_?+\£\_<? I TS S
dy  dydp,  yp, dy Ip,
\ p, p, p, . .
ou on suppose —D?’ Dy C Yy exprimées en fonction de p,, p,, ..., p, par les

formules suivantes :

op, Sf(2)

==

dy @+

w,_3s_pJ'@ TG
y  w (+y) (@+y)

(') T.1IV, p. 324. .
(2) Cf. Gounsar, Eq. aux dérivées partielles du second ordre I1.
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D’une maniére générale, on aura :

dp, s 1

_ ) I T AC))
Y o @iy P S @)+ o —(—1) “W:I‘

La parenthése est linéaire par rapport & f et ses dérivées. Si on regarde

x+y
--» p, comme affectés de poids respectivement

¢gaux & leurs indices, on voit sans peine que la parenthése est de poids (k — 1).

L'équation (15) est alors linéaire par rapport A f et ses n premiéres dérivées; elle
a la forme

comme étant de poids 1 et p,. p,, .

~

(16) A" FA S AL AL + 53 —o,

<

ot I'on a en particulier :

I IR 2 9 N n! o
Ao:—,zli‘—?—— —?——l———(“I) ‘E—:— .
(@ +y Lap, a+yop, (@ +5)"" p,
Si dans I'équation (16) on donne & =, y, p,. ..., p, des valeurs arbitraires, on
obtient pour f une équation linéaire i coefficients constants: donc f est de la forme
S(@)=1e"0,(2) + €"0,(2) + ... + a,

9,, 0, ... désignant des polynomes entiers en z et a, b, ..., « des constantes.

Si on substitue cette valeur de f dans I'équation (16), on obtient une identité de
la forme

-~

[
¥

Y

e‘“@’(z) + ebze)e(z) + + Aol +

:O,

~

),, O, ... désignent encore des polynomes entiers en z, mais qui renferment
&, Y, Py ---» P, siune telle identité existe, on a nécessairement :

oy
Aol -+ E =0
Supposons d’abord « =o0; on a alors

29

= O’

oy
el I'équation (15) devient :
(15 bis) Py 2% APy A,

dy ap,  dyp, T Xy ap
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Le premier membre est un polynéme entier en

; comme ¢ et ses dérivées

ne dépendent pas de vy, les coefficients de ce polyndme sont tous nuls; le coefficient
I

de ————— est
@+

Jdo
—+n! —+ —o;
op,

on verrait de proche en proche que toutes les dérivées partielles de ¢ sont nulles,

d
sauf ¢

; la seule combinaison intégrable est donc dr=o.

L&

Supposons maintenant que « ne soit pas nul; on a

d
A+ s o,
oy
c’est-a-dire
. x4+ ¥)*d ) 2 M i n! J
(1) X(p=1FW2e, 3 b (=) ?

_— —_— 0
« dy 2p, x+Yydp, (@ + )" op,

équation que I'on peut joindre & I'équation (15) pour déterminer 9.
Multiplions I'équation (15) par (x + y)?, I'équation (17) par f et retranchons
d
membre & membre, les termes en f disparaissent, sauf dans le coefficient de f\—cP; il

Yy
vient :

n

e L D AR LA N : X% _..

( +y) <'—:>E+P.fb—m+}4(Pk_.f + Ak—i)m—(ﬁ
3

la sommation étant étendue & U'indice k.
A;_, est de poids k —r1 et ne renferme que les dérivées partielles p,, p,, ..., DPi—s-
Posons

u=/f—a,

I'équation précédente s’écrit :

—u@4y)*e
W Ty ey,

%

n
+ ) Wpe, + A

3

différentions par rapport a z -

—u'(x +y) o :

dp ~ QA N\ o
;_‘ + u”p‘ C b Z u”p/;_, + k 4> * —o.
3 dy op, 0z /) dp,
3
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Si u” —uu" n’est pas nul, on peut résoudre ces deux équations par rapport

Qo 29 e . do
a — et —; en ¢éliminant —, on a
V(o) = 2( +a) =0
©)—=— % — =o0,
pa‘ ’ plc— k—1 BP;C

ou u,_, est de poids k — 1 et ne renferme que p,, p,, ..., p,_,, EL-}——y et z.
A cette équation, joignons I'équation (17) et formons le crochet X, =[YX] :

¢

D)
S R —
‘*@)—apg .13 + ot B, — T +..=o0

ot I'on a, d’'une maniére générale,
Bros = X(Ppy + %)
cette expression est de poids k — 2 et ne contient les dérivées partielles de z que jus-
qu'aYordre bk — 2.
Formons de méme X, =[YX,] :

' 9 o9 27 Y
Xz(f)_'{ob_ps Ty, Fo Ve gy T =08
Yi_, estde poids k — 3 et ne renferme les dérivées partielles que jusqu’a 'ordre ks — 3.

Si on forme la suite d’équations

=YX, X, =[VX], s X, =[VX,]..
X, sera de la forme
do c g
X —a, (b b > —_— ... == 0O;
W=y, O ) T

a, est une constante, b, et ¢, ne renferment que z; on vérifie aisément cette loi de
proche en proche; pour déterminer a,,,, considérons X, ,, =[YX,] :

Uy =Y <bhp4 z f: y> — Xy (Prs + %)
en remarquant que Y ne contient ni i—? ni g—?, et que «,,, ne renferme pas p,,,,
Prsgs -+» Dys ON YOIt que 7 b
oy = — X4 (Phs) = — W

en appliquant sans aucune modification le raisonnement de Lie, on voit finalement

que

W%
”__‘(@) - (—-I) i;_ =0.
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Par suite, ¢ ne dépend pas de p,; de proche en proche, on en déduit que ¢ ne
dépend pas de p,, p,, ..., p,: I'équation (18) montre alors que ¢ est aussi indépen-
dante de y et, d’apres (17), ¢ ne renferme pas non plus p,; ¢ dépend donc unique-
ment de x, la seule combinaison intégrable est dx —o.

Si u” — uu” n’est pas nul, I'équation (14) ne peut étre intégrée par la méthode de
M. Darboux.

Supposons a”* — uu" —o. c’est-a-dire

f(@)=Ae" + a.

Sous cette forme, la fonction f n’est pas encore parfaitement déterminée; I'équa-
tion (14) s’écrit :

Ae™ + a
s :(90—4')');
Posons .
z=2"— alog (x + y),
il vient
o Aew _ F(2)
@+y" @+
en posant :

m=aax + 2.

Si m n’est pas nul, cette équation est analogue a I'équation (14); on peut lui
appliquer les considérations que nous venons de développer; il suffit de remarquer
que ‘

op, _ 1 p
y (4"

k—1?

P,_, étant de poids & — 1 par rapport & Dy Pyr -+ Pi—, - On sera alors dans le

’
x4y
premier des deux cas que nous venons d’éludier; la fonction F(z') vérifie une équa-

tion linéaire & coeflicients constants, sans second membre. S’il existe une intégrale
intermédiaire, celle-ci ne dépendra pas de y, et en raisonnant comme pour l'équa-
tion (15 bis). on verra que la seule combinaison intégrable est dr —o.

2 . ; .y , .
[l faut donc que m=o0 ou «=——; la fonction s’ est déterminée par I'équation
a

de Liouville. Par conséquent, pour que I'équation (14) puisse étre intégrée par la
méthode de M. Darboux, il faut, en supposant que f n’est ni constante ni linéaire,
qu’elle ait la forme

llﬁ__E
Sf(z)=Ae¢e 2
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[7] A la théorie des réseaux C de I'espace a trois dimensions se rattache immé-
diatement celle des réseaux de I'espace 4 quatre dimensions applicables sur un plan.
M. Guichard leur a donné le nom de réseaux L et il a montré que tout réseau har-
monique & une congruence isotrope est L; inversement, il existe deux congruences
isotropes harmoniques & un réseau L.

Si on joint un point fixe aux deux foyers d’une congruence isotrope, on obtient
un réseau point paralléle A une infinité de réseaux L. Ce résultat est d’ailleurs une
conséquence immédiate du paragraphe 1.

Dans l'identité
dx® + dy* - dz* —dy* =dody
posons :
lo=1.

