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SUR QUELQUES PRINCIPES GENERAUX

RELATIFS A

LA THEORIE DES FONCTIONS

D’UN NOMBRE QUELCONQUE DE VARIABLES,

Par M. Cuarres RIQUIER.

INTRODUCTION.

Le titre du présent Mémoire en indique assez clairement le but principal :
nous nous proposons d’y traiter certains points de méthode, que I'étude d’une
question particuliére nous a conduit, récemment, & examiner de trés prés. Bien
qu’un pareil sujet puisse paraitre fort modeste, il nous a semblé qu’un exposé
consciencieux des réflexions qu’il nous a suggérées ne serail pas entiérement
dénué d’intérét : heaucoup de questions d’une importance capitale comportent
en effet la considération d’'un nombre guelconque de variables, et ce seul fait
entraine, dans bien des cas, une complication trés grande, a laquelle il importe
de remédier le plus possible par la précision, la rigueur analytique et, en méme
temps, la généralité des principes. Telle est I'idée qui nous a guidé dans la
rédaction de ce travail : le méme sujet nous avait déja préoccupé il y a quelques
années, comme en témoignent deux Mémoires publiés en 18go et en 1891 dans
les Annales de UEcole Normale ('); mais la forme sous laquelle nous le
traitons ici nous parail incomparablement plus générale, parfois méme nota-
blement plus simple, et, pour cette double raison, plus avantageuse.

Le Mémoire actuel est divisé en trois Parties : la premiére se rapporte a la
continuité, la denxiéme a la définition des fonctions analytiques, la troisitme au
calcul de ces fonctions par cheminement. Nous terminons par une application

(1) Sur les fonctions continues d’un nombre quelconque de variables (Annales de
U’Ecole Normale, 189o). — Sur les principes de la théorie générale des fonctions
(Annales de ’Ecole Normale, 18g1).
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des principes exposés, relative au prolongement analytique des intégrales de
certains systémes différentiels.

CHAPITRE I

PROPRIETES GENERALES RELATIVES A LA CONTINUITE.

ESPACE A UN NOMBRE QUELCONQUE DE DIMENSIONS ; REGIONS LIMITéES,

REGIONS COMPLETES.

1. Nous nommerons point & n coordonnées tout systéme de valeurs particu-
lieres attribuées aux n variables réelles z, y, ..., et espace @ n dimensions
'ensemble de tous les points & n coordonnées; cet espace sera souvent désigné
dans ce qui suit par la notation [[z',y, .. ]] (*)-

La distance des deux points
(xla Y - ~)) (xz, Yoy - - )

est, par définition, la racine carrée arithmélique (c’est-a-dire non négative) de la
quantité
(2y—22) + (Y1 —)2)*+ - 5

si, notamment, il n’y a qu’une seule variable réelle z, la distance des deux
points z,, x, est égale au module de la différence 2, — z, (2).

Pour que deux points soient identiques, c’est-a-dire pour que leurs coor-
données semblables soient respectivement égales, il faut et il suffit que leur
distance soit nulle.

Pour simplifier P'écriture, nous désignerons souvent par @, a;, @, ... les
points (&, ¥y -+.)y (Z4y Yay o)y (Zay Y2y ++2)y --+ €L PAT @qy, aas, a,a,, ... les
distances mutuelles de ces points.

2. Dans l'espace a n dimensions, on a souvenl a considérer, a 'exclusion de

(") Nous généraliserons plus loin (n° 17) le sens de la notation [[x, Voo J] pour I'étendre
au cas ou les variables @, y, ... sont imaginaires.

(2) Nous appelons module d’une quantité réelle ce qu'on nomme habituellement valeur
absolue de cette quantité. :
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lous les aulres points, ceux dont les coordonnées satisfont a telles ou telles
conditions, d’une nature absolument quelconque d’ailleurs; leur ensemble
constitue ce qu'on appelle une région de ’espace a n dimensions.

Nous établirons tout d’abord la proposition suivante :

Dans Uespace a n dimensions (n° 1), si la distance de quelque point fize
a un point variable d’une région donnée B reste toujours inférieure a
quelque constante positive, tout point fize jouit par rapport & B de la méme
propriété : la région, en pareil cas, est dite limitée.

I. La distance de deux points quelconques est comprise entre la somme et
la différence de leurs distances & un méme troisiéme (et peut parfois atteindre
I'ane ou l'autre de ces valeurs extrémes).

Sil'on considére les points @y, @, a3 (n° 1), et que 'on pose, pour abréger,

‘Z‘z““Z\:E_Z’ Y2—Y1= "Ny sy
xy—x— &y, Y3s— Y1="3, ceey
on a
2 E) 3
0y, = (X —23) + (Vo — y3) +. ..

= (& — &) (ny—my )2+ ..

=aya, + aya;— 2 (Eaby+myny +. . )

d’ou résulte que le carré de la distance a,a; ne peut excéder I'intervalle des
deux quantités

—2 —2

aya, +aya;—2mod(EL+ nyns+...),

2 —2
a,a,+ aja,+ 2mod (£,8+ nyny+. . .).

De la relation
(& +n3+...) (G+mni+...) = (L& +nens+.. -)24—2(52“3_ &ne)®,

ou la sommation indiquée dans le second membre doit s’étendre a toutes les
combinaisons deux & deux des lettres &, 7, ..., on tire d’ailleurs

mod (&8s —+Mymy+. . ) SVEi+ i +.. VB2 i+ Saay X aya,;

donc, a plus forte raison, le carré de la distance @, a; ne pourra excéder l'inter-
valle des deux quantités

—_—2 _—2

aa,+a,a,—2a,a, < a,a,,

—_—2 —_—2

a,a,+ a a;+ 20,0, X a,a,;
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on en déduit, par 'extraction des racines carrées arithmétiques,
mod(a,a,— a,a;) Saya; S a;a,+ a, as.
II. Revenons a nolre énoncé et désignons par @ un point variable de la
région M, par a, et a, deux points fixes de I'espace [[x,_y, ]] (n°1). Si, en

choisissant convenablement la constante positive M, on a, pour toule position
du point @ dans la région R, I'inégalité

aa<<M,
on aura aussl
aa+ aja, <M+ a,a,

et, a plus forte raison (1),
aa, <M + a,a,,

ce qui démontre la proposition.

Y

3. Un point fixe sera dit complétement extérieur i une région donnée de
I'espace & n dimensions, si sa distance & un point variable de cetle derniére reste
supérieure & quelque constante positive.

Une région sera dite compléte, si tout point n’en faisant pas partie lui est
complétement extérieur.

4. La remarque suivante est souvent utile :
Supposons que les n variables indépendantes (réelles) aient éLé partagées en
un nombre quelconque de groupes, trois, par exemple,

. Ly ey Y eees Sy ey
et soient

(1) R, B, H. .

trois régions respectivement extraites des espaces correspondants
(2) [l ..., [t--1] [Ls---1]s
’association de ces Lrois régions en fournit évidemment une

(3) Rz, .. By, Be L),

extraite de I’espace

(4) : [[x,...,y,...,z,...]].
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Cela étant, il est extrémement facile d’apercevoir : 1° que, si les régions (1)
[considérées chacune dans celui des espaces (2) qui lui convient] sont supposées
limitées, la région (3) [considérée dans l'espace (4)] ne peut manquer de
Uétre aussi; 2° que, si les régions (1) sont supposées complétes, la région (3)
Jouit de la méme propriété.

Effectivement :

1° Soient

() ee iy )y vees By en)

un point variable de la région (3), et
(Zoy v e vy Yoy eovy Boyoes)

un point fixe de l'espace (4). Chacune des trois régions (1) étant supposée
limitée, on a respectivement, dans toute I'étendue de ces régions,

(& — 2,2 +... < M2,
(y —y0)+...<<N3
(5 — 5 )2+...< P2

ou M, N, P désignent trois constantes positives convenablement choisies (n° 2);
on en déduit, par addition membre & membre, que, dans toute I'étendue de la
région (3), le carré de la distance aa, (n°1) reste inférieur & M2+ N2+ P2 et
celte distance elle-méme & /M2 4- N2 - P2,
2° Soient
(@y o oey Yy ey 3y 0nl)

un point variable de la région (3), et
XY, 7,00

un point fixe n’en faisant pas partie, tel, par conséquent, que si ’on consideére,
d’une part, les trois points :

(X, .. (Y, ...) (...,

d’autre part, les trois régions (1), 'un an moins de ces trois points ne fasse pas
partie de la région correspondante; nous supposerons, pour fixer les idées, que le
point (X, ...) ne fait pas partie de la région 13,,,,,. Chacune des régions (1) et,
en particulier, la région ’iﬁx,,,,, étant supposée compléte, le point (X, ...) est
complétement extérieur a ‘iﬁm,m, et, en désignant par A une constante positive
convenablement choisie, on a nécessairement, dans toute étendue de R, ..,

(x—X)24...> A%
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a plus forte raison aura-t-on, dans toute I’étendue de la région (3),

(2 —X) 4. .4+ (y—=Y) 2+ ..+ (s — L) +...> N
ou

Vie—=X)+. .o+ (r—=Y) +..c (5 — L) +...> .

