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SUR LES
FONCTIONS QUASI-ENTIERES ET QUASI-MEROMORPHES

D’ORDRE INFINI NON TRANSFINI ('),

Par M. Epmonxo MAILLET.

M. Boutroux (2) poursuivant, aprés Laguerre et M. Vivanti, I'étude de la dérivée
logarithmique g(z) d’une fonction entiére f(z), a obtenu sur une infinité de cir-
conférences ayant pour centre l'origine (ou dans certaines aires) : 1° une limite
supérieure du module de g(z) et de ses dérivées quand f(z) est une fonction
entiere d’ordre fini ou méme parfois d’ordre infini; 2° une limite inférieure.

Je me propose ici de résumer, préciser ou étendre ces beaux résultats en vue
surtout de mieux définir les aires ou ils sont vrais, et d’en permettre Papplication
aux fonctions quasi-entiéres et quasi-méromorphes d’ordre fini ou infini non trans-
fini aux environs d’un point essentiel : bien entendu je me servirai en partie des
principes des méthodes de M. Boutroux, en les combinant avec des méthodes
indiquées par M. Wiman et moi (3).

II.

Tatorime 1. — Soit F(z) une fonction entiére d’ordre <(k, p) non trans-

(1) La lecture de cette Note, résumée dans les Comptes rendus du 18 février 1907,
p. 366, exige seulement, a la rigueur, la connaissance de mon Mémoire Sur les zéros des
Jonctions entiéres, des fonctions monodromes, des fonctions & v branches paru dans les
Annales de I’Ecole Normale, 1906, p. 263-338, et des travaux de MM. Hadamard et Borel
ou de moi, mentionnés a la premiére page de ce Mémoire. Il est toutefois trés utile de se
reporter a la Thése de M. Boutroux.

(%) Thése de Doctorat, Acta Math., 1903, p. 46, et C. R., 13 janvier 1902, p- 84.

(3) 4. E. N., 1906, théoréme IV, p. 287 et corollaire II, p. 295.
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Jini (k ou p>o0):silon décrit, dans le plan des z, autour de chaque zéro «,
comme centre, un cercle 'y de rayon n = ey (1) [(ki, ) quelconque > (k, o)

et |a,|=ra)], en tout point extérieur & ces cercles, dés que |z | =r est asses
. F' (s foe

grand, si g(z) = %_)), on a pour la dérivée qiéme de g(z)

(1 180 (2) | < ex, (1)

[0 (5)=g(5), = arbitraire avec (ki,=)> (ky, =), et, si ky=k=o,
w1 > (g + 2] ()

I. — Cas ov g=o.

Je vais considérer d’abord un produit canonique ®(z) d’ordre X (4, p); on a,
d’apres une formule connue (?2),

@’ 5P
(2) g(z):;,;:E——W_a”)

et
(3) 6@ 13 (7)

Fﬁ:’—l restant limité supérieurement et inférieurement dés que n est assez grand, ou
le]

6n= p = const., suivant que ® n’est pas ou est d’ordre fini.
Je suppose que z soit en dehors des cercles T', et (*), je divise les valeurs de n

en trois catégories. Soient 2 ) 2 ) 2 les sommes des termes du second membre
1 2 3
de (3) correspondant & chaque catégorie.

Premiére catégorie. — Elle est définie par
(4) (x+=0)rZr,Z(1+2)""r,

) posiuf fixe.

(1) Pour préciser la portée de ce théoréme, on remarquera que le théoréme IV et son
corollaire I des 4. E. V., 1906, p. 287 et 293, donnent seulement | g2 (z)| < ex,41(7r%:), ou
il est vrai (ky, ;) doit seulement étre > (k, p). Je ne m'attarde pas a la recherche d’une
limite plus avantageuse quand A = &= o.

(2) Voir, par exemple, 4. E. N., 1906, p. 267, formule (a), et p. 271, 276, ot les notations
se trouvent expliquées.

(3) Voir 4. E. N., 1906, p. 326, ot la marche des calculs est assez analogue.
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On a

1

L <e, (rT).
lz—anl :eln(rn)

,’— Stk
Or, puisque @ est d’ordre S (4, p), ona (')
(3) P > logyn, n << e (r%*);
le nombre N des zéros de la premiére catégorie est
(5 bis) N<ek§[(1+)\)1]P+8{<ek(r9+51),

et

2 <_r_>p"__i____ < N(14 )Pl [rT (14 1)7],

'n IZ—OE,,'

¢ ¢étant la plus grande des quantités p, pour la premiére catégorie.

