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SUR LA

DEFORMATION DES SURFACES DU SECOND ORDRE,

Par K.-M. PETERSON.

Traduit du russe par M. Edouard DAVAUX,

Ingénieur de la Marine a Toulon (!).

I. — Sur LA DEFORMATION DES SURFACES EN GENERAL.

Quand deux surfaces s’appliquent I'une sur I'autre, la distance de deux points
infiniment voisins de I'une des surfaces est égale & la distance des points corres-
pondants de I'autre surface.

Si les coordonnées z, ¥, 5 et X, Y, Z des deux surfaces sonl exprimées en
fonction des deux variables p et ¢, de telle sorte que les points, qui viennent en
coincidence dans 'application, correspondent aux mémes valeurs de p et de ¢, on

aura
da*+ dy? +ds* = dX* + dY* 4+ dI* = w dp*+ v dp dq + w dg?,

ou u, v, w sont des fonctions des variables p et ¢.
Inversement, si les éléments linéaires

ds == \/dz*+ dy* + ds* et dS = \aX®+ dY*+ d/*

s’expriment de la méme facon au moyen des deux variables p et ¢, les points des
deux surfaces, correspondant aux mémes valeurs de p et ¢, peuvent étre successi-
vemenl amenés en coincidence, et, si les coordonnées z, ¥, 5 de 'une des surfaces

(1) Le Mémoire original intitul¢ : OFb M3TMBAHIN IIOBEPXHOCTE BTOPAT'O MOPSAKA
a paru dans le Tome X, 1883 (p. 476-523) du Recueil mathématique (MATEMATHYECKI
cOOPHUKD) publié par la Société mathématique de Moscou.
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sont réelles, entre les mémes limites des variables p et ¢, que les coordonnées X,
Y, Z de l'autre surface, les deux surfaces s’appliquent 'une sur I'autre dans toute
leur étendue. Si la derniére condition n’est pas remplie, alors en appliquant les
deux surfaces I'une sur l'autre, en général une partie seulement de 'une des sur-
faces couvre une partie de I'autre surface; il peut méme arriver que les parties
réelles des deux surfaces ne coincident pas.

Nous appellerons toutes les surfaces, dont 1’élément linéaire est identique ou
peut étre rendu identique a 1'élément linéaire d’une surface donnée, les surfaces
déformées de cette derniére.

Il. — LiMITES DE REALITE DES SURFACES DU SECOND ORDRE.

- Nous pouvons exprimer une surface du second ordre, dont les demi-axes sont «,
b, c, sous la forme

(1) x=acospcosq, y=0bcospsing, s=csinp.

Les demi-axes a, b, ¢ sont des conslantes données, dont les carrés a2, b2, ¢2
sont réels entre les limites — o et - oo.

(@) Si a2, b2, c*sont positifs, les équations (1) représentent un ellipsoide, qui
est réel pour toutes les valeurs réelles des variables p et ¢ de — o0 & + 0, et qui
se compose d’un nombre infini de feuillets confondus. Le premier feuillet corres-

. ™ i
pond aux limites -3 <p< >’ —n<lg< .

(B) Si, parmi les trois carrés a2, b2, c?, Uun, par exemple ¢2, est négalif, les
équations (1) représentent un hyperboloide a une nappe, qui est réel entre les
limites — o0f << p <<+ 0, — 0 < ¢ <+ 0. En mettant dans les équations (1), ci
el pi a la place de ¢ et p, nous obtenons les équations de ’hyperboloide a une
nappe
(2) « —=acoshpcosq, y="bcoshpsing, s =csinhp,
qui ont une forme réelle pour p et ¢ réels; les demi-axes sont alors a, b et ci,
ou a, b, ¢ sont des quantités réelles.

(7) Sideux des carrés a2, b*, c*, par exemple a? et b2, sont négatils, les équa-
tions (1) représentent un hyperboloide 4 deux nappes, qui est réel entre les

T . i . R .,
llmllesg — i<l p< ;L ~+ wi, — o< g <<+ w. En mettant ai, bf, S —pia la

place de a, b, p, nous obtenons les équations de cet hyperboloide
(3) x = asinhp cosq, y = bsinhpsing, z=ccoshp

sous une forme réelle pour p et g réels; les demi-axes sont alors ai, b¢ et c.
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(8) Si les trois carrés a2, b2, c* sont tous négatifs, les coordonnées de la sur-
face du second ordre, que nous appellerons alors un ellipsoide imaginaire, sont
imaginaires pour toutes les valeurs des variables p et g.

Au moyen des équations générales (1)

x =acospcosq, y=~bcospsing, s=csinp,
nous obtenons I’élément linéaire

(4) ds>=[sin’p(a®cos*q + b*sin%q) + c*cos’*p ] dp?
+ 2 (a*— b*) sinp cosp sing cosq dp dg + cos’p(a®sin*q + b* cos*q) dg?,

qui est réel pour toutes les valeurs de a2, b2, ¢*, puisqu'il existe, pour les argu-
ments p et ¢, des limites entre lesquelles la distance ds de deux points infiniment
voisins est réelle.

Pour nous convaincre que, pour toutes les valeurs réelles de a2, b2, c?, il existe
des surfaces déformées réelles, nous considérerons la surface, quia pour équations

les équations suivantes :

Vai+ yt =\/b*— a*sing cosp,

- arclangZ =—2 _arc tangh(cosgq),
(3) z b= a?
' z:/\/c'-’ cos*p —+ a*sin*p dp.
\

La différentielle de la seconde de ces trois équations, aprés multiplication par
la premiére équation, prend la forme

vdr—axdy

= = acospdy.
Var+y?

En ajoutant le carré de cette différentielle aux carrés des différenticlles de la
premiére et de la troisitme équations, nous oblenons un élément linéaire
ds? = dz*+ dy*+ dz* idenlique & I’élément lindaire d'une surface du second
ordre que nous avons exprimé par I'équation (4), et il en résulte que loutes les
surfaces qui onl pour équations les équations (5) seront, pour toutes les permu-
tations entre @, b et ¢, des déformées de la surface du second ordre dont les demi-
axes sont a, b, c.