Le point (X, ..., Y, ..., Z,...) est donc complétement extérieur a la région (3), ce
qu'il s’agissait d’établir.

5. La région définie par la relation
(& — @)+ (¥ =)o) +.. .2 R,

ou (Zo, Yo, - --) désigne un point fixe donné et R une constante positive donnée,
nous offre un exemple trés simple d’une région a la fois limitée et compléte.

Elle est évidemment limitée, puisque la distance du point fixe (2, ¥y, ...), ou a,,
4 un point variable de la région, reste moindre qu’une constante positive supé-
rieure a R.

D’un autre c6Lé, si I'on désigne par (X,Y, ...) ou A un point fixe ne faisant

pas partie de la région, et par A une constante positive (> o) convenablement
choisie, on a
Aay,=R + A

Or, quelle que soit dans 'espace la position du point (z, y,...), ou a, on a, en
vertu d’une proposition antérieure (n° 2, I),

AazAay— aa,,
ou

AaZR — aa,+ 2,
et comme on a, dans toute I'étendue de la région,
R2aaqa, ou R —aa,2o,
on aura, a plus forte raison, dans les mémes limites,
Aa>d;

la distance du point (X,Y, ...) & un point variable de la région reste donc
toujours supérieure a une constante positive moindre que A.
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VARIANTES.

6. Nous nommerons variante (') (simple) un nombre (réel) variable dépen-
dant de certains entiers positifs indélerminés, m, r, ... dont chacun peut varier
arbitrairement & partir de telle ou telle valeur fixe qu’on lui assigne pour valeur
minimaj; ces entiers indéterminés se nomment les indices de la variante.

Une variante ¢, ... est dite infiniment petite, si, une quanlité positive ¢ élant
donnée, il existe quelque systéme de valeurs enticres u, p, ... telles que les
relations simullanées

> >
m2y, r2p,

cotrainent comme conséquence nécessaire
mOde,l',...<5~ *

On dit qu'une variante ¢, . ... @ pour limite ou tend vers la constante V, si la
variante V— ¢, . ... est infiniment petite; une pareille limite, lorsqu’elle existe,
est nécessairement unique.

Une variante est dite convergente ou divergente suivant qu’elle est ou non
pourvuc d’une limite.

Observons, comme conséquence immédiate de ces définitions, qu’une variante
infiniment petite tend vers zéro, et réciproquement.

7. Dans l'espace [[x, ¥ ]], défini par la considération des variables
réelles z, y, ... (n° 1), nous nommerons variante (complexe) un point variable
ayant pour coordonnées diverses variantes simples, que 'on peut évidemment
supposer dépendre toutes des mémes indices.

Une variante de l'espace [[x, ¥ ]J est dite convergente si ses diverses
coordonnées le sont toutes, et le point obtenu en remplacant ces derniéres par
leurs limites respectives se nomme alors la limite de la variante; une pareille
limite, lorsqu’elle existe, est nécessairement unique.

Une variante non convergente est dite divergente.

(1) Cette dénomination est due & M. Méray, qui I’a introduite, en 1869, dans une exposi-
tion nouvelle de la théorie des nombres incommensurables. Voir, au sujet de cette théorie,
les indications bibliographiques que j’ai données dans un Mémoire ayant pour titre De la
distinction entre les sciences déductives et les sciences expérimentales (Revue de Méta-
Pphysique et de Morale, novembre 1900).
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Pour qu’une variante

Apyry o — (xm,r...., Ymyr,. oo oee)

tende vers la limite
A=(XY,...),

il faut et il suffit que la distance des deux points ap,,, ..., A soit infiniment
petite.

8. Lorsque, dans l'espace [[:c, Vs ]] (n° 1), on considére simultanément
deux variantes, on peut loujours, en opérant, s’il y a lien, un changement de
notations convenable, faire en sorte qu’elles n’aient aucun indice commun (on
peut toujours supposer, par exemple, que les indices de I'une sont désignés par

des lettres accentuées une seule fois, et les indices de I'autre par des lettres
accentuées deux fois). Cela posé :

Pour que deux variantes tendent vers une méme limite, il faut et il sufit

quen les écrivant sous une forme telle qu’elles n’aient aucun indice commun
leur distance soit infiniment petite.

Cette proposilion, que nous supposerons établie pour les variantes simples,
c’est-a-dire pour le cas particulier d'un espace a une seule dimension (n° 1),
s’élend immédiatement au cas général.

On en tire la conséquence suivante :
Pour que la variante
Am,r,y ... = (‘Z‘m,r, v Ymr oy o )
soit convergente, il faut et il suffit que la distance des deux variantes

Am' yyen. = (xm', Py Y r, oy e e )7
A 3", ... = (wm”, Py Ym 1 s e e )

soit infiniment petite.

Car, pour que le point ap,, ... tende vers quelque limite, il faut et il suffit que
les deux points @n', ..., @wr,,, ... tendent vers une méme limite.

9. Dans le cas ou la variante proposée ne dépend que d’un seul indice m, la

condition de convergence peut, comme nous allons le voir, étre formulée de
la fagon suivante :

Pour que la variante (xm, ¥m, ...) soit convergente, il faut et il suffit qu’un
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nombre positif ¢, de petitesse arbitraire, étant donné, on puisse assigner
pour lentier m une valeur a partir de laquelle la distance des deux points

(.17,,,, Yms - -); (xm—)—p’ Ym+ps - - )

ne cesse d’étre inférieure a ¢, quelque valeur (positive) que Uon attribue a
Uentier p.

Désignons, pour abréger, par ¢, la variante complexe (Zn, Ym, - --)-
Si cetle variante est convergenle, la distance ¢,¢, des deux points ¢, ¢
tend vers zéro (n° 8), et, une quantité positive ¢ étant donnée, on peut (n° 6)

trouver des entiers ', 1" tels que les relations simultanées
”ZIZH,q ,n//z‘u//

entrainent comme conséquence nécessaire

OV << €3
cela étant, et en désignant par i un entier au moins égal a ' et p’, la relation
(3) m2Zp
entrainera, quel que soit p, la conséquence nécessaire
(6) Ym Vm—&—p< €.

Réciproquement, supposons que, une quantité positive ¢ étant donnée, on
puisse trouver un entier i tel que la relation (5) entraine, quel que soit p, la
relation (6) : pour toutes valeurs de m/, m" satisfaisant aux relations

m>m2p,
on aura
Cm" Y m+(m'—m") << €
ou
V' Vmr < € H

pour toutes valeurs de n/, m" satisfaisant aux relations

m"> m/;‘}"
on aura, de méme,
O Vm'+(m"—m') << €
ou
O Vm < €.

En résumé, donc, pour toutes valeurs de m/, m” satisfaisant aux relations

mzp,  m'Zp,
Fac. de T., 2 S., VIIL ' 50



4o2 C. RIQUIER.

on aura
Com ¥ mr < €.

La distance v,, v, est donc infiniment petite et la variante ¢, convergente.

10. Lorsqu'une variante convergente tombe constamment dans quelgque
région compléte (n° 3) de Uespace [[x, ¥ ]] (n° 1), sa limite est elle-
méme nécessairement située dans cette région.

Car, autrement, la limite de la variante serait complétement extérieure i la

région dont il s’agit, ce qui eslL impossible, puisque la distance d'une variante
convergente a sa limite est infiniment petite (n° 7).