]
Le point M(x, v, z, t) décrit un réseau L.
D’autre part, si on considére les deux points F, et F, ayant respectivement pour
coordonnées
X, Y,.Z, T, =iR,, X,.Y,,Z,, T, =(R,,
on reconnait facilement qu’ils décrivent les réseaux focaux d’une congruence iso-

trope et on a :

o/
N

hbi dy d
% Su_ du_
L A 7 A
(19) o’r dy « dz ot
o w2
X, Y, 1Z T

1 i 1 1
Le réseau L est donc paralléle au réseau point OF, . OF,.
On peut aussi rattacher les réseaux L aux congruences de normales dans la géo-
métrie de Cayley.
Prenons pour absolu la quadrique dont 1'équation est
+y+ 2+ =o.
Soient X, Y, Z, T les coordonnées d’un point M d’une surface S et o, B, 1, O celles
du plan tangent; nous supposerons :
X+ Y+ 724+ T =1,
a2+‘(32+‘(2+8221.

Les coordonnées des centres de courbure s’expriment par les formules

X,=Xcosp, + asinp,, X,=Xcos p, + a sin p,,
Y,=Ycosp, + B8sinp,, Y,= Ycosp, + 8 sinp,,
Z, = Zcos p, + v sin p,, Z,=Zcos p, + vy sin p,,

T, =Tcos ¢, + 3sin g, T,=T cos p, + 2 sin p,.

1
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Si u et v sont les paramétres des lignes de courbure, les formules d’0. Rodrigue

généralisées s’écrivent :

X R X +M
— CoS — sinp, —o, — COS & — sinp, =o0
u 94 +Du A v s dv Pa
Posons : g
QX dy 0z o
du u  du __du .
\9 o YS o ZS o ]‘2 o ’
2 dy Az o
v v v dv
frmmy pr— fmnd == !J_.

ta
e
N
-

-
-

Ecrivons la condition d’intégrabilité pour x :

P . 2 . .
— [A(X cos p, + a sin p,)] = — [n(X cos p, 4+ « sin p,)],
v u

c’est-d-dire

X . d . d .
\ — —_—— ~ — (A —— o— .
) I 3o (Acoso,) S (ncosg,) | + a | Dv( sin p,) % (»sin 9.)_' =o

Cette équation devant étre satisfaite pour les quatre coordonnées, est identique;

on doit donc avoir :

) . J

R (}\ cos Ps) - % (}L cos PI)’
d . D) .

5;()\ sin p,) = Sl;(y, sin p,).

On peut choisir A et u, de maniére que ces deux équations soient vérifiées, et on

pourra alors poser

28 28
XcosP,_.a—, uCosp, ="
AR 1,
Asinp, = —, usin p, = —,
P+ =3, psinp, =3
et on a des équations de la forme
d dE o, dx dE dn
—:K—‘ U»"'“‘s _:x_5 x—,
u u+ ou Qv bv+ v
d’ot on tire :
e 2= 32
—X g +a iyl
u AT dudv

Fac. de T., 3¢ S., III. 52
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On a des équations analogues pour y, z, { et, par suite, «, ¥, 2, ¢, 2, v vérifient une
méme équation de Laplace; le point (x, y, z, {) décrit donc un réseau.
D’autre part,

dr = X\d+ ady.
dy = Yd3 + fdx,
dz = Zd3 + vdu,
dt = Td% + 2d,,

en faisant la somme des carrés
do® +dy* +d2* + df =d + d®,
cest-a-dire que le réseau est L.
[8] Le résultat précédent peut se déduire du paragraphe 1 par une transfor-
mation de contact qui conserve les lignes de courbure en passant de l'espace eucli-

dien 4 l'espace non euclidien. Conservons les notations du paragraphe 1 et consi-
dérons les deux points F, et F, qui ont pour coordonnées

et

1 Yi Z'l et X YZ
1 ' 1 ’ 1 B2 ’ R '

2

==

‘ .
R,

La droite F,F, engendre une congruence dont F, et F, sont les foyers et dont les
plans focaux sont conjugués par rapport a la sphére

2 +y +F—1=o.

A la surface S, associons son inverse par rapport a I'origine. Soient M et M' deux
points inverses et p. et p' les points correspondants des représentations sphériques
des deux surfaces; la droite p.u’ est paralléle & MM’, car les deux normales forment
avec MM’ un triangle isocéle dont les cOtés sont paralléles & ceux du triangle Oup/.

Quand M se déplace sur une ligne de courbure, il en est de méme de M, et les
tangentes aux trajectoires de . et p' sont paralléles & celles des lignes de courbure;
elles sont donc dans un méme plan et, par suite, p.p.’ engendre une développable.
Soit G la congruence engendrée par u.p.'; les développables de G correspondent aux
lignes de courbure de S et elles découpent sur la sphére un réseau conjugué; les
plans focaux sont donc conjugués par rapport & cette sphére; autrement dit, la con-
gruence G est une congruence de normales non euclidiennes, la sphére étant prise
pour absolu. ‘

D’autre part, les droites p.p’ et la normale a S sont dans un méme plan passant
par Lorigine O; comme les développables se correspondent, les foyers sont en pers-



SUR LA DEFORMATION DES QUADRIQUES, ETC. hot

pective par rapport & O; si on désigne par F, et F, les foyers de pp, on a immédia-
tement, par des triangles semblables,

OF,  Ou . oc,
'Ot—ml', 01‘1——}?'

les coordonnées du point F, sont donc

X, Y, Z,

R,” R, R’
de méme celles du point F, :

X, Y, Z,

R,” R,” R’

c’est ce que nous voulions établir.
Si on adopte les coordonnées homogénes

X,,Y,Z,T,=iR, XV, Z,T,=iR

2

en i)osant, comme plus haut, ip =1¢, on voit que I'équation homogéne de la sphére
est .
4y +22+8=o0

et les tangentes au réseau L vérifient les équations (19).

La transformation que nous venons de définir fait correspondre aux lignes de
courbure euclidiennes des lignes de courbure non euclidiennes; nous allons montrer
(ue c’est une transformation de contact.

Un point quelconque de p.p' a pour coordonnées

r=c + pX, y=c'+ oY, z=c"+ ¢Z.
Exprimons que ce point décrit une surface dont le plan tangent contient la con-
juguée de p.p’ par rapport 4 la sphére. Cette droite a pour équations :
Yecx—1=—=o,
SXx=o.
11 faut exprimer que le point ayant pour coordonnées
x 4+ Adx, Yy + idy, z4+2dz
est sur cette droite; on a :
Ycx — 1 + A3cdr=o,
XXz + AXXdx =o.

Eliminons A :
(Bex — 1) 2Xdx — Zcde =2Xax = o.
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Or,
Scx — 1 =;2c\,
SAx =p3ENX* + Z¢X,
BXdx = pENdX + IXdc 4 EX'do,
Yede = XceXdp.
En substituant dans I'équation précédente, il vient :
*SXdX + pE=Xdec — 2eXdp =o,
pd(2c\) — ZeNdp o

3 ’

¢
en intégrant et en désignant par a une constante :

X
i »\2 +_C_:a‘
°

ZXdX +

2
o 2¥ceX
FET I
I’équation du plan tangent a la surface est
e+ pN)xr—1=o.

Pour déterminer 1., exprimons que ce plan contient le point (x, y, z). On trouve
immédiatement :

I I NG o
PR S
Dou
o 23¢X
{J.__————Exz T

.

La forme des équations précédentes montre que les coordonnées d’un point de la
nouvelle surface, ainsi que I'équation du plan tangent, ne dépendent que de I'élément
de contact de S; par suite, si on regarde a comme fixe, la transformation est bien
une transformation de contact; en faisant varier a, on obtient des surfaces non
euclidiennes paralléles.

Des équations précédentes, on tire :

Trt—1 :a?’

23X = ¢(EX* + a).
En éliminant g, on obtient I'équation caractéristique de la transformation
(EX* 4+ a) (2 — 1) — 4a(EXx) =o.

A tout point x, y, z correspondent deux sphéres symétriques par rapport a l'ori-

gine; & tout point X, Y, Z correspond une quadrique circonscrite & la sphere (sphére
cayleyienne).
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DEUXIEME PARTIE.