1* Quand & > o,
puSOlogn  (9fixe) (),
et

(14 2P S (1 + )\)elogn___ nllog(t+l) ek(,~%+5)0103(1+7\) < e (rf+s).

185

2° Quand k& =o (fonctions entiéres d’ordre fini), g, est un nombre fixe p;

soit k; > o.
Dans ces deux cas,

V< en(rbra) e (182 eg, (1755) < ey, (174),

1

c’est-a-dire que

Y <en(r),
-

ou 7, est un nombre positif arbitraire tel que (%4, ©,) > (44, 7).

3° Quand A =k, —o,
Z < rfe (1 4 ).\)p+1:,--r< P,
1

outy, >pett>1.

(1) A. E. N., 1906, p. 269.
(%) Id., p. 271.
Fac. de T., 2¢ S., IX.

=~
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Deuziéme catégorie. — Elle est définie par
rll_f.(l +)‘)—"" r,<<r, r—"nz)\ru :
2( >Pn 1 Z( >Pu ¥ 2 < )Pu |
T I —-a,,] Tn '_’/z—)\ ‘n/) Tn
2 2

* Quand £ > o, le dernier membre est plus petit que

%2<%>P"+1<P1_+%2<%>200n
2 2

ol P, est un polynome en r de degré limité. On sait (') que le dernier membre
est plus petit que

(6) eu(1P) < e (1),

2° Quand £ = o,

I~/ r\fs1 re 1
3 2‘ =) = E ~p71 <@r’,  a constante.
n n

I'n
2
Troisieme catégorie. — Elle est définie par
r A
P2+ R)F, [——2

)\ rp S 14 A :
7\ Pn o 7 < 1 7\ Fa
2 Z(?) Fn2(n)”
3 3 3
Quand & > o, on sait (loc. cit.) que

P/l
() e
Fp
3

H/\

quand k = o, d’apres (5),

p 3 1~ AP P .
E - .=k El 5( - ) EI < P,
rp) ry rktl r= A rt
3 3

— 3
I‘IL

Finalement, on voit que les sommes. 2, 2, Z ont chacune une limite supé-

(1) A. E. N., 1906, p. 274.
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rieure de la forme indiquée au second membre de (1); 1l en est donc de méme de
leur somme et de | g(3) |-

Le théoréme se trouve ainsi établi pour un produit canonique ®(z) quand
g = o; en observant que la dérivée logarithmique d’une fonction entiére d’ordre
<(k, p) est de la forme o

"i)' -+ G,(Z)’

ot G(z) et G'(z) sont des fonctions entiéres d’ordre <(k—1,¢), ou des poly-
nomes de degré <p, on en conclut la formule (1) pour ¢ =o.

II. — Cas ot g >o.

Le théoreme s'étend de suite aux dérivées successives de g(z) : soit d’abord

!

g(:,)_:-(IT el Z,=

T abr(s—a,)’

g(z,)—_—_EZ”, g(‘l)(:):zle)'

Z(I:I): a;p"[Pn(Pu - 1)- . -(Pu'— q -+ 1) 59,.—(1(; - an)—‘l

5P

on a

— pal(pa—1) . (pn—q+2) Clabuti(z—oap) 4. ..

+ (— 1)71p, Cl(g — 1)1 5P} (3 — &) "7+ (—1)7q 1 5Pn (53— 2,)" 7],
Le terme général de Z,7 est
(— 1)1 5pp(pn—1). . (Pn— 8 +1) Ci(qg— $)) 5Pu—S (5 — o, )TUHS "o Pny

dont.le module est au plus égal a

S/ \Ps f
T, —a(Pf2)y (L) ——
n,s B ( r > <rn> Iz —ay, lq—.—x—s’

B constante convenable > o, et | g(#(3)| est au plus égal & une somme de quan-

w

tités de la forme ZT"”' Je vais évaluer une limite supérieure de ET”’J en
1

divisant encore les valeurs de n en trois catégories correspondant a celles qui ont

été considérées pour ¢ = o.

Premiére catégorie. — Soit N, le nombre des zéros des deux premiéres caté-
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gories : N, satisfait comme N a (5 bis) et

353 B 4 2 N, [+ Ry
1 $

lorsque £y > o, on a, comme pour ¢ = o,

N <ex (1)
1

lorsque ky=k =0, p,=p, et

3 < s < i

1

(84, B2y ... comme B, 7y, 73, ... comme T et > ).