11. En désignant par (zm, ¥m, ...) ou v, une variante quelconque & un
seul indice, et par
(7) my, My, ..., My,

des valeurs particuliéres (distinctes) de son indice se succédant indéfiniment
suivant quelgue loi déterminée, Uexpression

(8) W= Vm,— (xmk’ Yomys oo )

est évidemment une variante dépendant de Uindice k. Cela posé, si la va-
riante (Xmy Yms .- -) reste constamment comprise dans quelque région limitée,
les valeurs (7) et leur loi de succession peuvent étre choisies de telle sorte que
la variante (8) soit convergente.

I. Désignons par «, {3, ... des entiers indéterminés en nombre n, que nous
conviendrons de considérer dans un ordre toujours le méme, 'ordre o, {3, ... par
exemple, et soient
(9) A

9 2 a”’ 6”’

deux quelconques des combinaisons obtenues en attribuant aux entiers dont il
s'agit tous les systémes possibles de valeurs positives; ces deux combinaisons

élant, bien entendu, supposées distinctes, les différences
(10) o — o, @/__ Bu’

ne peuvent s’annuler a la fois. Cela posé, nous dirons que la premiére des combi-
naisons (g) est de taze inférieure ou supérieure i la seconde, suivant que la
premiére des différences (10) qui ne s’évanouit pas est négative ou posilive.
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1l importe de faire & cet égard 'observation suivante. Si I'on désigne par

! 14
ay B, ...,
" "
"y B, ...,

" n
a”s B", ...

trois combinaisons de valeurs attribuées aux entiers «, 3, ..., si I'on suppose en
oulre que la premiére soit de taxe inférieure a la seconde et la seconde de taxe

inférieure & la troisiéme, la premiére est nécessairement de taxe inférieure a la
troisiéme; c’est 1a une conséquence immédiate des relations évidentes

o — a///___(al__ all) + (a//_ 0(”’),

ﬁl_ 5[[/: (ﬁl_ 5”) -+ (6/1__ 5!’/),

II. Désignant par zo, ¥,, ... cerlaines valeurs particuliéres des n variables
réelles z, y, ..., et par X, Y, ... d’autres valeurs particuliéres des mémes
variables, respectivement supérieures aux premiéres, nous nommerons Inter-
valle complexe la région de I'espace [[x,y, ]] définie par les relations simul-
tanées

z szt X,

(11) ¥o<r=<y,

dont chacune, considérée isolément, définit un intervalle simple. Les différences
(positives) X — zo, Y — ¥y, ... seront les amplitudes de I'intervalle complexe;
le point

)
2 2

(xo+x ‘yo"l"Y .-.>

qui fait évidemment partie de la région, en sera le centre.

Nous nommerons subdivision d’un intervalle complexe 1'opération consistant
a subdiviser (de fagons quelconques) les n intervalles simples dont ’association
le constitue, puis & former de toutes les maniéres possibles un intervalle com-
plexe avec n intervalles partiels pris respectivement dans chacun d’eux.

Nous aurons besoin ci-aprés de considérer dans un ordre déterminé les divers
intervalles complexes provenant de la subdivision d’un intervalle donné; la loi de
leur succession peut étre choisie de bien des manicres, et 'on peut, par exemple,
la fixer comme il suit. En premier lieu, on adoptera pour les indéterminées z,
Yy - un ordre toujours le méme, soit I'ordre z, y, .... Considérant ensuite les
intervalles simples partiels obtenus par la subdivision de I'intervalle simple total
relatif & une indéterminée quelconque, on commencera par les ranger dans
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", . . . .
P'ordre naturel que leur assignent les valeurs croissantes de cette variable. Si 'on
désigne alors par

iy, 12, ..., i¥,

3(1)
1!

y ey y s

.y ceey ce ey

les diverses suites d’intervalles simples ainsi obtenues, et que l'on associe ces
derniers de toutes les maniéres possibles en prenanl un terme et un seul dans
chaque ligne horizontale du Tableau précédent, deux quelconques des intervalles
complexes qui en résultent pourront étre désignés par les notations

(12) [, i, ..,
(13) [, i, ..,

ou les deux combinaisons d’entiers positifs

oy B, ...,

" "
o, B

sont nécessairement distinctes. Cela posé, nous dirons, pour abréger, que Dinter-
valle partiel (12) est de taxe inférieure ou supérieure i l'intervalle partiel (13),
suivant que la premiére des deux combinaisons dont il s’agit sera elle-méme de
taxe inférieure ou supérieure a la seconde (1), et nous conviendrons de consi-
dérer nos intervalles complexes partiels dans un ordre tel que leur taxe aille
toujours en croissant; nous dirons, en pareil cas, qu’ils sont ordonnés.
Observons, en passant, qu'un intervalle complexze constitue une région

limitée et compléte de l’espace [[x, Yy ]] iffectivement, la relation

2, S <X
équivaut enliérement a
Zy+ X Zy+ X o+ X
Xy — 0 ;‘Z'—— 021 EX—LT’
2

¢’est-a-dire a

X———x.,<x_a:0+X<X—.ro

2 2 2
ou enfin a
-y (i)
2 = 2 ’
de méme, la relation
YoSysY

équivaut a
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etc. L’ensemble des relations (11) définit donc, en vertu des n° 4 et 5, une région

limitée et compléte de I'espace [[x,y, . ]]

III. Revenons & notre énoncé général.

-Si 'on considére la région limitée ou la variante (Zm, ¥m, ...) se trouve, par
hypothése, constamment comprise, la distance \/z*+ y2 ... du point (z, y, ...),
arbitrairement variable dans toute 'étendue de cette région, au point fixe (o, 0, ...)
de Pespace [[x,y, ]J, reste inférieure a une constante positive M convena-

blement choisie (n° 2); a plus forte raison a-t-on, entre les mémes limites,

modx < M, mody < M, ceey
c’est-a-dire
—M<x<<M, —M<y<)y, e

I existe donc quelque intervalle complexe,

zizsX,  ySyiY, ..,

dans lequel la variante (Zm, ym, --..) se trouve constamment comprise, et que
nous représenterons, pour abréger, par J,. Si l'on divise en deux parties égales
chacun des intervalles simples dont se compose Ji, et qu’on ordonne (II) les
divers intervalles complexes résultant de cette subdivision, il existe certainement
quelqu’un de ces derniers ou la variante ¢, tombe un nombre infini de fois.
Appelons J, le premier d’entre eux pour lequel cetle circonstance se réalise;
opérons sur lui comme nous I’avons fait sur J,, et ainsi de suite indéfiniment.
Nous formerons de cette maniére une suite illimitée d’intervalles complexes,

('[I) jly 32’ ey jk’ RS ]

jouissant de la triple propriélé que nous allons énoncer : 1° chacun d’eux fait
entiérement partie du précédent et, par suite, de tous ceux qui viennent avant
luij 2¢ celui de rang & a pour amplitudes (II)

.

X—z, Y—y,
s e

T M
2k—l ok—1 >

3° la variante ¢,, tombe une infinité de fois dans chacun des intervalles (14).
Cela posé, considérons la suite illimitée

O R

et soient w, le premier terme de celte suite, w, le premier des termes restants
situé dans l'intervalle J,, w; le premier des termes reslants situé dans linter-
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valle 33, et ainsi de suite indéfiniment. La distance des deux points wx, Wk, 4, au
plus égale a

VX — )+ (Y=o,

reste, a partic d’'une valeur de k suffisamment grande, moindre que toute
constante positive donnée, et, par suite, la variante vy est convergente (n° 9).

PROPRIETES GENERALES.

12. Désignant par z, y, ... des variables réelles en nombre quelconque n,
considérons une région W extraite de I'espace [[.7;, ¥ ]J, et supposons qu’a
chaque point (z, y,...) de la région on fasse, de quelque maniére, correspondre
un ensemble de constantes réelles ou imaginaires (soit une, soit plusieurs, soit
une infinité) dont chacune s’appellera, pour abréger, une caractéristique du
point.

Sur ces données, faisons en outre 'hypothése suivante :

Si un point (%, yo, -.) de la région admet parmi ses caractéristiques la
constante Lo, tout point de la région B suffisamment voisin du précédent
admet parmi les siennes quelque constante dont la différence a hy présente un
module inférieur & une quantité positive assignée d’avance.

En d’autres termes, si I'on considére un point déterminé (z,, Yoy -..) de la
région &, une caractéristique déterminée %, de ce poinl, ¢t une constante positive
arbitrairement donnée «, on peut assigner une constante positive 3 telle que la
relation

\/(x—xo)"+(y—‘y0)2+,.,< B,

supposée vérifiée pour un point (z, y, ...) de la région M, entraine pour ce
dernier point 'existence de quelque caracléristique X satisfaisant & la relation

mod (A —2,) < a.