(4] Dans le cas ou la‘iurface Y est une quadrique, I'équation (10) prend une
forme remarquable qui s’établit immédiatement de la fagon suivante : Soit

o(x.v,2)+ax +by+cz+d=o

I’équation de X; ¢(x, y, z) étant homogéne et du second degré. L’équation ponctuelle
d’un réseau de X admet les quatre solutions x, y, z et 9. Pour qu’il en soit ainsi, on
doit avoir

2
¥ D
-

-6

g
v
8

2

N N SER
Qv dydz \du dv - dudv

-~/
~/

x

dy dz  dx dy dz
-, — et —, —, — par les quantités proportionnelles X_, Y., Z
o w0 P q prop 2 e T

et X,, Y,, Z,, cette équation devient

o
en remplagant 3
4

(n | Xy, + Yoy + 2,9, =o.

Elle exprime que les centres de courbure de la surface auxiliaire S sont conjugués
par rapport au cone asymptote de la quadrique. Ce dernier peut d’ailleurs dégénérer
en deux plans.

Si la surface ¥ est une sphére, on est conduit & la méme équation que par la
méthode de M. Weingarten :

X\, + Y,Y, +ZZ =o.

[2] Supposons que ¥ soit un paraboloide de révolution
x4y —a2z=o.
La surface auxiliaire S est définie par I'équation
(2) XX, + Y,Y,=o.

Pour déterminer cette surface, nous emploierons les coordonnées symétriques en
écrivant I'équation du plan tangent sous la forme

(@+Br+if—o0)y+ (1p—1)z+E=o0.
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D’aprés les formules connues (1), on a :
2X,=—(p+9)+ (x+ B)(s + VD),
2Y,=  (p—q)+ =B+ VD)
X, et Y, s'obtiennent en changeant le signe du radical; p, ¢, r, s, t désignent les déri-
vées partielles de Z par rapport & e et 8.
L’équation (2) s’écrit alors :
af(rt —s% + (ap + Bq)s — pg=o.
Cette équation est intégrable par la méthode de Monge; les caractéristiques sont
déterminées par 1'équation
K+ (pr+gB)r + aBpg=o,
dont les racines sont

)‘lz_px’ )\2:—(]?,;

les équations des deux systémes de caractéristiques sont alors :

d%z —pda— qdB = o, ‘di——pda*qdﬁ:o,
I adp — qdB = o, IT Bdp — pdB =o,
8dg — pde = o. adq — qda = o.

Le systéme I admet deux combinaisons intégrables :
dt — pdo — adp = o,
adp + pdr — Bdq — qdf — o,
qui donnent les deux intégrales premiéres
Z—pa=ct, ap — Bg=ct°.
Le systéme II admet manifestement les deux intégrales

£:Ct“, —g—:Cte.
6 ®

Pour appliquer la méthode de Monge, posons :

{—pa=u, pa—q8=F(u),
p=uv8, g=1ad ().
D’ou
1 F . vF 1 Fo
“=gv—a Yo TTEi—9

(1) DarBoux, Legons, 1, p. 246.
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Portons ces valeurs dans I'équation

d% — pda — qdB —=o,

il vient :
du  _dv  dp
F Tev—0 g
Si on pose ’
. S(@) 9 (v)
l*:— N v—(l): l, ’
S'(w) 7'(v)
on a, en intégrant, :
)
3(v)’
et, d’autre part,
¢’ vf g —vd . uef —ufd
o=, —_ - , = n .
Py T of
D’ou
S —od
g=4L — 7%
o+ of
ig—n=i 2
ef
o/ + /3
f—1=—2 T
% I qf’

L’équation du plan tangent & S est alors :
U —e9de + iU + 99)y — (3" +f2)7 + ugf —vfe' =o.

Nous prendrons pour variables u et v, car, ainsi que nous l'avons remarqué, il
n’est pas nécessaire de déterminer les lignes de courbure de S.

En tenant compte des valeurs de p et ¢, les coordonnées d’un point de S sont
définies par les équations ’

sle —(u+v)g]

N\ +iY =— 3
\ iy =ty ]’
A
g =S Y
A ’

ot I'on a posé :

A:?‘/‘,_fip/-
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Les cosinus directeurs de la normale sont :

J = ¢ ROV o & RN Je ol 2
A R ’ A y A .

=

I1 faut maintenant considérer le plan qui passe par l'origine et la normale, et
mener au paraboloide un plan tangent paralléle; I'équation de ce plan est

UX 4+ VY + WZ=o,
en posant :
U=¢Y—(Z, V=cZ—¢"X, W=¢X—¢cY.
On trouve facilement :

o[y + (u— v)q»'],

G+ Vie—i X
U_vie Mt/ a;_ u)f,],
w—_il%
A

Les coordonnées du point de contact du paraboloide avec un plan langent paral-
léle sont données par les équations

r_ Yy _—1
U V. W’
Dou
. ___U+Vi___ 9+ (u—0v)o'
x+1y= W ————~——7————,
. __U-——Vi__ f+Hw—u)f’
X ly—— '—W——- _‘—?“"—‘;
_@trin@E—iy) __ [f+0—u/]l+@=0)]
- 2 - 2f9 ’

Nous avons maintenant tous les éléments pour former les équations aux diffé-
rentielles totales (5) (1™ Partie); des deux premiéres, on tire :

dx + iy) =X 4+ iY)do + (¢ + ic")ds,
(@ — iy) = (X — iY)d0 + (¢ — ic')d.

(Nous y remplagons ¢ par o pour éviter une confusion avec la fonction ¢ déja
introduite).
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Ces deux équations permettent de calculer d et ds :

deﬁ[(u—v)(;w, ;‘;;) +_w_ fm:ldu,
# [ (G =) + 5 7

Le second membre est une différentielle exacte :

0_(u——v)fjlo?l ff” du —I—./‘q> dv.

Posons pour simplifier :

log f=F, log 9 = &;

0:(u——v)F"I>'——/F”du—i—fll)”dv.

Avec ces nouvelles notations, on a

adp =[v—u)F" + (@ — v )F'®' + F' — &' 4 2uF'®' — 2uF"*| du
+ [0 —u)®" + (@ — ) F'" + F' — &' — 20 F'D' 4 200"]dv,

et, en intégrant :

zp:(v—u)(F'—{—(I)’)+(u“——v”)F'(I)’-{—2(F—(I>)-—2qu’“(lu—|—2fvli>'*dv.

On a enfin
dy = 32X"d6 + 2EcXdp,

_ wF—v'd'—(u—v)

- Fl_q)r

uF' —od'
F!_q)l ’

>

et, par suite,
dy = [wv(v—u)F"®' + (2u0—0)F' + u(u—0)F" + v®’ + (v*—2u0) F'®’ + u*F"] du
+ [uv(v—u) F'®" — (2v—u) D' + v(u—v) D" — uF' — (u*—2uv) F'P’' — v*®"*] dv,

d’oti, en intégrant :

.,;,:(u——v)(uF'-l—v(I)'—qu'(I)’)—zqu’du+zfvtb’dv —{—/u’F"du—fvg(I)”dv.

On détermine ainsi les trois fonctions p, 6, { vérifiant I'identité

da* + dy* + dz* =dg* + dbdy.
Fac. de T., 3¢ S., IIL 53
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En remplagant F et & par les dérivées de deux nouvelles fonctions arbitraires f

et ¢, on fera disparaitre les quadratures /uF’du et fvtI)’dv en remarquant que

/uf"du =uf — f,

et on a finalement :

Oz(u——vf”:p”——ff"?du+fog”"dv,

:ap:(u’—v’)f”cp”—(u—v)(f”-}—ey")—|—2(f’—q;’)-——2/uf”’du+zqu,"’dv,

¥ = @—0) (" +v¢"—uvf'e") — 2uf’ 4 2w¢' 4 2(f—9) +/u’f”’du -—/v’q."’dv.

On n’a plus dans ces formules que les quadratures suivantes :

ffllﬂ du’ / ufﬂ? du S / u!f”z du B

et des quadratures analogues en v.

Pour faire disparaitre toutes les quadratures, il faudrait pouvoir trouver des
fonctions U et V, telles que

[]’W ____fIIZ 'V'" — (P”?
On voit qu’il est possible d’obtenir une infinité de surfaces algébriques en prenant
pour f et ¢ des polynomes ou des fonctions rationnelles.