(@) Si a®, b* et c? sont positifs, alors, par les équations (5), s’expriment scpt
déformées réelles d’ellipsoide; toutefois, parmi ces déformées, trois seulement
s’appliquent sur un ellipsoide, et les autres sont des déformées en dehors des
limites.
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En effet, si @ est le plus petit demi-axe et ¢ le plus grand, la déformée (5) est
réelle pour p et ¢ réels, et s’applique entiérement sur Iellipsoide

& = acosp cosq, ¥y =bcospsing, s =csinp,

qui est généralement réel pour p et g réels.

En substituant dans les équations (5), a la place de \/b*—a? et ¢, d’abord
y/¢*— a? et b, puis \/c2— b2 et a, nous obtiendrons évidemment deux nouvelles
déformées, qui s’appliquent enlierement sur le méme ellipsoide. En remplagant

dans les équations (5), p, a, b, ¢ par pi, b, ¢, @, nous aurons les équations

\/x4+y3 :\/cz_ bH* Siﬂq COShP,

y b
arc tang S = Te——are tangh (cosq),

yei—b

5 :f\/lzzsinh?p —a*cosh®p dp.

. . . R - . .
En suabstituant dans les équations (5), S —P% qéa petg, nous obtiendrons

les équations

Va4 y?=\/b*— a’sinhg sinhp,

/ a
arc tang% = \/b: arc tangh(coshgq),
i g2

+ :fv’& sinh?p — a*cosh?*p dp.

) , . - T . .
En remplacant enfin p, ¢, @, b, dans les équations (5), par 5P — 15 b, a,

nous aurons

Va?+ y2=\/b*— a*coshgsinhp,

b .
— ————arctang(sinhg),

arc tang
Vbﬁ——ai

] 1=

3 :f\/c2 sinhzp — b* cosh?p dp.

Si a, b, ¢ désignent respectivement le plus petit, le moyen, le plus grand axes
de Pellipsoide, les trois systémes d’équations correspondent tous, pour p et g réels,
a des déformées réelles, mais en dehors des limites d’un ellipsoide, qui est réel
pour des valeurs réelles des anciens arguments p et ¢. Le second systéme repré-
sente deux déformées réelles, que nous obtiendrons en permutant b et ¢. Chacun
des deux autres systémes représente une déformée réelle.
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(B) Si a® et b sont positifs, ¢ négalif, en substituant, dans les équations (5),
ct et pi a c et p, nous obtiendrouns les équations

V&t + y* =\/b*— a*sing coshp,

v a
arctang o = ——=—=arc tangh(cosq),
P

=

5= c*cosh?p + a*sinh?p dp,
P P

qui, pour p et g réels, représentent une déformée, entiérement applicable sur
I'hyperboloide & une nappe
x=acoshpcosq, y=bcoshpsing, s=csinhp,

ol a désigne le plus petit axe réel.

Par les équations (5) se représentent encore deux déformées en dehors des
limites de cet hyperboloide.

(Y) Si a® et b? sont négatifs, c? positif, en substituant, dans les équations (5),

ait, b, 5 —pida b, p, nous obtiendrons les équations

Vat+ y* =\/b>— asing sinhp,

a
arc Lang% = ———=arctangh(cosg),

Vbo*—a

P :f\/c= sinh?p + a® cosh?p dp,

qui, pour p et g réels, représentent une surface réelle, entiérement applicable sur
I'hyperboloide & deux nappes

z =asinhpcosg, y="bsinhpsing, z=ccoshp,

o b désigne le plus grand demi-axe imaginaire. Par les équations (5) se repré-
sentent encore deux déformées, en dehors des limites de cet hyperboloide.

(8) Si a?, %, c* sont négatifs, les équations (5) représentent neuf déformées
réelles de Pellipsoide imaginaire, lequel n’existe pas en réalité.

En substituant, dans les équations (5), ai, bi, ci, 5 —Plaa b, ¢, p, nous
obtiendrons les équations

Va?+ y* =\/b*— a*sing sinhp,

¥ a
=~ —= ———arctangh(cosgq),
z \/ e gh( q)

arc tang

z —_—/‘\/a2 cosh*p — c?sinh?p dp.

Fac. de T., 2¢ S., VII 10
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. , . . A ..
En substituant, dans les équations (3), bi, ai, ci, 5 —7h piaa b, ¢, q, p,

nous obtiendrons les équations

Va?+ y? =\/b*— u* coshq coshp,

arc tang% arctang(sinhg),

- Vor—a?

:::f\/c‘-’ cosh’p — a?sinh?p dp.

. " . . R | .y
En substituant, dans les équations (5), bi, ai, ci, qi, S Piaa b, c, q, p,

nous obtiendrons les équations

Vat+ y*=\/b*— a*sinhgsinhp,

arc cotangh(coshg),

4
arc lang - — —————
gx \/l)z—a2

5 :f\/az cosh?*p — ¢*sinh*p dp.

Si at, bi et ci désignent respectivement le plus petit, le moyen et le plus grand
demi-axes de l'ellipsoide imaginaire, chacun de ces trois systémes d’équations

représente, pour p et ¢ réels, trois déformées réelles de cet ellipsoide, que nous

obtiendrons en remplacant /02— a? et ¢, d’abord par \/c*— a2 et b, et ensuile

par \/cz—-— b2 et a.

III. — DETERMINATION DES POINTS CORRESPONDANTS DE DEUX SURFACES APPLICABLES.

Au moyen de I’élément linéaire donné d’une surface connue ou inconnue, nous
pouvons déterminer le produit des rayons de courbure, lequel, comme on le sait,
ala méme valeur dans toutes les déformées de la surface.

Si
(1) ds? = u? dp*+ 2uv cosw dp dq + v* dg*

est ’élément linéaire de cette surface, «, ¢, w étant des fonctions des arguments p
et ¢, alors, en désignant par P le produit des rayons de courbure et en posant

(2 (d—v——cosm%>‘usinw—A <%—coswd—a>'vsinm—3
) o 37)" =A, 97 ) =B,
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nous obtenons
2
) J:P:_<0A B 0

ap T og Tapog

) s uy sinw.
Si I’élément linéaire a la forme

ds*=dp*+ v*dgq?,
on a donc

< |-
< | %
<

(4) 1:P=—

)

Le produit P, comme toute fonction des arguments p et ¢ de la surface donnée,
ne varie pas dans une certaine direction sur la surface et, dans la direction per-
pendiculaire, la variation dP, rapportée a I'arc ds, atteint son maximum de valeur

Q = max av
- " ds
Cette variation maximum Q est évidemment la méme dans toutes les déformées

de la surface donnée, et se détermine facilement par I'équation

4 Q2-— L /0P 2_2.1_.()p1£005 —|——l @- ; :sinw
(%) L2 5;) u dp v 0q O dq ’ )

Supposons que z, y, 5 et X, Y, Z désignent les coordonnées de deux sur-
faces; et que les coordonnées z, ¥, 5 soient des fonctions des deux variables p
et ¢, les coordonnées X, Y, Z des fonctions des deux variables { et ¢.