Cela étant, nous allons établir successivement les diverses propositions qui

suivent.

13. Les mémes choses étant posées qu’au n° 12, et la région B étant, de
plus, limitée et compléte, on peut assigner une constante positive, L, telle que
tout point de la région admette, indépendamment de sa position, quelque
caractéristique de module inférieur a L.
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I. Soient

Z, )y .». des variables réelles;
€ une région compléte de 'espace [[.z*, ¥ ]],

(15) jl, 32’ L jq’

une suite d’intervalles complexes se succédant indéfiniment suivant quelque loi
déterminée, arbitrairement choisie sous les seules conditions : 1° que chacun
d’eux soit entiérement contenu dans le précédent; 2° que les amplitudes
(n° 11, I) de .J, tendent vers zéro pour ¢ infini; 3° que chacun des inter-
valles (15) contienne quelque point de la région compléte €.

Cela étant, si I'on désigne par u, le centre (n° 11, II) de I'intervalle complexe g
la variante u, tend vers une limite v située : 1° dans U'un quelconque des
intervalles (15); 2° dans la région €.

Effectivement, si 'on désigne par x4, ¥4, ... les valeurs extrémes minima et
par Xg, Yy, ... les valeurs extrémes maxima prises par les variables z, y, ... dans
Pintervalle Jg, ce dernier a pour amplitudes les différences

Xg—x Yo—yg ...

qui, dés lors, sont infiniment petites; d’ailleurs, les deux points ug, uy,, étant
compris I'un et 'autre dans l'intervalle jq, leur distance est inférieure a

(16) \/(Xq_zq)2+(Yq—yq)2+---

et, par suite, infiniment petite pour ¢ infini; il en résulte (n°9) que le point u,
tend vers une limite v.

Cela étant, si 'on donne & ¢ une valeur particuliére quelconque en laissant
r variable, le point , , tendra, pour r infini, vers cette méme limite v, et, comme
il reste compris, quel que soit r, dans la région compléte (n° 11, II) J,, sa limite
s’y trouvera elle-méme comprise (n® 10).

Enfin, le point v appartient nécessairement a la région €: car, s’il en était
autrement, l'intervalle jq contiendrait, en méme temps que v, quelque point de
la région €, et la distance de v & un pareil point pourrait devenir inférieure & la
quantité (16), par suite & toute quantité donnée. Or, c’est la une conclusion
absurde, puisque la région @ est compléte et que le point v, s’il n’y est pas
compris, ne peut lui étre que complétement extérieur (n° 3).

II. Les mémes choses étant posées qu’au n°12, et la région W étant, de plus,
limitée et complite, s’il existe, dans cette région, quelque point dont toute
caractéristique ait un module supérieur & la constante positive w, on peut,
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sutvant une loi déterminée, assigner dans la région B un point dont toute
caractéristique ait un module supérieur ou égal a .

La région W, étant limitée, se trouve entiérement contenue dans quelque inter-
valle complexe J, (n°11, 1II). Divisons en deux parties égales chacun des n inter-

valles simples,
‘Z‘Oixéxv yoé.)’iY, LS

de I'association desquels ce dernier résulte, ordonnons les intervalles complexes
partiels fournis par cette subdivision (n° 11, 1I), et appelons J, le premier d’entre
eux contenant quelque point de B dont toute caractéristique ait un module supé-
rieur a w. En opérant sur I'intervalle 32, comme nous I'avons fait sur J,, et ainsi
de suite indéfiniment, nous obtiendrons une succession illimitée d’intervalles
complexes,

(17) jh 32’ ~-'13qs RS ]

jouissant de la triple propriété que nous allons énoncer :
1° Chacun d’eux fail entiérement partie du précédent;

0 ‘ . .,

2" Celui de rang ¢ a pour amplitudes les quantités

X—z, Y—r,
21]—1 4 29-1

y ey

qui sont infiniment petites pour ¢ infini;

3° Chacun des intervalles (17) contient quelque point de 8 dont toute carac-
téristique présente un module supérieur d w. )

Cela étant, il résulte tout d’abord de I'alinéa I que, si I'on désigne par u, le
centre de jq, cette variante u, tend vers une limite, v, située dans I'un quel-
conque des intervalles (17), et aussi dans la région R. Je dis, de plus, que toute
caractéristique du point v est forcément de module supérieur ou égal a w.

Supposons en effet que quelque caractéristique, Ay, de ce point ait un module
inférieur & w, et désignons par z, y, ... les coordonnées d’un point quelconque
commun a R et & jq, par &, 1, ... celles du point v. A partir d’une valeur de ¢
suffisamment grande, la distance des deux points (x,y, ...), (§,7,...) tombe
au-dessous de toute quantité donnée, puisqu’elle est inférieure a

;,;i—i\/(x—xo)zﬁu(Y v R

donc, a partic d’une valeur de ¢ suffisamment grande, le point (z, y,...)
admettra quelque caractéristique, ), telle que le module de A — ), tombe lui-
méme au-dessous de toute quantité donnée, et, a plus forte raison, la valeur
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numérique de
modA —modi,;

le module de ), étant inférieur i w, tout point commun a W et 3 J, admettra
donc, a partir d’une valeur de ¢ suffisamment grande, quelque caractéristique de
module inférieur & w, ce qui est impossible, puisque, d’aprés la troisiéme pro-
priété des intervalles (17), un pareil point peut toujours étre choisi de maniére a
ce que toute caracléristique y ait un module supérieur & w.

Toute caractéristique du point v est donc bien, comme il s’agissait de I'établir,
de module supérieur ou égal 3 w.

Le raisonnement qni précéde doit étre complété par une observation essentielle.
Pour déterminer le point v comme nous venons de le faire, on commence par
considérer un intervalle complexe, ,3,, ou la région R se trouve entiérement com-
prise : il existe, naturellement, une infinité d’intervalles complexes jouissant de
cette propriété, el, suivant que 'on prend tel ou tel d’entre eux pour point de
départ des divisions successives en deux parties égales, le point v peut n’étre pas
le méme; mais, {’intervalle 3, une fois fixé, le point v, auquel elles conduisent
finalement, est entiérement déterminé.

II. Les mémes choses étant posées qu’au n° 12, et la région W étant, de plus,
limitée et compléte, considérons une suite indéfinie donnée,

(18) Wiy Way  eeey Wy eeey

de constantes positives, et supposons que, quel que soit m, la région R con-
tienne quelque point dont toute caractéristique ait un module supérieur
a Wy

Cela étant, on peut assigner quelque variante (Zmy ¥m, - ..), tombant con-
stamment dans la région R, et telle que toute caractéristique du point
(Zmy Ymy --.) ait un module supérieur ou égal a wy,.

En se donnant une fois pour toutes un intervalle complexe ou se trouve com-
prise la région R, et en recommengant pour chaque terme de la suite (18) un rai-
sonnement identique a celui de 'alinéa précédent, on définira une variante
(@my Ym, - ..) satisfaisant a toutes les conditions requises.

IV. Les mémes choses étant posées qu’au n° 12, et la région B étant, de plus,
limitée et compléte, on peut assigner une constante positive, 1!, telle que tout
point delarégion 8 admette, indépendamment de sa position, quelque carac-
téristique de module inférieur ou égal a L.

Supposons en effet qu’il en soit autrement, c’est-a-dire que, une constante
Fac.de T., 2* S., VIII. 51
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posilive w, de grandeur arbitraire, étant donnée, il existe dans la région R quelque
point dont toute caractéristique présente un module supérieur & . Cela élant, s
I'on prend successivement pour © tous les nombres entiers positifs,

I, 2, ..., My ...,

il existe, en vertu de l'alinéa III, quelque variante (Zmy Ymy «+ ) tombant con-
stamment dans la région 1, et telle qu’au point (Zm, ¥m, - . .) loute caractéristique
ait un module supérieur ou égal & m; cette variante ne sortant jamais de Ja
région R, qui est limitée et compléte, une variante,

(xmp Ymnps - - ) - (x(k)y )’””; . ')’

convenablement extraite de (Zm, ¥m, .- .), sera convergente (n° 11), et sa limite
(E, H, ...) sera située dans B (n° 10). Cela étant, désignons par A une caracté-
ristique du point (£, H, ...) : & partir d’une valeur de & suffisamment grande, Ie
point (2®, y® ) admetira quelque caractéristique dont la différence & A pré-
sente un module moindre que toute quantité donnée; a plus forte raison, la diffé-
rence, prise en valeur absolue, des modules de ces deux caractéristiques sera-t-elle
moindre que toute quantité donnée : or, c’est la une conclusion absurde, puisque
toute caractéristique du point (z®, y®, ...) posséde un module supérieur ou

égal & la variante infinie my.