Deuxiéme catégorie. — Quand k > o,

\ " n
2 <2[”2‘p" <Ln)P (Ara )[”+l ] < [m 2(}%)9 p?;];
2 <;,;;>P”Pfx :E <£>pneﬂﬂgp"< 3332 <%‘Z>P”< ek‘(rrx)’

d’apres (6), et
3 <o ()

?

quand £ = o, p,=p,
2<E[FE() =] =2 ) <o
(b, by, b,, ... constantes).

Troisiéme catégorie. — Quand k > o,

2<2[,29<—>P@,—)2+:§] :E[ = 29< . > ]

et, comme pour 2,
2

2 < ek‘(rﬂ).
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Quand k& = o,
S-S [r B2 ]
3 s

—P—q—1+s -
<v b.rp—s #1____ <2 b, rp—s poP—q-1+s < b.rp.,
= 3 7\ 4T * n 3
s

s (l_T‘
I'n

Z, E, Z ayant ainsi une limite supérieure de la forme indiquée au second
1 2 3
membre de (1), il en est de méme de leur somme et de

'\ (q)
g0 = () =2s

le théoréme est ainsi établi quel que soit ¢ quand F(z) est un produit canonique.
On 1'étend encore sans difficulté au cas ot F(z) est une fonction entiere quel-
conque. . C. Q. F. D.

Cororratre I. — Quand on prend pour F(z) une fonction monodrome, qui
r’a dans le domaine du point singulier essentiel isolé z = o d’autres points
critiques a distance finie que des pdles, et qui y est d’ordre Z(k, p), la for-
mule (1) subsiste dans ce domaine pour g9 (s), en dehors des cercles T, cor-
respondant & la fois aux zéros et aux pdles de F(z).

En effet :
1° S1 F= ji est une fonction méromorphe, f, f, étant des fonctions enticres
1
d’ordre = (k, p), on a
g =L I
S A

ORR[GX

2° 51 F est une fonction monodrome n’ayant dans le domaine du point essentiel
isolé 5 = o que des poles, et qui y est d’ordre = (4, p), ona (')

et

8§ (s)=

(6 bis) F=c' Q)

ot Q(z) estune fonclion méromorphe d’ordre S (4, o), et ott ¢ <I> reste fini ainsi

§4

(1) Bull. Soc. math., 1903, p. 31 et 41.
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que ses dérivées successives, dans le domaine de 5 = «. Alors

A1 (F'\ _ dre T/ dr (Q
—_— ) = —— | = — =
7) fl3q<F> dz+! [L') <5>] - ‘ls"<Q>’
et le corollaire est évident. C. Q. F. D.

On peut encore trouver une limite inférieure du module de g(z) et de ses déri-
vées sur une infinité de circonférences C ayant pour centre l'origine dans le plan
complexe des 5; je vais reprendre avec ma terminologie les méthodes de M. Bou-
troux, et, en les précisant un peu, aboutir au théoréme suivant :

Tutonkme 1. — Soit F(s) une fonction entiére d’ordre réel non trans-
Jini Z(k, 9); on peut déterminer une infinité de couronnes circulaires ayant
pour centre lorigine, et telles que, sur toute circonférence C de méme centre
comprise dans une de ces couronnes, le maximum m,, du module de g9 (z)

!
soit > ex(ro) [g(s): %, s fixe arbitraire <o quand k> o, ¢ fixe arbi-

traire < p—q —1 quand k:o]. L’épaisseur totale de ces couronnes est
infinie.

De plus, quand la croissance du produit canonique ayant mémes zéros
que F(3) est régulicre, cette propriété a liew pour toute valeur de r asses
grande ().

Le théoréme est évidemment vrai pour les circontérences C qui passent par un
zéro. Soit o; un des zéros, en nombre infini, pour lequel (?)