D’aprés ce qui précéde, nous pouvons exprimer I'élément linéaire ds, le pro-
duit P et sa variation maxima Q sur la surface z, y, 5, au moyen de p et de ¢, et
les quantités correspondantes dS, Py, Q, pour la surface X, Y, Z, au moyen de /
et de ¢.

Si les deux surfaces sont applicables, nous avons deux équations

P=pP, Q:Qh

au moyen desquelles nous pouvons exprimer /et ¢ en fonction de p etde ¢; autre-
ment dit, nous pouvons déterminer le point /, ¢ de la surface X, Y, Z qui coincide
avec un poinl donné p, g de la surface z, y, z, dans l'application des deux sur-
faces I'une sur I'autre.

Si les éléments dS et ds sont identiques, nous appellerons la surface X, Y, Z
une déformée de la surface 2, y, 5. En exprimant en fonction de p et ¢ les limites
des arguments / et ¢, entre lesquelles la surface X, Y, Z est réelle, et en les com-
parant aux limites p et ¢ entre lesquelles la surface z, y, z est également réelle,
nous obtiendrons les portions des deux surfaces qui viennent réellement en coin-
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cidence; s'il n’y a pas de telles portions dans les deux surfaces, elles ne s’ap-
pliGueront pas I'une sur I’autre, mais seront des déformées en dehors des limites.

Quand les deux surfaces s’appliquent 'une sur l'autre, c’est en général seule-
ment d’une maniére déterminée. Des positions différentes de I'une des surfaces
sur Pautre ne sont possibles que quand les équations P="P,, Q=Q,, par
lesquelles sont déterminés les points correspondants des deux surfaces, admettent
plusieurs solutions, pour lesquelles les éléments linéaires restent identiques.

Deux déformées d’une méme surface de révolution se déplacent I'une suivant
I'autre d’une maniére continue; & savoir suivant les paralléles de la surface de
révolution, quand on applique les deux déformées sur cette derniére surface. Le
produit des rayons de courbure d’une surface de révolution ne change pas le long
des paralléles, et les lignes de variation maximum de ce produit sont les méri-
diens, c’est-a-dire des géodésiques. D’autre part, la variation maximum Q du pro-
duit P ne change pas le long des paralléles, et par conséquent dépend seulement
de P. Il en résulte que, pour toute surface qui s’applique sur une surface de révo-
lution, les lignes de variation maximum du produit P doivent étre des géodésiques
et que la variation maximum Q est une fonction du produit P.

Quand nous avons deux surfaces de cette nature, les équations P=P,, Q=0Q,,
par lesquelles se déterminent les points correspondants des deux surfaces, si elles
sont applicables, deviennent identiques, et les points correspondants ne sont plus
déterminés par elles.

En prenant le produit P d’une surface quelconque, définie au moyen des argu-
ments p et g, pour nouvel argument, et en prenant 'argument R qui ne change
pas suivant les lignes de variation maximum, de la fonction P, nous pouvons
mettre I’élément linéaire de la surface sous la forme

2 2
ds*= ag’_) -+ -dll—{,

ot T désigne le maximum de variation de la fonction R,

dR
T =— max. =

Si nous mettons I’élément linéaire dS? de la seconde surface, dont les argu-
ments sont / et ¢, sous la méme forme
_dP?  dR?

= 5 el
Qi T

ds?

ou Py, Qy, Ry, T, sont des fonctions de /et de ¢, alors, pour la détermination des
points correspondants, dans 'application des deux surfaces I'une sur I'autre, nous
aurons quatre équations

P=P,, Q=Q, T=T,, R=R,+const,
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dont les deux premiéres déterminent en général les points correspondants, la
troisiéme et la quatriéme exprimant la possibilité ou I'impossibilité de P'applica-
tion des deux surfaces 'une sur l'autre. Si les deux équations P="P,, Q =Q,
sont identiques, en général nous obtenons encore, au moyen de I’équation T=T,,
une position déterminée de I'une des surfaces sur 'autre; mais si, dans les deux
surfaces, non seulement Q ou Q,, mais aussi T ou T, dépendent de P ou Py,
alors les équations P ="P,, Q = Q, expriment seulement la possibilité de appli-
cation, et les points correspondauts sont déterminés a I'aide de I’équation

R =R, + const.,
c'est-a-dire avec une constante arbitraire de translation. Quand Q ne dépend

que de P, en désignant —[% par dp, dR par dg, T par ‘1’, nous mettons I’élément

linéaire des deux surfaces sous la forme
dS‘I: (—lp‘l &+ VZ dq‘l’

et il résulte de la que les lignes ¢ = consl., c’est-a-dire les lignes de variation
maximum du produit P des rayons de courbure, sont des géodésiques. Quand en
outre T dépend de P, ¢ est une fonction de p et, dans ce cas, les deux surfaces
s'appliquent sur la surface de révolution

(6) x = C0sq, Yy =vsing, s:/\/x—(%)zdp,

pour laquelle nous obtenons I’élément linéaire
ds*=dp*+ v dq*.

Quand Q dépend de P, et quand T ne dépend pas de P, le produit des rayons

de courbure, que nous déduisons de I’élément linéaire
ds*=dp*+ v dgp?,

d’aprés 'équation (4), sous la forme

1 0%
1 :P = ——
v Op?
doit étre fonction de p.
2
E . Lo l, ’ . I d‘V ~ N . . , .o,
n intégrant I'équation v op =Fp, ou F est une fonction indéterminée, nous

obtenons
o W(fz{ + 99
J'p
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avec Lrois fonctions arbitraires f, , U, et par suite 'élément linéaire commun
(p+oq) ,,
(7) ds*=dp*+- _ﬂi]"ﬁ*q) dg?,

des surfaces sur lesquelles les lignes de variation maximum du produit des rayons
de courbure sont des géodésiques.
Au moyen de I'élément linéaire (7), nous obtenons, d’aprés I’équation (4), ce
fl/
v T (f’p)*

produit sous la forme ¥~ = » qui montre qu’il ne dépend en effet que de p.