V. Toute constanle positive, L, supérieure a la constante L' dont il est question
a lalinéa 1V, remplira évidemment les conditions requises par notre énoncé

général.

14. Les mémes choses étant posées qu'au n° 12, et la région W étant, de plus,
limitée et compléte, si, quelle que soit la constante positive w, la région R
contient quelque point dont toute caractéristique présente un module infé-
rieur i w, elle contient nécessairement aussi quelque point dont toute carac-
téristique est nulle.

I. Les mémes choses étant posées qu'au n°12, et la région 8 étant, de plus,
limitée et compléte, considérons une suile indéfinie donnée,

Wiy Oz ovey Wmy  ooey

de constantes positives, et supposons que, quel que soit m, la région limitée et
complite B contienne quelque point dont toute caractéristique ait un module
inférieur & wp,.

Cela étant, on peut assigner quelque variante (Tpm, ¥ m; ...), tombant con-
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stamment dans la région R, et telle que toute caractéristique du point
(Zmy Ymy -..) ait un module inférieur ou égal & wp.

On répétera, mutatis mutandis, les raisonnements faits ‘dans les alinéas 11
et 1II da numéro précédent.

Y

II. Revenons & notre énoncé général, et supposons, conformément a I'’hypo-
thése, qu’une constante positive v, de pelitesse arbitraire, étant donnée, il existe
dans la région W quelque point dont toute caractéristique ait un module inférieur
a w. Cela étant, si 'on prend successivement pour o les inverses arithméliques de
tous les nombres entiers positifs,

[ 1

S s o
il existe, en vertu de l'alinéa I, quelque variante (Zmy Ym, ---) tombant con-
stamment dans la région R, et telle qu’au poinl (Zmy ¥m, --.) toute caracléris-

. . . , . . . I . . .
tique ait un module inférieur ou égal a —; celle variante ne sortant jamais de la
14

région R, qui est limitée et compléte, une variante
(‘rmk’ ymk, . '): (m(k)’ .}’(k), .- ')9

convenablement extraite de (Zm, ¥m, --.), sera convergente (n°11), et sa limite
(2, H, ...) sera située dans R (n°10). Cela étant, je dis que toute caractéris-
tique, A, du point (Z, H, ...) est forcément nulle. En effet, a partir d’une valeur
de k suffisamment grande, le point (z®, y® .. ) admettra quelque caractéris-
tique dont la différence a2 A présente un module moindre que toute quantité
donnée; a plus forte raison la différence, prise en valeur absolue, des modules de
ces deux caracléristiques sera-t-elle moindre que toute quantité donnée : si donc
le module de A n’était pas nul, le point (£®, y® . .) admettrait, & partir d’une
valeur de & suffisamment grande, quelque caractéristique de module supérieur a

la variante infiniment petite ——» ce qui est impossible.
k

15. Les mémes choses étant posées qu’au n° 12, et la région R étant, de plus,
limitée et compléte, si toutes les caractéristiques des divers points de la région
sont des quantités différentes de zéro, on peut assigner une constante posi-
tive, 1, telle que tout point de la région R admette, indépendamment de sa
position, quelque caractéristique de module supérieur a (.

Puisque toute caractéristique est, par hypothése, essentiellement différente de
zéro, il est impossible qu’en aucun point de la région W toute caractéristique soit
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nulle; si donc on se reporte au numéro précédent, on voit qu'en désignant par !
une constante posilive convenablement choisie, il n’existe dans la région B aucun
point dont toute caractéristique présente un module inférieur a 7. En d’autres
termes, tout point de la région R posséde quelque caractéristique de nodule supé-
rieur ou égal a /, et, dés lors, une constante positive, I, arbitrairement choisie
au-dessous de 7, salisfait & la condition requise par notre énoncé.

16. Les mémes choses étant posées qu’au n° 12, et la région W étant, de plus,
limitée et compléte, on peut, une constante positive a. étant donnée, assigner
une constante positive, 8, telle que deux points arbitrairement choisis dans la
région W & une distance mutuelle moindre que 3 admettent respectivement,
aw nombre de leurs caractéristiques, deux quantités dont la différence ait un
module moindre que a.

L. Les mémes choses étant posées qu’au n° 12, si Uon considére un point
déterminé (z,, ¥y, ...) de la région W, on peut, une constante positive o étant
donnée, assigner une constante positive, 8y, telle que deux points arbitrai-
rement choisis dans la région R, sous la seule condition que leurs distances
& (24, ¥, - ..) solent Uune et l’autre moindres que 8,, admettent respecti-
vement, au nombre de leurs caractéristiques, deux quantités dont la diffé-
rence ait un module moindre que o.

Si 'on désigne en effet par Xy une caractéristique du point (zg, Yo, -..), On
peut, cn vertu de nos hypothéses, assigner une constante positive, 8, telle que la

relation

V(e — )+ (y —y0)+... <0

supposée vérifiée pour un point (2, ¥, ...) de la région R, entraine comme con-
séquence nécessaire, pour le point dont il s’agit, 'existence de quelque caracté-

ristique, A, vérifiant la relation

mod (A —1},) < g-

Cela étant, désignons par (2, ¥/, ...), («", ", ...) deux points arbitrairement
choisis dans la région M sous les seules conditions que leurs distances a (o, ¥o, ---)
soient I'une et 'autre moindres que 8, : d’aprés ce qui vient d’étre dit, ces deux
points admettront respeclivement deux caractéristiques, %', 1A', vérifiant les
relations

mod (M —12,) < g, mod().”—lo)<§,
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d’ott résulte, par addition membre & membre,
mod (M —2,) +mod (A — ") < &

et, a plus forte raison,
mod (A —2") < o

II. Les mémes choses étant posées qu'au n° 12, nommons désormais caracté-
ristique premiére d’un point déterminé (quelconque) de la région B ce que jus-
qu’ici nous avons simplement appelé caractéristique,; puis, considérant le nombre
positif donné a, nommons caractéristique seconde du méme point Loute constante
positive telle que deux points arbitrairement choisis dans la région R, sous les
seules conditions que leurs distances au premicr soient I'une et I'autre moindres
que cette constante, admettent respectivement, au nombre de leurs caractéris-
tiques premiéres, deux quantités dont la différence présente un module moindre
que a (1). Cela étant, st un point (x4, ¥y, ...) de la région B admet, parmi ses
caractéristiques secondes, la constante positive 8,, tout point de la région R
suffisamment voisin du précédent admettra parmi les siennes une constante
positive dont la différence a 8,, prise en valeur absolue, tombe au-dessous
d’une quantité positive assignée d’avance.

Effectivement, tout point (&, %, ...)de larégion W dont la distance & (24, ¥4, --.)
tombe au-dessous de 8, ne peut manquer, comme on va le voir, d’admettre au
nombre de ses caractéristiques secondes la différence (positive)

(19) O=0o—\V(z,—E) -+ (¥o—0)+... 3

car les relations

Ve — &2+ () —n)’+... <39,
V(@ =B+ (y —a)+... <39,

(20)

qui peuvent s’écrire

V(@ =B+ () —n) . V(@ — E) F (o) F ... <0

V@ =8P+ (0 =)+ V(@ — 8+ (Jo—n)+... <&,

. entrainent, a plus forte raison (n° 2, 1),

\’/(x,—xo)z"‘(}’l—}’o)g"‘-- . < Oy

\/('7"”_'1'0)’ (Y =)+ < 0y

d’ou résulte que deux points (2, ¥/, ...), (2", 5", ...) de la région R, s'ils satis-
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font aux velations (20), admettent respectivement, au nombre de leurs caractéris-
tiques premiéres, deux quantités dont la différence présente un modale moindre
que a. La simple inspection de Ja formule (19) montre alors que, si le point
(% 7y ...) est suffisamment voisin de (z,, ¥, ...), la différence (positive) 3,— o
tombe au-dessous de toute quantité donnée.