Les formules précédentes, ou u et v sont les paramétres des lignes asymptotiques,
ne différent que par un simple changement de notation des formules connues.

[8] La méthode que nous venons d’employer conduit également a la détermi-
nation des surfaces applicables sur les paraboloides ayant un plan directeur isotrope.
Considérons d’abord le paraboloide

2(x —iy) — k(x + iy)=o,

dont le point de contact avec le cercle de l'infini est aussi le point de contact avec le
plan de l'infini.

La surface auxiliaire S est définie par 'équation
Z(X,—iY,) +Z(\,—iY,)=o0.
Si on adopte le systéme de coordonndes syméiriques obtenu en changeant 8

1 . ’ 14 H s r .
en o dans celui que nous venons d’employer. cette équation s’écrit

‘ (24 B) ("L — %) + (p + @) s =o0.
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et, par la transformation de Legendre,

(& +8)s'—(p" +q)=o0,
équation analogue & celle des surfaces minima. Cette équation peut étre intégrée par
la méthode de Laplace; son intégrale générale est :

F=(a 4 §) [F(x) + ()] — 2 [F() + D(B)].

Pour obtenir l'intégrale de I'équation primitive, posons

ona:
e=p =@+ v)F" — (" — ),
B=¢ =@+ 0v)®" +F — ¢/,
E=pd+¢p—E=w+v)@t +vd")— 2uF — 20®'—2(F + &),
p=u, =w.
Ces équations déterminent S et la suite du calcul n’exige plus que des quadra-

tures.
Envisageons maintenant le paraboloide

x(x — iy) —kz=—o,
dont les points de contact avec le plan et le cercle de I'infini sont différents. S est
définie par I'équation

X, (X, —1Y,) + X, (X,—1Y,)=o:
en coordonnées symétriques, cette équation s’écrit
(B—1)(rt—5)+ (@@p+g—3s=o,
et, par la transformation de Legendre,
S'E! :plql - l,

équation qui se raméne a celle de Liouville et dont I'intégrale générale est :

o F() + D)

e _—.

VD

La surface 8 se détermine donc sans quadratures et on peut obtenir, par de sim-
ples quadratures, les surfaces applicables sur le paraboloide considéré.

[4] Si la quadrique est un paraboloide quelconque ou une quadrique & centre,
I'équation (1) n’est plus intégrable, mais on peut obtenir des solutions particuliéres;
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de plus, la considération des congruences de normales, dont les foyers sont conju-
gués par rapport au céne directeur, conduit & une méthode de transformation des
surfaces applicables sur une quadrique donnée, permettant de déduire d’une de ces
surfaces une infinité d’autres dépendant d’un nombre illimité de paramétres.

Pour obtenir des solutions particuliéres, supposons que I'une des nappes focales
de S se réduise & une courbe. Soit

Ax® 4+ By* + Cz* = o,

I'équation du cone directeur de la quadrique.

La surface S est 'enveloppe d'une sphére dépendant d’un paramétre. Prenons le
rayon R comme variable et soient &, y, z les coordonnées du centre. Le centre O, de
la sphére est 'un des centres de courbure, I'autre est situé sur une conique dont le
plan a pour équation :

(X i x)w” + (\r _y)y” + (Z — Z)Z” + 1 — (xlt + yli + Z'QA):O.

Ce plan doit étre le plan polaire de O, par rapport au cone; ce plan a pour
équation
AXz + BYy + CZz =o;

en identifiant les deux équations, il vient

" " "

Yy oz
Az~ By Gz’

xx" + yy' +z2" 42+ ¥y 42 =1;
en intégrant cette derniére relation
x* + ¥y + 2 =R+ akR + h,
h et I désignant des constantes.

On a donc & intégrer le systéme

" I

'y _z_"
(3) Az~ By Cz’

x4y 4+ 22=R"+ 2kR + h.
Si la quadrique est un paraboloide, nous supposerons, par exemple, A=o0; on

a alors " =—=o, c’est-a-dire
r=oaoR + §.

On peut remplacer la surface S par une surface paralléle et lui imprimer unec
translation paralléle 4 ox, de fagon que

f=k=o.
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Le systéme (3) s’écrit alors :

w2+y3+Z2=RS+hQ’

’y” 2"
By~ Cz’
x =aR.

Eliminons «, il vient :
Y =G —)R 4+ R

h u h v
R —

. z= .
cos o cos ¢ \/l_a-

tg 9,

et prenons ¢ comme variable indépendante :

dy . » COS® @
dRz—(I—a)(u—Fu)T’
dz . y COS° @
are = T @ )=

On obtient alors le systéme :

w4+ 0vP=1,
u”+u 'I)”+U
Bu =~ Cov
Posons enfin
u=—cos¥9, v=sin 0,

la derniére équation donne :

(1—106"%) cos 8 —6" sin 6 (1—6”) smO-{—()”cosO
B cos 6§ C sin 6

Dot
e el! el
(L—B)((—O”) Ctg o+ Beotg 6’

et en intégrant :
do

I
l — 0% — —_— 9.
2(B———C) 0g (1 — %) = Ctg0+Bcotg0+ ot

L’intégrale du second membre s’écrit :

/ sin 20d9 | 9 B4 G
(B——C)cosze+B+C 2(3 C) Og(cosz + C>
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en portant cette valeur dans I'équation précédente et en désignant par ¥ une cons-
tante :

I—-O”:——Y-————

B+ C’
cos 26 +_—(—]
D’ou on tire
o — cos 20 +n
cos20 +m
en posant :
B+C
B—C n:m——y.

Par une deuxiéme quadrature, on aura :
cosa20 4+ n
o= cosab+n o
cos 20 +m
Enfin, par le changement de variable,

cos 20 = ¢,

I \/t+n
- dt.
2/\/<1—t)<t+m>

Cette intégrale dégénére si n—=— 1, c’est-A-dire

2B _2G
=F—¢ ™ TTE_q

On obtient une solution particuliérement simple en supposant z=o0; on a alors :
x* + vy =R+ A
x = «R.

Le lieu du centre est une conique.

Si on considére deux coniques focales I'une de I'autre et situées respectivement
dans le plan des zx et dans celui des «xy, les points de ces deux coniques sont conju-
gués par rapport aux plans directeurs : elles constituent donc les deux nappes focales
d’une surface S. Supposons que ce soient une ellipse et une hyperbole et appliquons
les calculs du paragraphe 4 (1™ Partie). Soit

By* + C2* — 20 —o,

I'équation du paraboloide; celles des deux coniques sont :

Z=—o, ___(w—soc) +53 —1=0o,
a b
o (€ — a7 2 .
Y=o, a't bz I=o

en posant a'*=a* — b,
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Les coordonnées des centres de courbure O, et O, sont :

X,=a+acosp,, X,=ua + a'cosp,,
Y, =bsinp,, Y, =o,
Z,=o, Z, = bi sin p,,

et les rayons de courbure sont, & une constante pres :

— ' —
R,=a' cosyg,, R,=acosp,.

Cherchons sur le paraboloide le point de contact M du plan tangent paralléle
4 00,0,; ce dernier a pour équation :

YZx—XZy—YXz=o0.