IV. — SunrFAcEs DE REVOLUTION ET SURFACES HELICOIDES.

Une surface de gévolution est représentée par les équations
(1) z=fpcosq, y=/Jpsing, s=gp
et nous déduirons de ces équations I’élément linéaire
(2) ds*= u?dp*+ v* dq?,

ou

W= (f"p)+ (o'p)? v = fp.
Au moyen de I’élément linéaire donné
ds®’ = u*dp* + ¢v* dqg?

d’une surface de révolution z, y, 5, ol u et ¢ sont des fonctions de I'argument p,
nous pouvons déterminer les coordonnées X, Y, Z de toutes les surfaces de révo-
lution qui s’appliquent sur la surface donnée z, y, z. En effet, en posant

X:avcos(l, Y:avsing,
o o

nous pouvons déterminer Z par I’équation
dX2+dY+ dl= wdp*+ v? dg?,

pour une valeur arbitraire de la constante o, et nous trouvons les équations

(3) X:avcosg, Y—zxvsm—> —/\/cﬂ——a > dap;



SUR LA DEFORMATION DES SURFACES DU SECOND ORDRE. 79

a chaque valeur de a correspond une déformée X, Y, Z; nous appellerons une
telle constante, constante de la déformation.
Si la surface de révolution se compose de deux feuillets inflexibles et inexten -
sibles, alors 'un des feuillets glisse librement sur I’autre. '
L’équation de toutes les surfaces qui possédent cette propriété est la suivante :

(4) s:f(xi—l—y?)ﬂ—aarctang%;

elle devient ’équation d’une surface de révolution, si la constante arbitraire « est

égale a zéro. En effet, 'équation (4) ne change pas, si 'on substitue & +-arc tang %

a arc tang'—;, et 5+ ak a z, et 'on voit facilement qu’il n’y a pas d’autre équation
entre les coordonnées qui ne change pas pour une telle variation de position.
Nous appellerons les surfaces représentées par l'équation (4) des surfaces
hélicoides. Toute surface hélicoide s’applique sur une surface de révolution, et &
toute surface donnée de révolution nous pouvons, de différentes maniéres, donner
la forme d’une surface hélicoide.
En effet, en posant

(5) X:UCOS<§+V>, Y:Usin<g+V>, Z=W +Bq,

nous pouvons, au moyen de I'équation

dX?+ dY? -+ dI? = u® dp* + v* dg®,
résultant de I’élément donné
ds?*= u® dp*+ v* dg*

d’une surface de révolution, déterminer toutes les fonctions inconnues U, V, W
Al
de 'argument p.
Nous obtenons ainsi

U ‘:a\/vz-———pz,

. 6 \/u“’(l—%)-dzvm
V:_& o — dp,
W= /\/L12<I— g)—a‘lcﬂdp,

dy
d—p'

!
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En éliminant ¢ des équations (5), nous obtenons I’équation des surfaces héli-
coides

7= f(X?+Y?) +af arc tang%-

Aux valeurs constantes de I'argument p correspondent sur la surface héli-
coide (5) des hélices infinies qui, dans 'application de la surface hélicoide sur la
surface de révolution donnée, se transforment dans des paralléles fermés.

V. — Lges surraces 1LiimiTees ().

Nous appellerons surface illimitée, une surface qui est égale 4 toute surface
qui lui est semblable, et qui ne change pas par conséquent quand on Pagrandit.
Nous obtiendrons I'équation générale de ces surfaces en déterminant la forme
d’équation entre les coordonnées z, y, z, pour laquelle la substitution de Az,
ky, kzax, y, s change seulement la position de la surface.

Cette équation est la suivante

x‘l_'_ y‘Z
—_—

y
(1) ‘ arc lang; —alogs=f =

ou f estune fonction arbiltraire, & une constante arbitraire. La substitution de z ¢,
yek, zek a z, y, 5 produit une rotation autour de l’axe des z, d’un angle ak,
laquelle est détruite par le remplacement de arc tang% par ak + arc tangg—;-

En posant
(2) x =elt*cos(aqg +v), y =e?**sin(aqg +v), z = e?™",

ol u et w sont arbitraires, et ¢ une fonction inconnue de I'argument p, nous
déduisons de 'équation (1)

(3) p=oaw -+ ferlt="

et, par conséquent, étant donnée 1’équation (1) d’une surface illimitée, nous avons
dans les équations (2) les expressions des coordonnées z, y, z de celle surface en
fonction des deux arguments p et ¢, avec trois fonctions u, ¢, w de 'argument p.

L’élément linéaire de la surface illimitée, que nous obtenons au moyen des
équations (2), a la forme

(4) ds*= e (Udp*+ Vdpdg + W dq*),

(1) Peterson se sert de 'adjectif Ge3MBPHELA que 'on peut traduire, soit par le mot illi-
mité, soit par le mot incommensurable; les surfaces illimitées de Peterson sont actuelle-
wment connues sous le nom de surfaces spirales. (Note du traducteur.)



SUR LA DEFORMATION DES SURFACES DU SECOND ORDRE. 81

ou U, V, W sont des fonctions déterminées de 'argument p, exprimées par I'in-
termédiaire de u, ¢, w.

Si ’élément linéaire de la forme (4) d’une surface illimitée connue ou inconnue
nous est donné, alors, pour une valeur arbitraire de la constante « que nous dési-
gnerons par {3, nous pouvons, au moyen des fonctions données U, V, W, déter-
miner les fonctions inconnues u, ¢, w, el par conséquent obtenir sous la forme

x2?-+ v?

arc l:mg% —Blogs=F———

~

toutes les déformées illimitées de la surface illimitée donndée
v ; y
arc tang; —oalogs=f ———>

3 élant une constante arbitraire de déformation, a chaque valeur de laquelle cor-
respond une déformée.