III. Revenons a notre énoncé général.

La région R étantalors limitée et compléte, el toute caractéristique seconde (IT)
d’un point de cette région étant, par définition méme, essentiellement supérieure
a zéro, la proposition du numéro précédent est applicable, et I'on peut affirmer
qu’en désignant par B une constante positive convenablement choisie, tout point
de la région W admet, indépendamment de sa position, quelque caractéristique
seconde supérieure a §3.

Cela posé, considérons dans la région W deux points, (2, 31, .-.), (T2 Y2y - -+),
dont la distance mutuelle soit moindre que § : je dis que ces deux points admettent
respectivement, parmi leurs caractéristiques premiéres, deux quantités dont la
différence présente un module moindre que a. Effectivement, 'un quelconque de
ces deux points, par exemple (z,, , ...), admettant, d’aprés ce qui vient d’étre
dit, une caractéristique seconde supérieure a {3, les relations

TR <
\/(J:’"—— -L'l)z""’ (}/”_—)’1)24-. << B)

(21)

supposées vérifiées pour deux points (', ', ...), (2", ", ...) de la région 1,
entrainent comme conséquence nécessaire l'existence, en ces deux points, de
caractérislfques premiéres dont la différence présente un module moindre que .
Or, la distance du point (2, ¥y, -..) & lui-méme étant nulle, et sa distance au
point (&3, s, ...) étant, par hypothése, moindre que B, les relations (21) se
trouvent vérifiées pour

(‘T,v ,}’,, . --):(xn NAT s (17”9 .7'”' .. '):(xm Y2 "');

les points (&4, ¥4y - +), (Z2, ¥s, --.) admettent donc respectivement, au nombre
de leurs caractéristiques premiéres, deux quantités dont la différence présente un
module moindre que z. Clest ce qu'il s’agissait d’établir.

FONCTIONS CONTINUES.

17. Nous nommerons premier et second élément de la quantilé imaginaire
a + id" les deux quantités réelles @', a'.
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Si aux »n variables
(22) x=a +iz', y=y'+1iy’, cees

on attribue tous les syst¢mes possibles de valeurs imaginaires, les systémes de
valeurs réelles que prennent alors leurs 27 éléments redonnent les divers points
d’un espace a 22 dimensions,

(23) [[=, " y's y"s 1]

W arrive d’ailleurs sans cesse que l'on ait a considérer exclusivement, dans telle
ou telle question, les syst¢émes de valeurs des n variables (22) satisfaisant a tel
ou tel groupe de conditions entre leurs 2 n éléments, ou, ce qui revient au méme,
les points situés dans telle ou telle région de l'espace (23).

Dans l'espace a 2 n dimensions (23), a la considération duquel on est conduit
par celle des n variables imaginaires (22), un point quelconque

(', 2", y's y"s )
se désigne tout aussi bien par la notation
(ryy,...),

ct les valeurs z, y, ... se nomment, en pareil cas, les coordonnées imaginaires
du point. L’espace (23) se désigne de méme par la notation

[z, ...]]
Enfin, si I'on considére dans I'espace (23) deux points quelconques,

o . A L)
r =z, + iz, =y +uy, cey

! h " N o U
Ly =5+ 1T, Y=Yt 1Y, ey

leur distance, égale par définition (n° 1) a

Vizy— 20 + (2] — &) + (' — 0 P+ (O — )i+,

peut évidemment s’écrire sous la forme

Vmod (z,— x,)*+ mod (¥, — y3) +.. ..

Si, nolamment, il n’y a qu'une seule variable imaginaire, z, la distance des
deux points z,, z, est égale au module de la différence z, — z..
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18. Soient

Ty, Yyoeeny

n variables indépendantes, que nous supposerons, indifféremment, réelles ou
imaginaires.

Une fonction f(z, y, ...), bien définie dans toute I'étendue d’une région B de
I’espace [[x, ¥ ]] ('), est dite continue dans celte région, si, un point

(%o, Yoy -..) de la région et une constante positive « étant donnés, on peut leur
faire correspondre quelque constante positive, 3, telle que la relation

Vimod ( — z,)*+ mod (y — y,)* +... < B,

supposée vérifiée pour un point (z, y, ...) de la région R, entraine comme consé-
quence nécessaire la relation

(24) mod [f(z, y, ...} — f(Zgy ¥os ---)] << 23

ou, ce qui revient au méme, si, le point (z,, ¥,, ...) et la conslante a« étant
donnés, on peut leur faire correspondre quelque constante positive, v, telle que
les relations simultanées

mod (z — zy) < 75 mod () —y,) <7, R

supposées vérifiées pour un point (z, y, ...)de la région R, entrainent comme
conséquence nécessaire la relation (24).

Si une fonction, u= f(x,y,...), est continue dans une région R de
Uespace [[x, ¥, ]], et si une variante (Zmyr,...;Ym,r,...s -++), tombant con-

stamment dans cette région, a pour limite un point (X, Y, ...) qui y soit éga-
lement situé, la variante

um,r,...:f(x'm,r,...’ Ym,r,s o )
de Pespace |[u]| a pour limite le point
P P P

=f(X,Y,...)

de cet espace.

Effectivement, la distance du point variable (zZm,r,..., ¥m,r,..., --.) au point
fixe (X, Y, ...) finissant, en vertu de notre hypothése, par tomber au dessous de

(1) Cet espace est & n ou a 2n dimensions, suivant que les n variables z, ¥, ... sont
réelles ou imaginaires.
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toute quantité donnée (n° T), il résulte de la continuité de f(z, y, ...) que le
module de la différence U — up ... jouil nécessairement aussi de celle méme
propriété : le simple rapprochement de diverses remarques présentées aux n° 7,1
et 17 entraine alors 'exactitude de celle que nous venons de formuler.

19. Sil'on observe que, dans le cas ol les variables z, y, ... sont imaginaires,
’espace [[a:,y, .. ]] n’est autre chose, par définition (n° 17), que I'espace (23),
si, d’un autre coté, on compare a notre hypothése générale du n° 12 la définition,
donnée ci-dessus (n° 18). de la continuité, on voit immédiatement qu’elle s’en
déduit par la simple supposition que chaque point de la région R posseéde une
caractéristique unique. Nous pouvons donc, sans autre démonstration, énoncer

les théorémes suivants :

1° S une fonction est continue dans une région limitée et compléte, son
module y reste constamment inférieur a quelque quantité fixe (n° 13).

2° Si une fonction est continue dans une région limitée et compléte, et
qulelle y puisse acquérir un module inférieur & toute quantité positive
donnée, elle s’annule certainement en quelque point de la région (n° 14).

3° Si une fonction est continue dans une région limitée et compléte, et
quelle ne s’y annule jamais, son module y reste constamment supérieur a
quelque quantité positive fixe (n° 15).

4° St une fonction f(z, y, ...) est continue dans une région limitée et com-
pléte, on peut, un nombre positif a étant donné, assigner un nombre positif B
tel que, pour deux points (z,, y,, o)y (%2, ¥a, ...) arbitrairement choisis
dans la région a une distance mutuelle moindre que 8, la différence

f(‘z‘x,)’i, "')_"f(‘r‘b )’z, )

présente un module moindre que o (n° 16).

Observons enfin : 50 Que le module d’une fonction continue Sz, y,...)est
lui-méme une fonction continue : il suffit, pour s’en convaincre, de se reporter

a notre définition du n° 18, ct de remarquer que la relation
mod[ f(x, y,...) — flz,, Yor o)<
entraine comme conséquence nécessaire

val. abs.[mod f(=z, y, ...)— mod f(xy, ¥, ...)] < .

20. La composition des fonctions continues donne lieu au principe suivant,

Fac. de T., > S., VIIL. 52
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Soient

deux groupes de variables en nombres respectivement quelconques;;
(25) Z(s, t,...),

des fonctions de s, ¢, ... en méme nombre que les variables z, ..., du premier
groupe;

S(z, ...) une fonction de ces derniéres.

