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SUR

LES FAMILLES DE SURFACES

TRAJECTOIRES ORTHOGONALES PLANES,

Psr M. E. GOURSAT.

Dans une thése intéressante, soutenue récemment devant la Faculté des Sciences

de Paris, M. Carrus (') a étudié les familles de surfaces i trajectoires orthogonales
s J

planes. Je voudrais présenter quelques remarques sur deux points de ce travail.

1. D’aprés un résultat dd a M. Cosserat, pour que 'équation
(l) “(x’,)”,z):P

représente une famille de surfaces dont les trajectoires orthogonales sont des
courbes planes situées dans des plans paralléles 4 'axe Oz, il faut et il suffit que u
vérifie une équation aux dérivées partielles du premier ordre de la forme

(2) <%>2+<%>2+<%>2:F(x,u); .

M. Carrus a étudié en détail le cas ou la fonction F(x, u) ne dépend pas de u.
Dans le cas général, I’intégration de Uéquation (2) revient & la détermination
des lignes géodésiques d’un ds* & deux variables.

En laissant de c6té certaines solulions formées de cylindres, qui sont évidentes
géométriquement, on peut supposer que la fonction u dépend des trois va-
riables z, y, z. Si I'on prend alors z, y, u pour les variables indépendantes et z
pour la fonction inconnue, I'équation (2) devient

03 \? 0z \? dz\?
®) (52) = (5) - () v =

(1) S. Carrus, Familles de surfaces a trajectoires orthogonales planes (Annales de
la Faculté des Sciences de {’Université de Toulouse, ¢ série, t. VIII, 1906, p. 153-239).
Fac. de T., »* S., VIIL 36
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Soit z=o(x, u; a) une intégrale de I'équation

2 2
(4) (g%) P {(z, u)——(%—%) =1,

renfermant une constante arbitraire « (autre qu’une constante additive). On voit
immédiatement que la fonction

z=\1+bo(z,u;a)+by+c

est une intégrale compléte de I’équation (3).
Or, 'équation (4) est celle dont dépend la détermination des lignes géodésiques
des surfaces dont le ds? aurait pour expression

du?

2 — — 2
=T 0) dxz?.

(3) ds

Cette réduction montre bien quel est le degré de difficulté du probléme, et
permet de trouver @ priori des cas d’intégrabilité. Lorsque F ne dépend que de z,
le ds? convient 4 des surfaces de révolution. Dans le cas, étudié aussi par

M. Carrus, ou l'on a
. . 1
F(z,u)= _—_—[:1: T G(u)]z’

le ds? (5) est celui d’une surface développable. Si la fonction Q(u) est mise sous
la forme ¢"(u) — ¢(u), on a, en effet,

ds*=|xdu—dz + ¢"(u)du — ¢(u) dul][zdu +dr+ ¢"(u)du — ¢(u)du]

ou

ds*= dX dY,
les facteurs X et Y ayant pour expressions

X=e* (z+¢'—9)
Y=e*(0'+9¢ —x),

et 'on en déduit immédiatement les géodésiques.

9. Dans une autre partie de son Mémoire (p. 225-228), M. Carrus montre que
Pon obtient toutes les familles de Lamé, dont les trajectoires orthogonales sont
des courbes planes situées dans des plans passant par un point fixe en intégrant

I’équation aux dérivées partielles du prem ier ordre

(©) <3“> * <3_;> - <07> = [x2+y2+4zf+ @)
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() étant une fonction quelconque de w. En cherchant une intégrale compléte
de”cette équation, composée de sphéres,

(7) F(z,y,3,u) =Ma&*+ y*+ 5%) +2ax +2by +2c5+d=o,

'auteur montre ensuite que I’équation (7) définit une intégrale si a, b, c sont

trois constantes assujetties a vérifier la relation

a4+ b*+ci=1,
el ), d deux fonclions de u satisfaisant aux deux relations
(8) 2N — N2+ 1+ 220 (u)=o,

(9) dh=1— )",

Pour avoir une intégrale compléte, sans aucun signe de quadrature, de I'équa-
tion (6), il suffira donc de mettre la fonction arbitraire §(u) sous une forme telle
que l'on puisse obtenir, sans quadrature, une intégrale de I'équation (8) dépen-
dant d’une constante arbitraire.

Cette équation (8) ne difféere que par les nolations d’une équation que j'avais
rencontrée et intégrée dans mes Recherches sur quelques équations auzx déri-
vées partielles du second ordre (V). Je rappellerai en quelques mots la solution.

En différentiant 'équation (8), el en divisant par A, on arrive a une équation

différentielle linéaire du troisiéme ordre
(10) 2A 4 20(u) N+ 26 (u)=o,

qui admet pour intégrales, il est facile de le vérifier, les carrés des intégrales de
I'équation linéaire du deuxiéme ordre
dy

(Il) AW—FG(M)V:O.

Soient ¢y, v, deux inlégrales particuliéres distinctes de I'équation (11); I'inté-

£

grale générale de I’équation (10) est d’apres cela
(12) A=Av?+ 2By, 0+ Col,

A, B, C étant trois constantes arbitraires.

La fonction 8(u) étant arbitraire, choisissons-la de fagon que I’équation (11)

(1) Annales de la Faculté de Toulouse, 2° série, t. I, p. 457.
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admette I'intégrale particuliére
I

VF (@)’
il suffit pour cela de prendre pour §(«) la fonction suivante :

LI [P
) b =2t =3 i |

‘)l:

et l'équation (11) admet la seconde intégrale

b S0
VF (@

de sorte que l'intégrale générale de I'équation linéaire du troisiéme ordre (10) est

, A+ 2Bf+Cf?
o =

in substituant ces expressions (13) et (14) de X et de O dans I'équation (8), on
trouve qu’elle se réduil & une identité pourvu que 'on établisse entre les con-
stantes A, B, C la relation

(15) I+4(AC—B2)-:O.

3. On peut aussi ramener a une détermination de géodésiques d’'un ds? a deux
variables I'intégration de toute équation du premier ordre de la forme

. 4) 2 d 2 () 2
(32) (3 () =0
ou
92:902-*‘)’2—'- 52'

En effet, si I'on remplace les coordonnées rectangalaires par les coordonnées

polaires g, 0, o, 'équation (16) devient

du\* 1 [Jdu\? 1 du\* o
(17) <")_P) +F<5-6~> +_—p2sin26(&5> =TF(p, ).

Si I'on prend maintenant o, « et § pour variables indépendantes, et our la
P P

fonction inconnue, 'équation (17) prend la forme

. ()CP 2 . d(? 2_ 0‘? 2 I
(18) pQP(p,u)<b—u> —F(;;) —(g) + smie’
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Soit
o =®(u,p,a)

une intégrale, avec une constante arbitraire @, de I'équation

(19) e o(5E) —e(52) =

la fonction
Vbrsin?0 —1

sinf 49+ ¢

o=b®(u,p,a)+

est une intégrale compléte de I'équation (18). Or, I'équation (19) est celle dont
dépend la détermination des géodésiques de I’élément linéaire

s 1 du? s
(20) ds = [—F(p,u) dp].
Dans le cas particulier ot I’on a
5 =[p*+0(),

on vérifie aisément que le ds? (20) convient a une surface a courbure constante.

Si I'on pose, en effet, o =¢*, la formule (20) devient

ds*=[e’+ 0(u)e="]*du*— dv2.