Toule surface, oblenue par déformation d’une surface illimitée, posséde cette
propriété que nous pouvons, par une déformation, en déduire la méme surface
agrandie un nombre arbitraire de fols.

Nous trouvons la substance d’une telle déformation, soit dans 1’étendue infinie,
soit dans les feuillets confondus de ces surfaces.

Nous pouvons déformer toute surface en une surface illimitée, quand son élé-
ment linéaire ds posséde celte propriété que, par substitution de kp et kq aux
arguments p et ¢, nous obtenons le méme élément linéaire multiplié par une puis-

sance quelconque &” de la constante £, car, aprés substitution dans un tel élément
7 q
de e” fp et e"op a p et g, nous obtenons un élément linéaire de la forme (4).

Nous appellerons un élément lindaire qui, par la substitution de kp et kg a p
et ¢, est multiplié par k#, un élément homogéne de degré n par rapport aux argu-
ments p et g. Toute surface s’applique sur une surface de révolution, quand son
élément linéaire est un élément homogene de degré zéro, car, aprés substitution
de e?fp et efop a p et ¢ dans un tel élément, nous obtenons un élément linéaire
dans lequel les coelficients de dp?, dp dg, dg* ne dépendent que d'un argu-
ment p, e? disparaissant.

Seules les surfaces de révolution et leurs déformées ont un élément linéaire
d’une telle forme.

VI. — LA DEFORMATION D'UNE SURFACE DU SECOND ORDRE A AXES INFINIS.
Une surface du second ordre n’est pas réelle pour toutes les valeurs de ses axes,

mals nous avons vu, an paragraphe II, que, si nous prenons des quantités réelles
Fac.de T, »* S., VIL II
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pour les carrés des axes, il existe pour toutes les valcurs de ces axes des déformées
réelles. Il est nécessaire toutefois de considérer encore les valeurs limites de ces
axes.

Le carré de chaque axe a cinq valeurs limites : 4o, — o0, 0 et les deux égalités
avec les carrés des autres axes, pour lesquelles la surface du second ordre, et par
suite sa déformée, prennent des formes particuliéres. Pour ces valeurs limites, les
coordonnées de la déformée peuvent devenir infinies, et alors cette déformée
n’existe pas. Le produit des rayons de courbure, qui est en général fini, peut aussi
devenir infini pour ces valeurs, et alors la surface du second ordre et toutes ses
déformées s’appliquent sur un plan. Nous ne considérerons pas de telles défor-
mées. En excluant ces déformées, nous pouvons partager en trois groupes toules
les déformées correspondant aux valeurs limites des axes, selon que la surface
donnée du second ordre a des axes: 1°infinis; 2° égaux; ou 3° infiniment petits.

Nous allons nous occuper du premier groupe; nous étudierons les deux autres
dans les trois paragraphes suivants.

Les paraboloides.

Nous appellerons paraboloide, oule surface du second ordre ayant des axes
infinis, quand elle a des déformées finies réelles qui ne s’appliquent pas sur un
plan.

Pour déduire des équations générales d’une surface du second ordre les équa-
tions des paraboloides, il faut, par conséquent, rendre les axes infinis de telle facon
que 'élément Iinéaire et le produit des rayons de courbure restent finis.

Les équations générales d’une surface du second ordre, dont les trois demi-axes
sont \Ja, Vb, \/c, sexpriment, au moyen des arguments p et ¢ des lignes de cour-

bure, de la facon suivante

_(b=p)(d—9q)

22 _(e—p)(c—q)
“(b—a)(b—=c)’ c

T (c—a)(c—0b)

x*  (a—p)(a—gq)

@ (a—b)(a—c)’ b

()

et nous en déduisons ’élément linéaire

e (p—qpdpt (9 —p)q dy*
(2) ds—ﬁ(a_p)(b—p)(c—p)_*—4((1—(/)(1)—(/)(0_‘1)

et le produit des rayons de courbure

(3) P=

Si les arguments p et ¢ sont infinis, I'ordre d'infinitude des deux arguments est le
méme, sinon 'expression p — ¢ ne dépendrait que d’un argument et, dans ce cas,
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I’élément linéaire (2) se transformerait, d’aprés le paragraphe 1V, en D’élément

linéaire des surfaces de révolution. Nous considérerons ce cas, dans lequel deux
axes doivent éire égaux, dans le paragraphe suivant.

Si nous rendons infinis un, deux ou trois des demi-axes \,/?l, Vo, V¢ d’une sur-

2 42

face du second ordre donnée, alors, par suite de ce que l'expression P= %

reste finie, les deux arguments p et ¢ se transforment en des infinis de méme ordre,

que nous appellerons du premier ordre. Si o, 8, v désignent les ordres d’infini-

tude des carrés a, b, ¢ des demi-axes, nous obtlenons, en raison de ce que 'expres-

. abe
sion

PR reste finie,

a+B+y=14

En substituant, dans I'élément linéaire (2), Ap, kg, k*a, kBb, kxca p, q, a, b,
¢, ou k est une constante infinie du premier ordre, nous obtenons, aprés suppres-

sion de A* au dénominateur, I'expression
(4 (ak3='— p) (bk#=1 — p) (cki=' — p) A~

qui doit étre finie pour a, b, ¢, p finis.
1l en vésulte qu'aucune des quantités o, 3, Y ne peut étre inférieure & 'unité,
car si o <1, 'expression (4) prend la forme

— (KBt — p) (k=1 — p) k="

et le terme — pbckBtr—% qui, pour p variable, ne peut se réduire avec les autres
termes, devient infini, puisque 3 4+ v > 3, par suite de o + 3 +vy=4 et a <1.
Et ainsi 'expression (4) pour a <1 serait infinie.

1l en résulte que tous les cas possibles ot les axes deviennent infinis se raménent

aux lrois cas suivants :

(@) Deux des quantités a, 3, v sont égales a 'unité;
(b) Une de ces quantités est égale & 'unité;
(¢) Aucune d’elles n’est égale a I'unité.

Considérons quelles formes prend I’élément linéaire (2) dans ces trois cas.