Cela étant, si les fonctions (23) sont toutes continues dans une méme région,
., ..., de Uespace [[s, ¢ ]], s, de plus, la fonction f(z, ...) est continue
dans une région, R, ., de U’espace [[z, ]], si, enfin, pour un choiz arbi-
traire du point [[s, Z ]] dans la premicre région, le point fourni par

Uassociation des valeurs (25) se trouve toujours compris dans la seconde : la
Jonction composée

FIZ(sy .0, ]
est certainement continue dans la région 15;7,7
Soient, en effet,

(So05 Loy +-.) un point particulier(quelconque) de 'ﬁs,t,m;
Zg, ... les valeurs correspondantes des fonctions (25);
o un nombre positif choisi & volonté;

£ un deuxi¢me nombre positif, tel que la différence
S ) —=F (5, . 0)

présente un module inférieur & =, toutes les fois que le point (5, ...) de la
région 'ﬂz,__, se trouve aune distance de (z,, .. .) moindre que 3;

p le nombre des variables z, ...;

Y un dernier nombre positif, tel que les p différences

présentent toutes des modules moindres que %; dés que le point (s, ¢,...)de la

région 1‘13,,7 ... se trouve a une distance de (s, ¢, ...) moindre que 7.
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Cela étant, si un point (s, ¢, ...) de la région R;, . . satisfait a la relation

Vmod (s — o)+ mod (£ — £) +... <7,

le point (z, ...) de la région W, . fourni par I'association des valeurs (25) véri-

fiera la relation

Vmod (s — 50):+... <3,
et I'on aura, par suite,

mod[ f(3, ...)—[f(50, .. )] <@,

ou

mod| f[Z(s, ¢, ...)y .. T — fIL(s0s by - -), - .- 1| < ot

21. 11 nous reste a établir, sur I'inversion des fonctions continues, une propo-
sition qui nous sera ultérieurement de quelque utilité, mais dont I’énoncé, pour
étre formulé d’une fagon compléte, nécessite tout d’abord la connaissance du
lemme suivant.

Soient

x, ¥, ... des variables indépendantes (réelles ou imaginaires) en nombre quel-

conque g';
U:U(x,)’, --')s

(26) 2 v =V(z, ¥, ...)

des fonctions de x, y, ..., en nombre quelconque j, toutes continues dans
une méme région, R, , .., del'espace [[x, ¥, ]J ;
H,,,... la région de l'espace [[«, ¢, ...]| constituée par I'ensemble des divers

points (u, ¢, ...) qui, en vertu des formules (26), correspondent (avec répé-

lition possible), aux divers points de 8, ,, ...

Cela posé, si la région "ﬁx,y,,,_ est a la fois limitée et compléte, la
région W, .. ne peut manquer de Uétre aussi.

L. Une fonction enticre, f(z, y, ...), est continue dans toute |’étendue de

Uespace [[x, Y, ]] ().

(1) Il s’agit de faire voir qu’en désignant par (&, ¥, ...) un point fixe donné et par a
une constante positive donnée, on peut assigner une constante positive, B, telle que les
relations simultanées

. mod(z — @) < B, mod(y —yo) < B,
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II. Silon désigne par m un entier positif et par s une variable indépen-

. .. . , . . .. m/—

dante assujettie & se mouvoir dans la région s2o, la fonction ( positive) \/s
est continue (').

1II. Revenons a notre énoncé.

La région 3&,‘,”,,,, est nécessairement limitée : car, chacune des fonctions u,

entrainent comme conséquence nécessaire

mod [ f(z, y, ...)— f(2g, Yo, -..)] < a.
Effectivement, si 'on pose

z—zy=h, Y — Yo=K, LRRE]

la différence
Sz, yy o) — f(@o, Yoy -+ .)

ou
f(T0+/l, }’0‘*‘]\'7 --‘)'—f(wm)'o, "‘)

peut, par I'application des premiéres régles de 1’Algébre, étre mise sous forme d’un poly-
nome entier en %, &k, ... ayant ses termes tous dissemblables et privé de terme constant. Si
ce polynome, P(A, Kk, ...), n’a que des coefficients nuls, il est nul quels que soient 2, £, ...,
et le nombre positif § est arbitraire. Dans le cas contraire, soient ¢ le nombre de ses termes
(& coefficients non nuls), 1 le plus grand module des coefficients, et § un nombre positif a
ce e . Lo s X
la fois inférieur & 1 et @ —; en supposant les modules de %, &, ... tous inféricurs a §,
. ne
celui du terme
Chalb, ..,

ol @ + b —+... est forcément plus grand que zéro, est inférieur a

24 4
a-+b+...< < p—=—;
pd S <eio =g

la somme des modules des termes du polynome P(%, k&, ...), et, & plus forte raison, le
module de P(A, £, ...), sont donc inférieurs a qg, c’est-a-dire a «.

(1) En effet, si lon prend arbitrairement, dans la région s 2o, deux valeurs 34, 25, on a,
en désignant par z; la plus grande des deux,

mj/— m.— m
V/51§ V 32+ \/ 31— 32,

comme le montre 'élévation des deux membres de I'inégalité a la puissance m. En vertu de
cette relation, qui peut s’écrire sous la forme

My 771/'—< m,—
Va1i— V5S 5 — 3,

il suffit, pour que la différence (prise positivement) de deux valeurs de la fonction soit infé-
rieure & @, que la différence (prise positivement) des deux valeurs de 5 soit inférieure & a7
A plus forte raison cette fonction est-elle continue dans la région dont il s’agit.
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¥, ..., que définissent les formules (26), élant, par hypothése, continue dans la
région limitée et compléte R, , ..., y garde un module constamment inférieur &
quelque nombre positif fixe (n° 19, 1°), et, dés lors, la quantité

ymodw?+mod¢*+. ..,

distance du point (u, ¢, ...) au point fixe (0, 0, ...), jouit elle-méme de cette pro-
priété.

La région ’ﬁ,,,‘,,_” est, en oulre, compléte : si I'on désigne, en effet, par (u,cz';, .
un point fixe n’en faisant pas partie, et que l'on considére la distance du
point (v, o, ...) 2 un point variable, («, ¢, ...), de la région, cette distance,

Vmod(u —v)—+ mod(y — o) +...,

ne peut manquer d’étre, comme le sont par hypothése les fonctions u, ¢, ..., con-
tinue dans la région limitée et compléte 'iiz,y,m (n° 21, T), (n° 20), (n° 19, 5°),
(n° 21, II). Comme d’ailleurs la distance en question ne s’annule en aucun point
de ‘{{x,y,..., elle reste constamment supérieure a quelque quantité positive fixe
(n°® 19, 3°); on en conclut, comme il s’agissait de I’établir, que le point (v, ¢, ...)

est complétement extérieur (n° 3) a la végion 33,,,‘,7

22. Soient
z, ¥

un groupe de n variables indépendantes (réelles ou imaginaires), et

u=U(z, y,...)
(27) co=V(x,y, ...),

un groupe de fonctions de z, ¥, ... en nombre n comme les variables. Suppo-
sons : 1° que ces fonctions soient loutes continues dans une méme région limitée
et compléte, “w,y,..., de 'espace [[x, ¥ ]], 2* qu’a deux points distincts de
cette région correspondent toujours, d’aprés les formules (27), deux points
distincts de P'espace [[ u, o, .. ]] )

Il résulte de la premiére hypothése qu’en désignant par ‘ﬂu,v,_,, I’ensemble des
divers points (u, ¢, .. .) qui correspondent ainsi aux divers points de “w)% o la
région Wy, ... est, comme W, , ., limitée et compléte (n° 21). Il résulte de la
seconde hypothése que ces deux régions se correspondent point par point, et,
par suite, que les formules (27) définissent, dans la région R, ,, ..., n fonctions
implicites, z, y, ..., des variables u, ¢, ....Je dis que les fonctions dont il
s‘agit sont continues.



422 C. RIQUIER.

Pour!'établir, nous considérerons un point particulier (quelconque), (i, ¢y, -..),
de la région %u%m, nous désignerons par (zy, ¥y, ...) le point correspondant
de la région ‘ﬂw,y.’,_,, et nous ferons voir que, une constante posilive a étant
donnée, on en peut assigner une autre, 3, telle que la relation

vmod (¢ — u,)*+mod (¢ — ¢0g): +...<B,

supposée vérifiée pour un point (u, ¢, ...) de la région 34‘1,!,(,7,,,, entraine comme
conséquence nécessaire, pour le point correspondant (z, y, ...) de larégion ‘ﬁm,y,.,,,
la relation

Vmod(z — 2, )2+ mod (y — y,)* +. .. <o

L. Les mémes choses étant posées que dans U’énoncé ci-dessus, désignons
par o et o deux constantes positives, et supposons qu’il existe dans la région
(limitée et complete) B, . ... quelque point satisfaisant & la condition

que sa distance a (xq, ¥, .. .) S0iL supérieure ou égale a a, tandis que la
28 distance a (u,, ¢, ...) du point correspondant de la régzion R
0 Yoo 5 w,v....
tombe au-dessous de .