Les coordonnées de M sont définies par les relations

By Gz 1

d’ott
a4 acosp, __a+a'cosp,
Bbsinp, ’ " Cbising,
On a, d’autre part,
D Az
& = )\Y,, (—:u.Zl,
A o,
et, par suite :
; a4 v cos p, a' + acosp,
N = > V= .
Bb*sin® g, K Cb* sin’® p,

On obtient ainsi les fonctions F et & introduites au paragraphe 4 de la premiére
Partie; en portant ces valeurs dans les formules générales, il vient :

a + a.cosp, a' 4 acosp
b=— [ ———7—d *dp,,
Bb* sin’ p, e +f Cb*sin® p, e,
. a'(a 4 acosp,) cos p, a(a'+ acos p,) cos p,
= _/ Bb* sin® p, de. ' + f Cb* sin’ p, de,
(o +b’+2amcosp)(a+acosp) (" — "4 2a'acos p,) (a' +acos )
do, + / Y g,
Bb* sin® p, Go* sin® o, ’

Ces formules définissent une surface de translation applicable sur le paraboloide;
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elles ne renferment en réalité que deux paramétres arbitraires. On effectue sans
peine les quadratures qui ont 1'une des formes suivantes :

cos v 1
f s dw=—— —_
sin® 2 sin®
Faisons, par exemple, « ==o0, les formules deviennent :
SR Ny
Bb sin® p, cob sin® p,
o aa'/cos p,ds, n aa  /cosp,dp,
T By sin®p, Cb“f sin®p, ’
_a /‘ dp, a /‘ dp,
Y=g sin® o, C sin®p,

Rapportons la surface & des coordonnées cartésiennes en posant

bo =y —iz, %:y—{—iz, 9 =2x;

il vient, en effectuant les intégrations :

aa’ I .
=0 \Bsints,  Csin'o.)’
2 ¥ Snpz

__—a Py COSp,
y—sz <10g '8 2 )’

sin® ¢,
a'i P, oS p, >
=—7—(log tg= — —> .
: 2Cb<0g £ sin® p,

Les surfaces ainsi définies dépendent d’un paramétre arbitraire.
Bien que ces formules renferment des imaginaires, on peut néanmoins choisir
les parameétres de fagon & obtenir des surfaces réelles. Posons
tg i Y
2

Ona:
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Les formules précédentes s’écrivent alors :

— ! L cos? t>
ek (B sinfg, G ’

S <Io t £y CO8 P‘)

Y=OBE %% 8 T sing, )
—a' l—}-l . t)

— — S1 .

z 2Cb< anz

Sia, a' et b sont réels, ces formules définissent une surface réelle applicable sur
le paraboloide.

Remarquons que, dans tous les cas, les courbes du systéme conjugué commun
sont planes; sur le paraboloide, ce sont des paraboles.

On obtiendrait des solutions analogues en prenant pour coniques focales des
paraboles.

1

[B] Si la surface T est une quadrique a centre, le systéme (3) s’écrit en rempla-
¢ant la surface S par une surface paralléle :
‘x2+y2+32:R2+h2’
([') { x" . yﬂ . 2" s
[ &8y~ ¢~
D’ou
x"=hAx, y" = XxBy, "= xrCz.

Substituons ces valeurs dans I'équation

Sxx" + Sx't =1,

®) i AEAX® + St =1,
d’otu en différentiant

AT Axx' + NV IAxE + 2 X" —=o
et en remplacant les dérivées secondes par leurs valeurs

NEAZ + 4aZAxx’ = o,
k

:m. k= cte.

On a une intégrale premiére par 1'équation (5)
ke
Az
Fac. de T., 3¢ S., III. 54
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Posons, comme précédemment,

hu hv hw
= s z=
cos ¢’ oS g Cos o

en prenant ¢ pour variable, le systéme (4) s’écrit :

u'4+u v 4+o wtw
6) Au =~ Bv — Cw
w4+ wi=r.

Un calcul analogue au précédent donne

k

Y=

et on a l'intégrale premiére :
k
2 u“ =1 ————-
AW

Le systéme (6) peut étre intégré par quadratures dans certains cas particuliers.
Si. par exemple, on prend x=—o, cest-d-dire u=o0, on retrouve les mémes
équations que pour le paraboloide.

Supposons la quadrique de révolution et soit, par exemple, A=—=B. On a :

&
A +v*) + Cw’= \/T,
w4+ w=r.
D’ou, en éliminant u® 4+ v*,
. I
M FE = At T AT
ou, d’aprés les équations (6),
W' 4w — kCw
T C—A)w + A

¢t en intégrant

g 1 . kG T m
®) W = e A C— A w A

celte équation est de la forme

e w'+aw*+ b
= o

V' + ¢
Lm_/ _———dw
\/w +aw' + b

w
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f \/t+c dt,
VI + at + b)

on est ramené aux quadratures elliptiques qui peuvent d’ailleurs dégénérer pour cer-

et en posant w'=1,

~.
.g

taines valeurs des constantes.
w étant connu, on calcule aisément u et v
D’aprés les équations (6), on a :
v’ — uv' =o,
v’ — uv' =cte.
La constante n’est pas arbitraire: on a, en effet,
(vu' — u?v) = (U 4+ v°) (W* + 0% — (uu' + o'y
=0—w)(i1—w"*— \/l_c;) —ww'
=1—w—w"*—( —w“)\/l—c—;;
en remplacant \/; et w® + w" par leurs valeurs tirées de (7) et (8),
k

! ne
vu' —uv') =
( —A
Désignons par p* le second membre; on a :
vu' — uv' p
w40 o — w

by Vi
1—w (1 —w)Vw' + aw* + b

Comme on connait u® + v*, on aura u et v.

Dans le cas que nous venons d’étudier. les courbes de I'une des familles du sys-
téme C sont les courbes de contact de cylindres circonscrits & la quadrique; elles sont
donc planes, et on sait que, par suite, sur la surface applicable, les courbes de I'autre

Lo
arc tgjz

famille sont aussi planes.
La méthode précédente conduit aisément aux surfaces de révolution applicables
sur la sphére ou sur une quadrique de révolution : il suffit de supposer z=o.

[6] Nous avons vu qu'un systéme de coniques focales conduit i une infinité de
surfaces applicables sur le paraboloide quelconque.
Considérons de la méme maniére deux quadriques homofocales :

2 2 2

x y z
2 + 2 + ;- — I=0,
a b c
wB . 2 z2‘
ot =o

P L NS WL
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Elles constituent les deux nappes focales d'une congruence de normales; les deux

foyers situés sur une tangente commune aux deux quadriques vérifient les deux
équations :
XX Y)Y 7.7
R A
R A A
ad4+r o b 40

D’oti, en retranchant membre & membre :

NN, LYY, o2z,
PR N S R I ()

Si on prend

@ A@+1)  BH+Y) A+
9 A B G

:/t‘.

on voit que les centres de courbure sont conjugués par rapport au cone
x? + yﬂ + Zi
—_ e —=0;
A B

on en déduit une déformée de la quadrique = :

2 2 ~2

x y z .
N A

En résolvant les équations (g) par rapport & a’, b%, ¢*, on pourra attribuer a k une
valeur quelconque; mais on n’a en réalité qu'un seul parameétre x. On pourra donc
ainsi déterminer une infinité de surfaces applicables sur T.

Si on suppose que X est une sphére, on prendra par exemple a®*=»5*, et les deux
quadriques homofocales sont de révolution. M. Guichard a déja indiqué qu’on peut
déduire de la surface de Liouville des déformées des quadriques (). Dans le cas oil
les quadriques sont de révolution, il a énoncé le théoréme suivant : Les surfaces dont
les deux nappes de la surface focale sont des quadriques homofocales de révolution ont
méme représentation sphérique de leurs lignes de courbure que des surfaces a courbure
constante; les surfaces a courbure constante que lU'on obtient ainsi sont des hélicoides.

La méthode que nous venons d’indiquer conduit & des surfaces & courbure cons-
tante différentes.

On peut prendre les équations des deux quadriques homofocales sous la forme :

w2+y2 :2
— T F T

w:’._{_yk Z-
. — I—O0

b® a’

(') Comptes rendus, 7 juinb 1909, 10 janvier, 13 février 1911,
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Soient
r=0aozZ+p,
y=8z+gq,

les équations d’'une tangente commune D. En exprimant que cette droite est tan-
gente aux deux quadriques, on a :

2 . . a&
(2g —Bp) — @ (" + ) — 3z (P + 4") + 5 =o,

4

: b b
(xq—Bp) — b (2" + ﬁ’)—‘(;;(l)’ +¢) + 7=

D’oui on tire aisément les relations suivantes qui nous seront utiles :

(10) (xq—8p) +p' +q=a + b,
2 b!
(1) =" g — ),
(p+8¢° . o ab
(12) m2+ﬁ%+[_p +q +p2+qz__a2__ba'

Pour déterminer la surface S normale aux droites de la congruence, il faut inté-

grer I'équation
—_— vd| d
(13) AV 18 1)+ 2P P
\/ace + B+ 1
ou le second terme est nécessairement une différentielle exacte. Posons :
Z\/z’-}— g +1=;.
Les cosinus directeurs de la droite sont :

a2 8 I

S c' I ' _
\/a’-{—fﬁ'—}—l \/7.54—.62-{—[

R

Les coordonnées d’un point de la surface S sont alors :

X=p+ cp, Y=¢q+ c'p, Z=:c"p.
Le plan passant par I'origine et la normale D a pour équation :
—¢qx +py + (29— Bp)z=o0.
Considérons alors la sphére
x4y 4+ 2P =a + b

et menons & cette sphére un plan tangent paralléle au précédent; en vertu de

I'équation (10), les coordonnées du point de contact sont :

r=—yq, y=p, zzmq—ﬁp.



h2o L. ROUYER.