(a) Sia=1, 8 =1, alors y = 2, par suite de « + 3 4+ v = 4.

e . — - - , . a
Nous avons désigné les demi-axes par y/a, \/b, \/c; désignons —= par u et

Ve

—= par ¢.

v

b
c

. . . 7 " . A I . -
L’ordre d’infinitude des demi-axes y/a et /b est égal a 5 =55 ledemi-axe Ve est
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. . . . Y , .
un infini de premier ordre, puisque é: 1. I en résulte que w et ¢ sont finis;

nous les a_ppelle:nns des parametres. 1élément (2), aprés substitution de pVe,
gve, uye, v\/eap,q,a,b, prend dans ce cas, pour ¢ = o0, une premiére forme
finie déterminée

. Y — .|
4 (e—=pyv—p) (e—q)(v—q)

ol p et ¢ sont des arguments finis.

(b) Dans le second cas, quand seulement @ =1, nous oblenons B>, vy>1,
B4+v=3, par suite de a3+ v=4. 1l en résulte que dans ce cas les demi-
axes \/a /b, \/E' deviennent infinis, de sorle que le rapport \/Z% du cube d’un
demi-axe au produit des deux aulres reste fini, puisque -+ Y = 3a. Nous appelle-
rons la ligne finie déterminée

a3

v = -—

be
un parameétre.

Dans ce cas, I'élément linéaire (2), aprés substitution de pa el ga a p et q,

prend la seconde forme finie déterminée :

(6) ds:':“apj(](pdp'_(]d’/;).

4 1—p 1—gq

(¢) Dans le troisi¢tme cas, quand ni o, ni 8, ni y ne sont égaux a Vunité, nous
obtenons o >1, 3 >1, v >1, par suile de a2+ f3 4 ¥ = 4. Nous pouvons trans-
former les trois demi-axes y/a, y/b, \Jc en un infini du méme ordre. En dési-
gnant {'/c% par u«, nous concluons que I'ordre de I'expression « sera 1, comme
l'ordre des arguments p et ¢, et que l'ordre de chacune des quantités a, b, ¢ sera
supérieur & 1, savoir 3. Par conséquent, en substiluant up et ug a p ct g, dans
I’élément linéaire (2), nous obtenons le troisiéme élément linéaire fini déterminé

— ¢ 2 9
(7) dst =LA (pdp— g dy).

(a) Nous appellerons les paraboloides du premier groupe, des paraboloides a
deuz paramétres. En désignant ces paramétres u et ¢ par « et 8, les demi-axes
infinis \/a, /b, \/c par a, b, ¢ et en substituant, dans I'élément (5), —qagq,
nous obtenons I’élément linéaire de ces paraboloidés sous la forme suivante

s P9 pap? g 4q* ,
(8) =7 [(a—p)(@~p)+(a+q)(ﬁ+r/)]

2 2

b .
» B= — sont les deux paramétres.

Q

ou o —

ol
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(b) Nous appellerons les paraboloides du second groupe des paraboloides «
un seul paramétre. Leur élément linéaire (6), aprés substitution de —¢q a ¢,

prend la forme

cmp L (2 qd(ﬁ)
(9) ds*=y 4 1—/)+l+q ’

\
\ a? .
ol Y= - est le parameétre.

Nous obtenons uﬁparal)olo'ide de ce groupe quand les axes d’une surface du
second ordre deviennent infinis de telle sorte que le rapport du cube d’un axe au
produit des deux autres axes reste fini.

Mais nous pouvons aussi considérer ce paraboloide comme un paraboloide a
deux paramétres qui deviendraient infinis de telle sorte que le rapport du cube o3

d’un paramétre a I’autre paramétre B demeurerait fini et ce rapport fini

est égal au carré du nouveau paramétre Y-

(¢) Le troisiéme groupe se compose d’un paraboloide seulement. L’élément
linéaire de ce groupe, aprés substitution, dans 'équation (7), de pye et —qy2

a p et g, prend la forme
(10) ds*=(p+q)(pdp*+qdys)

et ne contlient aucune ligne servant de mesure au paraboloide correspondant.
Nous appellerons ce paraboloide un paraboloide illimité, puisque I'équa-
tion (10) exprime un ¢élément linéaire homogéne auquel, d’aprés le paragraphe V,
correspondent des surfaces illimitées.

On obtient un paraboloide illimité quand les axes d’une surface du second
ordre deviennent infinis du méme ordre; mais nous pouvons également consi-
dérer ce paraboloide comme un paraboloide & un paramétre qui devient infini,

. ad . . . . . R
puisque ¥ = 7- devient infini quand «, b et ¢ sont des infinis du méme ordre.

(a) Paraboloides a deuxr paramétres. — Si, dans les équations générales

d’une surface du second ordre

x = asinp, y = bcospsing, 5 == CCOSpCOSq,

. ap b \ - . . . .
nous substituons —g, —Cg, c-—%4a p, q,5 el si nous rendons infinis les demi-
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2 2

a b .
axes a, b, ¢ de telle sorle que o= <’ B= — restent finis, nous obtenons les

équations générales des paraboloides a deux paramétres 2 et 3
(11) xr=oap, y=pq, 23=oap*+Bq*

et, par suite, I’élément linéaire

(12) ds*=a®(1+ p?) dp*+ 2B pq dp dg + B*(1 + q*) dq?
qui, aprés substitution de \/(/—)E%%T—fx— el \/( b E(g _(_(/o;_ °) Apelgqg,se

transforme, en effet, dans I’élément linéaire (8).

Suivant les signes des carrés a?, b, c2, par lesquels sont déterminés les para-
2 2

. a Q b .. R \
métres o = = elB= — > hous avons quatre paraboloides & deux paramétres :

(1) Le paraboloide elliptique, quand ¢? est positif, ainsi que a* et b2, quand,
par conséquent, les paramétres sont réels et de méme signe;

(2) Le paraboloide hyperbolique quand les paramétres sont réels, mais de
signes conlraires;

(3) Le parabolmde elliptique imaginaire, quand ¢? est négalif, de méme que a*
et 0%, c’est-a-dire quand les paramgtles sonl imaginaires ¢t de méme signe;

(4) Le paraboloide hyperbolique imaginaire, quand les paramétres sont imagi-

naires et de signes contraires.

Les deux premiers paraboloides s’expriment par les équations (11); les deux
derniers n’existent pas réellement.