Cela étant, je dis qu'on peut, suivant une loi déterminée, assigner dans la
région Ry, ... un point dont la distance & (zy, y,, ...) soit supérieure ou
égale & a, tandis que la distance & (uq, vy, ...) du point correspondant est
inférieure ou égale & w.

Considérons, en effet, un intervalle complexe, J,, qui comprenne entiérement
la région 'ﬁw,y,m; divisons en deux parties égales chacun des intervalles simples, -

a a A, b oa B, ..,

de l'association desquels il résulte (ces intervalles simples sont en nombre n
ou 2n, suivant que les variables z, y, ... sonl réelles ou imaginaires); puls,
ordonnons (n° 11, II) les intervalles complexes partiels fournis par cette subdi-
vision, et appelons J.le premier d’entre eux contenant quelque point de 311,7},,
qui satisfasse a la condition (28). En opérant sur l'intervalle I, comme nous
I’avons fait sur J,, et ainsi de suite indéfiniment, nous obtiendrons une succes-
sion illimitée d’intervalles complexes,

(29) Iy I s o

satisfaisant & la triple condition ci-aprés énoncée :
1° Chacun d’eux fait entiérement partie du précédent;
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2" Celui de rang ¢ a pour amplitudes les quantités

A—a B—0b

qui sonl infiniment petites pour ¢ infini;

3° Chacun des intervalles (29) contient quelque point de R, .y,... jouissant de
la propriété (28).

Cela posé, il résulte tout d’abord de I'alinéa I du n° 13 quelecentre de J, tend
vers une limite située dans 'un quelconque des intervalles (29), et aussi dans la
région R, y,... - je dis que la-distance de ce point limite & (2o, Yo, -..) €st supé-
rieure ou égale 4 a, et qu’en méme temps la distance & (uo, 0o, ) du point cor-
respondant est inférieare ou égale & w. ‘

Désignons en effet par (§, 7, ...) le point limite dont il s’agit, par (z, ¥, ...)
les coordonnées d’un point quelconque commun a 1%7% eta jq, etpar (v, 9, ...),
(u, ¢, ...) les points qui correspondent respectivement aux deux précédents dans
la région 13,,,‘,7,”. La distance des deux points

(=, Y ce)s (E,YJ, o)

tombe au-dessous de loute quantité donnéea partir d’une valeur de ¢ suffisamment
grande, puisqu’elle est inférieure a

= —VA—a)}+(B—b)+...;
et, 4 cause de la continuité des seconds membres de (27), la distance des deux
points

(Uy 9y ..2)y (Vy0,...)

jouit de la méme propriété. Donc, a plus forte raison (n° 2, 1), la différence, prise
posilivement, des distances

Vmod(z — @)+ mod (y — ¥, ) +. ..,

Vmod(& — xy)2+mod(n—yo) +...

tombe au-dessous de toute quantité donnée a partir d'une valeur de g suffisamment
grande, et la méme chose a lieu pour la différence des distances

vmod (& — u,)2+ mod (¢ — ¢)2+. ..,

vmod(v — o)+ mod (@ — ve)*+...
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Cela étant, si I'on avait I'une ou ’autre des deux relations

Vinod (2 — )+ mod(n — 5o ) +. .. <z,

Vmod(v — ) 4+ mod (0 — ¢4) +.,. > a,

on finirait par avoir I'une ou I'autre des deux relations

Vmod(z — x¢)*+ mod (y — v, ) +... < o,

vVmod(u — «,)* + mod (v — ¢¢) +...> o,

ce qui est impossible, puisque, d’aprés la troisiéme propriété des intervalles (29),
le point (z, y, ...) peuat Loujours étre choisi de maniére qu’on ait a la fois

Vmod(x — )+ mod () — )2 +... 2 a,

vmod(u — w2+ mod (v — ¢ )2=4... < w.

1. Les mémes choses étant posées qu'au début du présent n° 22, considé-
rons, en méme temps qu’une constante positive donnée, a, une suite indéfinie

donnée,
Wy, Wy RS @y cety

de semblables constantes, et supposons que, quel que soit m, il existe dans la
région W, , ... quelque point dont la distance & (zy, )y, -..) soit supéricure
ou égale a o, tandis que la distance & (uy, ¢q, ...) du point correspondant
de 8, . ... tombe au-dessous de w,,.

Cela étant, on peut assigner quelque variante, (Zm, Ym, ...), tombant
constamment dans la région 'ﬂzmm, et telle que la distance de (xm, Y, - - +)
a (2o, Yo, ---)s0it supérieure ou égaled a, tandis que la distance & (i, vo, .. .)
du point correspondant (wm, ¢m, ...) est inféricure ou égale & w,y,.

En se donnant une fois pour toutes un intervalle complexe ot se trouve com-
prise la région "ﬁ,r7% ..., etrecommencant pour chaque valeur de m le raisonnement
fait & Palinéa I, on définira une variante, (Z,, ¥m, ...), salisfaisant a toutes les

b ? ? ) )

conditions requises.

III. Revenons & notre énoncé général, el supposons pour un instant, contral-
rement & ce que nous voulons établir, quen désignant par w une constante positive
arbitrairement choisie, il existe dans la région W, , ... quelque point dont la dis-
tance & (uy, 9o, -..) soil moindre que w, tandis que la distance a (xq, ¥o, ---) du
point correspondant est supérieure ou égale & o; ou, ce qui revient évidemment
au méme, puisque les deux régions 1&,7%,“, .., ... se correspondent point par
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point, supposons qu’il existe dans la région 'ﬁz,y, ... quelque point dont la distance
a (xo, Yo, --.) soit supérieure ou égale a «, tandis que la distance & (uo, ¢y, ...
du point correspondant tombe au-dessous de .

Cela étant, si 'on prend successivement pour o les inverses arithmétiques de

tous les nombres entiers positifs,

I I I
—y = cesy  —y ey

1 2 m

il existe, d’aprés l'alinéa II, quelque variante, (zm, ¥m, ...), tombant constam-
ment dans la région ‘ﬁm,y, ..., et telle que la distance de (Zm, ¥my .-.) & (2o, Yo, .-+)
soit supérieure ou égale & «, tandis que la distance & (u,, ¢y, ...) du point corres-

P , | .
pondant (&p, ¥m, -..) est inférieure ou égale & - Cette variante (&Xp, ¥m, .. .) ne

sortant jamais de la région R, , .., qui est limitée et compléte, une variante,
(‘Tmp :Ymk? .. -) - (x(k), y(k), .. ')1

convenablement extraite de (Zmy ¥m, ...), sera convergente (n° 11), et sa limite,
(E, H, ...), sera située dans 'ﬁr’y’m (n° 10); d’ailleurs, la distance

Vmod(z — 4)*+ mod(y — yo)*+. ..

étant, dans cetle méme région, une fonction continue de x, y, ... (n° 21, 1),

(n° 19, 5°), (n° 20), (n° 21, II), la variante

Vmod (2 — x)*+ mod (y*) — y4 ) +. ..

a pour limite (n° 18)

Vmod (£ — z,)*+ mod (H — yo)*+.. .,

et, comme elle reste constamment supérieure ou égale & «, sa limite satisfait, elle

aussl, & la relation

(30) Vmod (Z — x,)* +mod(H — y,)*+... Za.

Silon désigne maintenant par (Y, @, ...) le point de R,,,, ... qui correspond
a (B, H, ...), il résulte de la continuité des seconds membres de (27) que le
point (u®, ¢®, ...}, correspondant a (z®, y® ...}, a pour limite (Y, @, ...);
d’ailleurs, la distance

Vmod (« — uy)*+ mod (9 — ¢g)* +. . .

étant, dans la région 13”,‘,,,__, une fonction continue de u, ¢, ..., la variante

Vmod («® — uy)*++ mod (v — pg) . ..
Fac. de T., 2 S., VIII. 53
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a pour limite

vmod (Y — uy )24 mod(¢+ 00)i4. ..,

e e . . . . . 1 .. ’
et, comme elle est inférieure & la variante infiniment pelite —— cette limite est
k

forcément nulle : il en résulte que (Y, @, ...) coincide avec (uo, ¢, ...), €t, par
suite, (&, H,...) avec (29, ¥y, -..), ce qui est contradictoire avec la relation (30).

(A suivre.)