Formons alors les équations
| dz=Xdb + cdy,
dy =Ydo + c'dy;
elles s’écrivent :
—dg=(p + cp)db + cdsg,
dp={(q + c'p)db + c'dg.
Dot
(¢cq — c'p)d® = cdp + c'dg,

en remplacant ¢ et ¢’ par leurs valeurs

*q —Bp 4o _wdp + Bdg
Va4 g+ Vel + 8+

c’est-d-dire d’aprés les équations (11) et (13) :

ab
—df = —dp,
\/a’—i—bg ¢
Va&+ b
V=

D’autre part,
(c'p—cq)do=(p + cp)dp 4 (¢ + c'p)dg=pdp + qdq + p(cdp + c'dq),

ou en tenant compte des équations précédentes :

—ab 1
————=dy==d(p'+ ¢ —¢"),
Nz e -
a2+bg 2 2 2
¢=—— =P —q)

Enfin, on aura ¢ par I'équation
dl = 3\°d§ 4+ 2XcXdg.

Or,

IX*=p "+ 2p(cp+ ') +p + ¢

YeX=¢ +cp+cyq.
En porlant ces valeurs dans I'expression de di, il vient :

ub Pz 2 2 !
——;d'+=d 5 — (P + ¢) | 2(ep + ') (pdp + qdq)-
+ 2

Va
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Le second membre est nécessairement une différentielle exacte: on a
ap + B
cp + c'q — _Lq_ ,
\/at2 + 841

c’est-a-dire, d'aprés 1'équation (12) :

cp+c’q=\/p’+q’+ A
p+q—a—0
Posons :
P+q=u
On a
/ (w—d)m—">)
PEee= \/ Tu—a—p
et alors

ab W a(e _Ju—a’) (u—b")
md’f—d<€ )\

Il n’est pas nécessaire de calculer p explicitement; les formules précédentes ne
renferment en effet que les deux variables u et ¢. On a donc une infinité de surfaces
définies par les équations suivantes et dont la courbure totale est constante et

14 l 1 I .
egaeaa,_i_b,.
ab 5
— =,
\/as+bz
ab p”—u
a’—{—b’ 2
ab

I
oo [1»

(U—a)(u ) .
___b’.;, _p /\/ - du;

les deux parameétres a et b doivent vérifier la relation
a’® + b =ct.

Les courbes u==ct* sont des cubiques; les courbes correspondantes sur la sphére
sont des cercles, car on a :

x2+y2:p2+q2:u.

[7] On peut tirer de I'équation (1) une méthode de transformation des surfaces
applicables sur une quadrique quelconque.

Considérons d’abord un paraboloide défini par I'équation
By + Cz* —sax=o0
et la surface auxiliaire dont les centres de courbure vérifient la relation

BY,Y, + CZZ, = o.
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Formons les surfaces paralléles & S et leurs inverses par rapport a 'origine ; si on
imprime a ces derniéres une translation arbitraire parallélement & ox, on obtient «o?,
surfaces satisfaisant encore a la méme condition et auxquelles correspondent oo?,
surfaces applicables sur le paraboloide. Cette transformation est identique & celle
que M. Guichard a indiquée pour une quadrique quelconque (*).

Considérons, en effet, une surface S et une autre surface 8’ qui s'en déduit par
translation; deux normales G et G' correspondantes sont paralléles. Par ces deux
normales et I'origine, on fait passer deux plans et on méne au paraboloide des plans
tangents paralléles; soient M et M’ les points de contact; les plans tangents se cou-
pent suivant une paralléle & G et G’ qui engendre une congruence O et les deux
points M et M' décrivent des réseaux C harmoniques & cette congruence. En consi-
dérant les oo surfaces S définies plus haut, on aura o' familles de congruences paral-
1¢les harmoniques & des réseaux C du paraboloide. Cette transformation peut étre
répétée indéfiniment pour chacune des nouvelles surfaces S et n’exige que des qua-
dratures.

Supposons maintenant que ¥ soit une quadrique a centre :
A’x® + By 4+ C2° —1=0.

Une transformation par polaires réciproques relativement a la quadrique Q définie
par I'équation
Ax® + By’ 4+ C* =1,

échange le cercle de U'infini et le cone asymptote de X.

Toute congruence de normales dont les foyers sont conjugués par rapport a ce
cone se transforme en en une congruence de méme nature et fournit par suite une
nouvelle solution du probléme.

On peut d’ailleurs remplacer la surface S normale aux droites de la congruence
par les inverses des surfaces paralléles; on obtient ainsi co' congruences de normales
qui, transformées par polaires réciproques, donnent des solutions nouvelles diffé-
rentes et dépendant d’un paramétre arbitraire.

Les congruences nouvelles ainsi obtenues sont des congruences paralléles, car
deux droites correspondantes sont les conjuguées de deux droites situées dans un
méme plan passant par l'origine.

La transformation n’exige que des quadratures et peut étre répétée indéfiniment.

Soient X, Y, Z les coordonnées d’un point de S, ¢, ¢/, ¢" les cosinus directeurs de
la normale, X, Y,,Z, et X,, Y,, Z, les coordonnées des centres de courbure, O, et O,,
R, et R, les rayons de courbure; posons :

2g = ZX°, p=ZcX.

(1) Comptes rendus, 26 octobre 1897, 2 janvier 19o6.
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Soient a, y, z les coordonnées du point M de I, ou le plan tangent est paralléle
a4 00,0,; il existe une surface I, applicable sur = définie par les équations :

de=Xdo + cdy,
dy=Ydb +C'd:p,
dz=1Z72do + c'dy,
dy =2qdb + 2pdy.

Soit G une normale & S et G’ sa conjuguée par rapport a Q; G’ est normale & une
surface S' de méme nature que S; le plan passant par l'origine et par G' a pour
équation

Acx + Bc'y + Cc"z=o0;

menons 4 ¥ un plan tangent paralléle; les coordonnées du point de contact M’ sont :
I = —— _ ——, Al ——
(14) y B C

Ce point décrit un réseau C. D’autre part, d’aprés les formules (3) et (4)
(1 Partie),
X=X,  D(x09)
~ R,—R,  D(,9’

en désignant par D un déterminant fonctionnel.
D’ou
D(x, 6) 1 D(y, 6) 1 D(, 9

.’E':

@0  TTBDEo T CDG )

I
A

=

Pour déterminer la surface applicable ¥/ qui correspond & ce nouveau systéme C,
il faut d’abord chercher la surface $' normale & G'. Les plans principaux de S’ sont
les plans polaires de O, et O, ; ils ont pour équations :

Pl L]
YA—X'— =o,
u u

dx hLi}
A—X———o0;
hl) DJJ

on en conclut immédiatement que S’ est I'enveloppe du plan

YAxeX' —6=o,

les cosinus directeurs de la normale sont :

y=Ax, f’:By, y'=Cz.
Fac. de 7., 3¢ S., III. 55
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La surface S’ est déterminée sans quadrature; les coordonnées X', Y/, Z' d’un
point s'obtiennent en résolvant les trois équations précédentes. La surface =/ appli-
cable sur ¥ est définie par trois fonctions #', ¢/, ' analogues 4 6, ¢, ¥, et il est évident,
par symétrie, que le plan tangent & S a pour équation :

XX — 6 =o.
D’ou
0':]).

Calculons maintenant ¢". On a trois équations de la forme
dx' =X'd0" + '{dqa',
et, par suite,
Iydy' = BAxdr' = TAxX'do’ + d¢’, o
ou
SAxdr' = 6d8" + do'.