La déformée de ces paraboloides, qui est réelle pour toutes les valeurs des
paramétres « et 3, est représentée, par conséquent, par les équations

x:af\/1+(|——ez)p'-’dp,

(13) )'—ﬁf\/l—i— 1——>q dq,

25 —eap*+ —(]

d’ot nous déduisons, pour une valeur arbitraire de la constante de déformation e,
I’élément linéaire des paraboloides, que nous avons exprimé par I’équation (12).
Si les paramétres sont réels, la déformée (13) s’applique sur les paraboloides
réels (11), mais ne couvre pas entiérement le paraboloide hyperbolique ou tous
les feuillets du paraboloide elliptique, tandis qu’une des nappes de cette déformée,
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correspondant & des arguments imaginaires, n’est pas couverte par les para-
boloides.

Si les paramétres = et B sont imaginaires, en substituant, dans les équations (13),
i, B¢, ely pi, qid o, B, e, p, q, nous obtenons les équations

/ -
x:ocf\/l—-[ﬂ(l-i—e‘-')dp,

(14) y:ﬁ‘/\\/l-——q2<l+é)dq;

25 —eap?+ %q‘l,
qui, pour des valeurs réelles des lettres qui y entrent, représentent des déformées
réelles des deux paraboloides imaginaires.

Toutes les surfaces représentées par les équations (13) et (14) sont décrites par
une cycloide plus ou moins allongée, par un déplacement sans rotation.

En faisant e = 1 dans les équations (14), nous obtenons la surface .
(13) x:af\/l—zpfdp, y:ﬁf\/l—zqqu, 2z =ap?+ B,

que nous considérons comme la déformée la plus simple d’un paraboloide imagi-
naire, elliptique ou hyperbolique, suivant que o et 3 ont le méme signe ou des

signes contraires.

(b) Paraboloides a un paramétre. — Nous avons vu qu’un paraboloide a
deux paramétres o et 3 se transforme en un paraboloide & un paramétre ¥ quand
P p P

2

R . . . .o \
ses paramétres deviennent infinis pour un rapport fini _@— =2

Parmi les déformées (13) du premier paraboloide se trouvent des déformées
du second paraboloide comme cas particulier. En effet, en substituant, dans les

a

ap, q, e, 23, en remplacant

équations (13), P, ((]_,:_ -+ l>‘[, 28 a2
. o ot Y ey

o P , .
par 7 et en rendant 2 infini, nous obtenons les équations

(16) =y fV1— ep*dp, ]:y/‘/zq—eiqu, z:_..*/<ep2-»——zz(l>

qui, sous une forme finie, pour une valeur arbitraire de la constante de déforma-

: ; ; ; w1 s \ ol
lion e, représentent des déformées du paraboloide & un paramétre y = B

[.’élément linéaire

(17) ds*=y*(dp?— 2p dp dq + 2q dq?)
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que nous déduisons des équations (16) ne dépend pas, en effet, de e et se change
en I'élément linéaire des paraboloides du second groupe, que nous avons exprimé

par Uéquation (g), aprés substitution de /(1 — p) (14 ¢) & p et de i—z_—p z‘a‘q.

Suivant le signe de y2, nous avons deux paraboloides & un paramétre y qui,
tous deux, n’existent réellement pas comme surface du second ordre :

(1) Un paraboloide & un paramétre réel;
(2) Un paraboloide & paramétre imaginaire.

Les déformées du premier paraboloide sont représentées par les équations (16);
en y subslituant yi, ei, pi, —q a v, e, p, ¢, nous obtenons les déformées du

second paraboloide

S —— / I . 24
(18) .wzyj\,/l,—e-lj-dp, J-zyf\/zq—?dq, z::y(ep*—!— 7)

sous une forme réelle, pour p, g, v, e réels et, par suite, I’élément linéaire
(19) ds*=y*(dp*+ ap dp dg + 2q dq?).

I'n égalant dans les équations (16) et (18), v et e & 'unité et en substituant
q*—4-1, 2514 2¢, 25, nous oblenons la déformée la plus simple des deux

paraboloides & paramétre 1 ou ‘/—— I
(20) x:f\/l—p‘ldp, y=r5 2z:=pixq

Le signe —, dans I'expression p2=¢ ¢*, correspond au parameétre réel; le signe —+
au paramétre imaginaire.
Les deux parabeloides sont décrits par une cycloide, par un déplacement sans

rotalion.

(¢) Paraboloide illimité. — Nous pouvons considérer un paraboloide illimité
comme une surface du second ordre, dont les axes deviendraient infinis du méme
ordre, ou comme un paraboloide & paramétre infini.

Son élément linéaire (10)
ds*= (p+q)(pdp*— qdq*)

a la forme homogéne et, par suite, d’aprés le paragraphe V, nous pouvons
trouver toutes les déformées illimitées de ce paraboloide. Mais, comme ces défor-
mées sont assez compliquées, nous prendrons la déformée suivante, comme étant
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la plus simple,

i tsint

x =-costcoshl+ ——,

coshl

tcost

2 ( ¥y =sintcoshl{ — ——
(21) Y cosh?’

sinhlcosh{—{ ,
5= —————— + ?tanghl
2
Si, dans Pélément linéaire que nous en déduisons, nous remplacons /et ¢ par p

el ¢, au moyen des équations
sinh*/+ 2=p +¢q, ttanghl=p —yq,
nous obtenons I’élément linéaire
ds’=(p+q)(pdp*+ qdyp).

Nous considérerons plus loin I'équation de toutes les déformées de ce para-

boloide.

VIlI. — LEes DEFORMEES DES SURFACES DU SECOND ORDRE A DEUX AXES EGAUX.