(8) e loge),  JZen(rg7)

(rjassez grand, ¢ positif fixe).
Sur une circonférence G ayant pour centre l'origine, qui ne rencontre aucun
zéro et est de rayon 7> rj et < r}**, ona (3)

I

(9) ——fg(z)ds:nz/,

2Tl ¢

By

n étant le nombre des zéros a l'intérieur de C. Si m, est le maximum du module

(1) Il convient de remarquer que, a I'extérieur des cercles 1Y, analogues a ceux indiqués
au théoréme I ci-dessus, le théoréme IV et son corollaire 11 des Annales de I'Ecole nor-
male, 1906, p. 287 et 295, donnent

[ &7(3)] > enprr (r7a)=!
<, arbitraire, avec (ky, t2) > (4, p)], lorsque F(3) est d’ordre (4, o).
(2) A. E. N., 1906, corollaire de la page 275 et p. 271.
(3) Voir Bournoux, Thése, p. 55. La méthode de M. Boutroux montre aussi que, sur une
circonférence quelconque G’ ayant pour centre origine, m, 2 nr-t.



LES FONCTIONS QUASI-ENTIERES ET QUASI-MEROMORPHES D’ORDRE INFINI, ETC. 191
de g(z) sur G,

(r0) rm,Zn2j2ep(rt=%);
st k> o,

m,>> e, (ré—=s);
Si /{ fnd 07

m,> rpi—e,

Cette inégalité est vraie pour les circonférences comprises dans les couronnes

D —e);

’épaisseur totale de ces couronnes est évidemment infinie.

d’épaisseur

En particulier, quand la croissance du produit canonique ®(z) ayant les mémes
zéros que F'(z) est réguliére, les limites inférieures de m, obtenues pour F(s)
s'appliquent a toute circonférence dont le rayon est assez grand (A. E'. V., 1906,

p-311et313).
On obtient des résultats semblables pour g(?(z), en considérant U'intégrale (*)

1
— [ s1g@(5)ds.
27El ( )

On a (2)

3 5Pt
g(z):Z(_' _+L.—|—;,_7+...+ >-|P-

o

3

R correspondant & la fois a une partie du facteur exponentiel de F(s) et aux

zéros de I'(z) extérieurs a C.

g('l)(s) = (~ ])’19!2 (S . ai)—q—l'i- S,
C

S n’ayant aucun poéle dans C.

I N — 1) gt
(1) m/c‘zqg(q’(z)dszi—ﬂ—.(/—xl(:——aiﬂ— )7 (s —o;) 7 1ds

2T

(—*I)'I(]fz [(:—%)‘1 ds = (—1)7q! n.

2T

En désignant par m, , le maximum du module de g (z) sur G, on a

(12) riim, 2 glnzqlj2e,(re—e);

(1) Bourroux, Thése, p. 72.
(2) 4. E. N., 1906, p. 267.
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st k> o,
. o> e (re—s);

stk =o,
my o> re=1-1-¢,

Ces inégalités ont évidemment lieu pour toute valeur de 7 assez grande quand
la croissance de ®(z) est réguliére. C. Q. F. D.

CororLame I. — Le théoréme I s’applique encore dans le domaine de z — ,
quand ¥ (z) est une fonction quasi-enti¢re dans ce domaine, c’est-a-dire une
Jonction monodrome, qui n’a dans ce domaine qu’un seul point critique,
d’ailleurs essentiel, z = .

-

En effet, on a, dans ce domaine ('),
¥(3) .
F(5)=5"ce"\3/Q(x), c entier fixe 2 o,

ot Q(z) est une fonction entiére, et L!J(:) une série ordonnée suivant les puis-
. 1 . . - L. .

sances croissantes de — qui reste finie dans le domaine deys = oo ainsi que ses

dérivées. Le corollaire résulte de suite de la formule () et des formules (9)a (12);

(9) par exemple est remplacée par

: L Ndz—n—c>j—
(9 bis) 2m.jc‘g(o)d~_n cz2j—c,
n étant le nombre des zéros dans le cercle C. Cc. Q. F. D.

Pour les fonctions F(z) méromorphes et quasi-méromorphes dans le domaine
de z =, la question de I'extension du théoréme 1I est beaucoup plus délicate.

Je suppose que l'ordre réel des zéros ou celui des poles, par suite (4. E. N,
1906, p. 306) 'ordre réel de F(z), soit 2 (k, o).

En considérant une circonférence C, qui ne passe par aucun zéro niaucun pole,

on obtient, au lieu de (g), la formule

(13) é%l.fclg(z)dz:n—m,

ot m est le nombre des péles, n le nombre des zéros, compris dans C, pour la
fonction méromorphe Q(z) de la formule (6 bis), et

(14) . rm,Z|n—m|;

(1) Bull. Soc. math., 1906, p. 31.
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de méme,
(13) r+im, .2 n—m|.ql.