De méme, par symétrie,
EAx'de =0'do + dg,

en ajoutant membre & membre et en intégrant

(15) EAacac’:Oe’—i—?-i—a‘;';

—~

' est donc déterminé sans quadrature; remarquons que l'on a :

D(x, 6)___ 1 D(Za?, 6)
D(y,6) 2 D(g,0)

TAxx' =Xz

Des deux équations

MW 29
w2 TP
2y ) %
| WMy TPy
on tire :
,__1D,0)
(16) _p_;D(CP, 0)'

6’ et ¢' étant connus, on aura :

dy' = BX"*db" 4 2ZyX'dy’.
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Pour calculer £X'*, posons

et écrivons sous la forme suivante les équations qui déterminent X', Y', Z' :

N
LIRS ALY
\/6 u \/e au
N L}
I_EA\'T.': l—\’
\/g v \/g v
TAxX'=6;

le déterminant du systéme est celui d’une substitution orthogonale; en faisant la

somme des carrés, on a :
I /30N> 1 /06\?
EX/ = ¢ _(_) _<_>.
+e u +g Qv

Si on considére le ds® défini par la formule
ds’ = TAdx?,

c’est celui d’une sphére de rayon 1; le paramétre différentiel du premier ordre A(6) a

‘ 1 A0N\* 1 26N
0= (%) +;(s;)’

on peut donc écrire, quelles que soient les variables :

pour valeur

BX"* = 6" + A6).
Remarquons que d{' s’écrit
4y = £X"d0 + 20dy,
C’est-a-dire

dy' = [6* + A(0)]d0 + 20d3'.

La seule quadrature est celle qui détermine '.
Si on substitue & S la surface inverse d’une des surfaces paralléles, ceci revient &
effectuer sur 6, 9, Y la transformation

Y, =0, 9,—=g¢—ho, 0‘=@+2hq>—h’0;

T4

on introduit ainsi un paramétre arbitraire h; en répétant la transformation, on
pourra, par de simples quadratures, introduire un nombre illimité de paramétres.
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(8] Dans le cas des surfaces a courbure constante, la transformation peut recevoir
une forme remarquable; c’est une transformation de Bécklund (?).

Considérons une telle surface = définie par les coordonnées 0, ¢, J que nous rem-
placerons par x, y, z: soient ', y', 2’ les coordonnées d'un point de la surface X' qui
se déduit de £ par la transformation précédente.

Désignons par p et ¢ les dérivées partielles de z par rapport & x ety, et par p'
et ¢ celles de z' par rapport & x' et y'. Comme les formules établies plus haut sont
indépendantes du choix des variables, I'équation (16) donne :

x=-q.
21
D’autre part, 'équation (15) se réduit dans le cas de la sphére &
06" + 0 + ¢' =o,
c’est-d-dire avec les nouvelles notations
xx'+y+y =o.

Enfin, le ds* considéré plus haut est ici identique & celui de ¥ :

ds* =dy* + dxdz = pdx® + (jdacdy + dy*,

et on a
Ma)=—s:
@=—7
4
2" est alors déterminé par 1'équation
(17) dz' = [x* + ! 7 dx' + axay',
Y
et par suite :
q' =2,
P 1 q" 1
= = — .
p -l—p—_—gi A p_i
4 4

On voit donc que les fonctions z, 2’ et leurs dérivées partielles vérifient les quatre

équations
S zx' +y+y=o,

ax—¢q' =o, 2w’ —q=o,
q Ca
| =) -5="

(1) Comptes rendus, 28 mai 1913.

(18)
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Ces équations définissent une transformation de Bécklund qui fait correspondre

b

a une surface & courbure totale constante et égale A 1 une autre surface de méme
nature.

Cette transformation est différente de celle de Ribeaucour; celle-ci renferme en
effet une relation finie entre les coordonnées de deux points correspondants expri-
mant que la distance de ces deux points est constante et qui différe complétement de
I'équation

xx! +y 4+ y =o.

La transformation des surfaces applicables sur une quadrique est donc aussi dif-
férente de celles de MM. Guichard (*) et Bianchi(?) qui, dans le cas des surfaces &
courbure constante, se réduisent a celle de Ribeaucour.

Revenons a la transformation définie par les équations (18). Intégrons par parties
I'équation (17) :

/ac*dac’ + 2xdy’ = x*x' + 2wy — 2 f(acw’ + y)dx,
c’est-a-dire d’aprés la premiére équation (18) :
x*x’ + axy' + 2 fydx.
Donc

4 2 U ! dq
Z=uax" 4 axy +2/—,+vdx.
4p—q
En écrivant la condition d’intégrabilité de la différentielle sous le signe f, on
trouve

4(s*—rt) .
(p—gy

r. s, t désignant les dérivées partielles du second ordre de z. Cette équation est pré-
cisément celle des surfaces & courbure constante égale & 1 dans le systéme de coor-
données adopté.

Si on remarque qu’on peut effectuer sur «, y, z un changement de coordonnées,
c'est-d-dire une transformation linéaire qui n’altére pas la forme ¥* 4+ .zx, on obtient
une infinité de surfaces différentes dépendant d'un paramétre arbitraire.

(*) Guicnarpo, Comptes rendus, octobre 1897, janvier 1906.
(2) Bianchi, /dem, 5 mars, 29 octobre 19o6.
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La transformation la plus générale est une combinaison des suivantes :

x=uwx, + 2hy, — I’z,, (m:ac,, r=mx,,
I Jy=y,—hz, I ly=y, +kax, u ly=y.
2=z (z:z‘——zkyl—-k’w‘; z:ﬁ,
m

auxquelles on peut adjoindre

.’17:,1,", y:-—y’, z:ZA'

Cette derniére est une symétrie qui change simplement les signes de ', y', 2'.
Les transformations II et 11l ne donnent pas des surfaces différentes de 3'.

Considérons, par exemple, la transformation II, p et ¢ sont transformés par les
formules

p=p+kq+k, q=q+2k.
D’ou
x, =o' + k.
L’équation
zx, +y, +y,=o
devient
zx' +y+y,=o,

et, par suite,

y.=y.
Enfin,
" 4 . 4
tobp,—q; bp—¢q’
Donc
dz! =dz'

La surface ¥, est identique & 2'.
On fait aisément une vérification analogue pour la transformation III.
[l n’y a donc & considérer que la transformation I, dont les équations résolues par

rapport & x,, y,, z, s'écrivent

x,=a —2hy — Iz,

Yo=Y+ hz,
2, =2z,
ctona:
p gt 2hp

PET g T gk g ph
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On obtient une surface =, dont les deux premiéres coordonnées sont définies par
les équations

pr—d 19+t ahp
T 9 T a1+ qh+ph’
| gm ot ay + 9h(pe +2) + K (gz— 3py)

2(1 + qgh + ph*)

yiz—(xaw;_‘_yq):

Pour obtenir z/, il faudra calculer I'intégrale

dq
EA:‘ * 2+ ldwl'
i '/‘[lpl_qi Y

Calculons séparément les deux termes

dg, _ dq+ 2hdp + I*(gdp —pdg)
bp,— ¢ bp—¢' ’
y, dx, = — ahydy + h(zdx 4+ xdz) — 2h*(zdy + ydz)

— h*2dz + ydx — hxdz + h*ydz.

En laissant de c6té les termes immédiatement intégrables, il reste la différentielle

Yty + b (22— wde) 40 (TR 4 yae)
4bp—q bp—q 4p—q

qui est nécessairement une différentielle exacte, quelle que soit la constante %; on

vérifie d’ailleurs immédiatement que les trois termes sont des différentielles exactes

en vertu de I'équation
4(s*—rl)

—_— 1
(bp— )

11 suffira donc, quel que soit &, d’effectuer les trois quadratures

dq
t= [ ——— + ydx,
/l;p—q J

-q:/— 2dp — —axdz,
hp —q

qdp—pdq
C: —_— + dZ,
wp—gq 7

et on aura :
2l =x’x] + axy, — 2h(y* — zx) — 4h’yz — h°Z* + 5+ hq + B,

En remplagant les lettres accentuées par leurs valeurs, on obtiendra pour z, une
fonction rationnelle de & ayant pour dénominateur 1 + gh + ph* et dont le numé-
rateur est du quatriéme degré.

On a ainsi par trois quadratures une infinité de surfaces nouvelles dépendant
d’un parameétre arbitraire.