Si alors les ordres réels des zéros et des poles n’ont pas méme valeur, ces ordres
n’étant pas transfinis, le raisonnement du théoréme II reste applicable, en
prenant (&, o) plus grand que le plus petit de ces ordres, a cause de (5), qui
donne une limite supérieure de la plus petite des quantités n et m dans la couronne
considérée au théoreme II.

Formant alors les deux produits canoniques ayant pour zéros, I'un les zéros,
l'autre les poles de Q(z) [formule (6 bis)], si celui de ces deux produits dont
I'ordre, supposé non transfini, est le plus grand, a sa croissance réguliére (4. E. /V.,
1906, p. 31t et 313), le théoréme II s’applique pour toute valeur de r assez
grande.

On peut résumer ainsi la plus grande partie de ces résultats :

Cororramme II. — Soit

G

(6 bis) Fis) =G o(a,

ou Q(z) est méromorphe, une fonction monodrome, qui est quasi-méromorphe
dans le domaine de z = .

Soient encore (ky, p1), (ks, ps) les ordres réels des zéros et des péles de Q(z),
supposés différents et non transfinis, et (k, p) arbitraire compris entre (ky, p)
et (kqy p2); ©1(5) et ¢3(z) les produits canoniques formés avec ces zéros et ces
péles. On a, comme au théoréme 11, sur les circonférences C,

myq>e;(r).

L’épaisseur totale des couronnes formées des circonférences C est in-
JSinie.

Soit ¢;(3) celuides deux produits ¢, et o, dont Uordre est mazimum : quand
la croissance de o; est régulicre, cette limite inférieure s’applique pour toute
valeur de r assez grande.

Quand on ne suppose rien sur la valeur des ordres réels, il suffira que, dans une
infinité des circonférences C,, n £ m, pour que I'on obtienne, d’aprés (15),

(16) mpg2qlr—7-1,
Cette inégalité ne sera en défaut que si, & partir d’une certaine valeur de 7, on

an=m, c’est-a-dire si, o; et 3; désignant le ™ zéro et le /™™ pole de Q(z), on
Fac.de T., 2 S., IX. 25
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a, a partir d’une certaine valeur de 7,
EARIE
Dans ce cas j'indiquerai seulement que la considération de I'intégrale

1

—_— sMIo D (3)ds3
21u/; £'7(3)

peut parfois donner encore une limite inférieure de my 4, si toutefois a} — 3,‘ ne
tend pas vers o quand ¢ croit indéfiniment.

II.

Je terminerai en signalant une application des résultats précédents : c’est une
extension de propriétés que j’ai fait connaitre antérieurement (*).
Soit le systeme

dx,
—- = an®y —+...+ ay, oy,
ds

ou les @;; sont des fonctions quasi-méromorphes f;;(5) dans le domaine de z = o
satisfaisant 4 la méme inégalité (1) du théoréme I que g9 (z) en dehors des
cercles T, correspondant aux zéros et aux poles des a;j; les a;; seront, par
exemple, des dérivées d’ordre quelconque du logarithme de fonctions quasi-méro-

morphes d’ordre (4, p).

En tout point pris en dehors des cercles I';, dés que r=|z| est assez grand,
on a
|z;| < k1 (r7),

ou 7, est limité en fonction de =,.

Il suffit de suivre presque textuellement la démonstration de la propriélé men-
tionnée tout a 'heure.

Enfin, j’indiquerai comme sujet d’études que l'on peut encore chercher a
étendre aux fonctions entiéres d’ordre transfini, soit les résultats précédents, soit
le théoréme IV et le corollaire Il de mon Mémoire des Annales de ’Ecole Nor-
male (1906). Il conviendra sans doute de modifier les démonstrations en s’inspi-

(1) A. E. N., 1906, p. 324 et suiv.
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rant des idées de MM. Hadamard, Borel et Kraft. Je mentionnerai, par exemple,
que j'ai obtenu une extension du théoréme IV des Annales de I Ecole Normale
(1906) aux produits canoniques (') P d’ordre transfini, en dehors de cercles T'; de
rayon $(tr;)~!, ou 7 est un nombre fixe assez grand et 4(r) une fonction qui est
en corrélation avec logM,, M, étant le maximum du module de P sur un cercle de
rayon r.

\

(1) Supposés définis comme pour P'ordre non transfini (4. E. N., 1906, p. 271 et 276).