Si on veut poursuivre I'application de la méthode aux nouvelles surfaces, il semble
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que I'on aura pour chacune d’elles trois quadratures nouvelles; ces trois quadratures
se réduisent & une seule.

Soit ¥’ une de ces surfaces. On peut toujours supposer, par un choix convenable
des coordonnées, qu’elle est définie par les équations (18). Considérons alors les trois
fonctions &, +'. {’ analogues a 2, %, ¢.

En vertu de la réciprocité des équations (17), on a :

z=x"x + yx' + 2%'.
D’autre part,

—n — x'dZ;

en remplacant les lettres accentuées par leurs valeurs, on vérifie aisément que I'on a

o s =a(1)

ou

2 A2

x X
n+ 0= pat

g’ et 4' sont donc déterminés sans quadratures; la seule quadrature nouvelle est

donc :
) qdp'—pdq' =,
C:/———'———T+ dz‘
w—q* 7

Chaque quadrature donne une infinité de surfaces nouvelles.

[9] La transformation par polaires réciproques que nous venons d’utiliser peut
conduire également a la transformation de Ribeaucour.

Pour cela, remarquons que si on applique a la recherche des surfaces & courbure
constante la méthode de M. Weingarten, on est conduit & déterminer une surface
auxiliaire S dont les centres de courbure sont conjugués par rapport au cOne
isotrope (1).

Conservons pour la surface S les notations générales du paragraphe 1 (1™ Partie).
Soient x,, y,, 2, les coordonnées d’un point de la surface & courbure constante X, que
donne la méthode de M. Weingarten, On a :

) DN
de,=Xd <Ei\> + c"d< I> ,
2q ap

en posant

(') Darsoux, Legons, t. 1V.



SUR LA DEFORMATION DES QUADRIQUES, ETC. h31
Les rayons de courbure de S vérifient la relation
(p+R)(p+R)=p"—29.

On voit aisément que si u et v sont les paramétres des lignes de courbure, on a :

ax, dy, 2z,

L NI u . d /1

N, Y, 7, _FE(7>
(19) )

dx, dy, oz,

w o w v d /1

X", "z (“)

Sur la surface ¥,, le réseau des lignes de courbure est paralléle au réseau
point 00,, OO,.
La méthode exposée dans la premiére Partie donne une autre surface a courbure

constante X définie par les équations

de=Xdy + cdo,

dy =Ydo + c'dyp,

dz=17d% + c'dy,
\ dy=2qdb + 2pdy.

(20)

Le point x, y, z décrit un réseau C de la sphére, qui est la représentation sphé-
rique des lignes de courbure de X,. Les deux surfaces X et X, sont différentes; le
réseau des lignes de courbure de chacune d’elles a pour représentation sphérique le
réseau de la sphére applicable sur les lignes de courbure de I'autre; il en résulte que
les rayons de courbure de X et X, sont égaux et intervertis.

Transformons par polaires réciproques relativement a la sphére, les normales & S;
on obtient les normales & une autre surface §'; a celle-ci correspond par la méthode
de M. Weingarten une autre surface & courbure constante X, qui se déduit de =, par
la transformation de M. Bianchi.

Les centres de courbure de S’ sont les péles des plans principaux de S; ils ont

pour coordonnées :

¢ ¢’ "
: u ., u u
Xl=—0, Y= , L=
p p op
u u u
e P dc"
D) D) D)
X/ = < . Y, = < s Z, ——.
p p p
v v v

Fac. de T., 3¢ S., 1II. 56
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On a, d’autre part,

P =29 (p"—2q9)=1,

car ag — p* et 24" — p"™ sont les carrés des distances du centre de la sphére & deux
droites conjuguces.

En appliquant aux coordonnées x/, y/, z! d’un point M/ de la nouvelle surface,

J

les formules (19), on a

[4
Dxl’_'_x, AN . M:_ p+R, 2
u 2 du p 2 \/p"— aq du
’ u
ou enfin :
X de
(21) 313_1’__ u u
u 2
p 2q
De méme.
X e
e, Y
29 ==
(32) v 2 ’
P —2q
et, par suile,
, __dX —pde

Or,

do, —cd ——L _ xq " :d< czz—k>_pdi—d\’
Vi =g VD —ag Vo —2q) Vp—aq

c’est-a-dire

X—e¢p
dlx, —x)=d <h> .
Vp' — 2q

Iin intégrant, on a les trois équations analogues :

N
X, —x, = L
V' — 2
Y—¢p
yl y1: 2 M
V' — 2q
N Z_c”p
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Le vecteur MM, est paralléle & la perpendiculaire abaissée de O sur la normale
a S; il est égal a \/: Ce vecteur est donc situé dans le plan tangent a X, ainsi
que dans le plan tangent a X et si on remarque que I, a sa courbure totale positive
et égale A 1, on retrouve la transformatlon de Ribeaucour. On obtiendra toutes les
surfaces déduites de ¥, en remplacant S par les inverses des surfaces paralléles. On
voit que si on connait la surface S et la surface & courbure constante ¥, qui s’en
déduit, I'application de la méthode de M. Bianchi n’exige aucune quadrature. Si, de
plus, on connait la surface = dont les coordonnées 4, ¢, ¥ sont déterminées par les
équations (20), nous avons vu que la surface 8’ se détermine sans quadrature (§ 7).
On pourra donc appliquer de nouveau. sans aucune quadrature, la transformation
de M. Bianchi & toutes les surfaces X, déduites de 3,

Si on considére la surface X,, il existe une famille de congruences harmoniques
au réseau des lignes de courbures et paralléles aux normales de S. Soit G 1'une des
congruences. Si par tout point de X, on méne une perpendiculaire a la droite corres-
pondante de G, il résulte de ce qui précéde que ces perpendiculaires forment une
congruence de normales dont la surface focale se compose de X, et d’'une autre sur-

face & courbure constante.

[10] Si on se propose de déterminer les surfaces déformables avec conservation
des lignes de courbure, ces derniéres constituent un réseau C orthogonal. La surface
auxiliaire S est donc la méme que dans la déformation de la sphére. A chaque sur-
face S correspondent une infinité de surfaces ayant pour représentation sphérique
de leurs lignes de courbure un réseau C de la sphére. La surface auxiliaire S, en
particulier, posséde cette propriété. En effet, si on se reporte aux formules (14) en y
faisant

A=B=C=1.

on voit que la représentation sphérique.des lignes de courbure de S est un réseau C
de la sphére; ces surfaces ont donc méme représentation sphérique de leurs lignes
de courbure que les surfaces & courbure constante; ce résultat est d’ allleurs mis en
c¢vidence par les formules (21) et (22) qui s’écrivent :

bac,’__ p+R, 2
du \/;z_—ﬂ] w’
dr, __ PtR, 2
) \/m w

Les deux surfaces 8 et ] ont donc méme représentation sphérique.
Les surfaces a courbure moyenne constante peuvent également étre déformées
avec conservation des lignes de courbure. Considérons les deux surfaces T et =, envi-

sagées au paragraphe précédent, et telles que les lignes de courbure de I'une sont
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applicables sur la représentation sphérique de l'autre; soient x,y, z et a,,y,, 2, les
coordonnées de deux poinlts correspondants, ¢, ¢, ¢’ et ¢,, ¢/, ¢! les cosinus directeurs
des normales.
Les deux points M et M" ayant pour coordonnées
X =x +c, Y=y +¢, Z =z +c",
—_— —_ ! —_— "
Xl—-xl—l_cl’ Yl_y1+cx’ 1_’|+61’
décrivent des surfaces & courbure moyenne constante applicables I'une sur I'autre.
En effet, les surfaces T et =, ont leurs rayons de courbure égaux; il en est de méme
des surfaces a courbure moyenne constante qui s'en déduisent par les formules
ci-dessus; ces deux surfaces sont donc applicables I'une sur I'autre avec conservation
des lignes de courbure et des rayons de courbure (Bonnet).
11 en serait de méme pour les deux surfaces définies par les équations
X =z —c, Y=y —¢, 7 =z—¢",

ro . 1 . "
Xc'—wi—ca’ Y,——)’.—-Ci, Z‘—Z‘—C,

qui ont aussi leur courbure moyenne constante.