Une surface du second ordre, dont deux axes sont égaux entre eux, a la forme
d’une surface de révolution; mais ses déformées se divisent en deux groupes
dont I'un seulement posséde les propriétés pav lesquelles, d’aprés le paragraphe L1i,
se distinguent toutes les déformées d’une surface de révolution donnée. Celte divi-
sion provient de ce que I’élément linéaire d’une surface du second ordre prend
deux formes limites, quand la différence des deux axes devient nulle. En effet, si
nous exprimons les équations d’une surface du second ordre, dont les demi-axes
sont ‘/5, ‘/Z, \/E, ol @ << b < c, au moyen des arguments p et ¢ des lignes de
courbure [voir § VI, équat. (1)], cette surface n’est réelle qu’entre les limites
a<<q<<b,b<p<c, c’esl-a-dire quand un argument est compris entre les deux
plus petits carrés des demi-axes, I'autre, entre les deux plus grands. Mais U'élé-

ment linéaire

de— P—1| p dp* _ q dq*
1) = [(a—p)(l)—p)(c—p) (a—q)(b—q)(c—q)]

a aussi une forme réelle pour les autres valeurs de ces arguments. Quand, par
conséquent, la différence (@ — b) de deux demi-axes devient nulle, toute surface
réelle correspond seulement & une valeur constante @ de I'argument ¢, puisque
a<lqg<b.

Fac. de T., 2¢ S., VIIL. 12
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En substituant dans I’élément linéaire (1)

b+ a b—a .
cos2q, A g¢q,

2

A ——

2 5 cosa2p, a p,

( c+a c—a
et en égalant @ — b & zéro, nous obtlenons I'élément linéaire fini

(3) ds*=(asin*p,+ ccos?p,) dpl+ acosp, dg?,

ot le nouvel argument ¢, correspond, pour toutes ses valeurs, & une valeur
b+a b—a

constante @ de I'argument ¢, par suite de la substitution de cos2q,

a ¢, puisque b —a =o. Il en résulte que, pour toutes les valeurs de p, et ¢,,
Péquation (3) exprime I'élément linéaire d’une surlace donnée, dans toute
I’étendue de cette surface.

I.élément linéaire (3), d’aprés le paragraphe 111, est I'élément linéairve des sur-
faces de révolution, et nous pouvons le déduire directement des équations des

surfaces de révolution du second ordre,
x =\lacosp,cosq,, y=\lacosp sing,  s=\/esinp,.

Nous pouvons nommer Loules les surlaces correspondant a cet élément linéaire,
des déformées d’une surface de révolution du second ordre donnée. Elles se dé-
forment dans des surfaces de révolution.

Mais I’élément linéaire général (1) des surfaces du second ordre, pour a = b,

aprés substitution de — ¢ a ¢, prend la forme

dst— P +(/[ pap " qdq’ ]
b Lp—a)y(c—p) (g+a)(c+q)

qui est réelle, non seulement pour — g = @, mais aussi pour ¢ variable, et nous
pouvons nommer toutes les surfaces correspondant a cet élément linéaire (4),
d’aprés son origine, des déformées d’une surface du second ordre a deux axes
égaux. Elles ne se déforment pas dans des surfaces de révolution, parce que, en
déterminant P et Q, d’aprés le paragraphe ILl, au moyen de I'élément linéaire (4),
nous voyons que Q n’est pas une fonction de P. Nous ne pouvons pas, par consé-
quent, considérer les surfaces de ce groupe, comme des déformées en dehors des
limites des surfaces du premier groupe. Toute portion de surface du premier
groupe correspond a une valeur constante @ de I'argument ¢, et a cette valeur
correspond, sur une surface du second groupe, seulement la courbe ¢ = @, qui

toutefois se trouve a 'infini.
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Si nous appliquons la surface donnée sur une des surfaces du premier groupe,
les portions réelles des deux surfaces coincident, ou se rencontrent suivant une
courbe, ou ne coincident pas.

Mais, si nous appliquons la surface donnée sur des surfaces du second groupe,
en considérant 'une et l'autre surfaces comme des surfaces limites, alors, qnand
a — b tend vers zéro, toute portion de la surface donnée se contracle en une
courbe ¢ = a de Pautre surface, et, avec elle, s’éloigne a l'infini,

Toute déformée d’une surface du second ordre, dont les deux axes sont égaux,
appartient au premier ou au second groupe, c’est-a-dire se déforme ou ne se dé-
forme pas en une surface de révolution.

Nous pouvons considérer un paraboloide illimité comme ane surface du second
ordre a trois axes égaux, parce qu’il se forme toujours, quand les trois axes de la
surface du second ordre deviennent infinis du méme ordre. Toutes ses déformées
appartiennent au second groupe, car, d’aprés le paragraphe III, de I'élément

linéaire (10) résulte qu’elles ne se déforment pas en des surfaces de révolution.
Nous pouvons considérer le paraboloide & un paramétre v = o Comme une
c

surface du second ordre avec deux demi-axes infinis égaux, \/b =/c. Ses défor-
mées appartiennentaussi au second groupe et ne se déforment pas en des surfaces
de révolution.

BT . a b .
Le paraboloide a deux paramétres 2= —=, 3 = — a deux axes égaux, quand
c

Ve
ces deux paramétres sont égaux entre eux (\/a:\/b, quand o =§). Ses défor-
mées appartiennent aux deux groupes.
. St s ., T P q
En effet, en substituant dans 1’élément linéaire (3), = — -*=» “= a p,, q,, en
2 iVe e
posant a=oa\/c, et en rendant ¢ infini, nous obtenons son premier élément

linéaire,
(3) ds*= a?[(1+ p?) dp*+ q* dg*].

Les surlaces correspondant a cet élément se déforment, d’apres le paragraphe LI,
en des surfaces de révolulion, et nous les appellerons des déformées d’un para-
boloide de révolution.

2

En substituant, dans I’élément linéaire (4), ap et ag a p el ¢, et en posant — = a2,
c

nous oblenons son second élément linéaire

(6) dsz:a2/f+(1[(1’d1ﬂ L 247 ]

4 Lp—n?  (g+1)?

.

Les surfaces correspondant a cet élément ne se déforment pas en des surfaces
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de révolution, et nous les appellerons des déformées d’un paraboloide & deur
parametres égaux.

Dans le paragraphe II, nous avons vu que par les équations (5) :

Vxi+y? =\/b*— a’sinq cosp,

Y a
arc tang = — —————arc tangh(cosq),

(7) < = Vph—a

n

:j‘\/c3 cos®p + a®sin*p dp

est représentée une déformée d’une surface du second ordre de la forme générale
(8) Z = a cosp cosq, y =>bcospsing, s=csinp

ol «, b, ¢ sont les demi-axes de la surface.

Quand, pour p et ¢ finis, nous égalons a o la différence de deux axes, alors,
par les équations (8) est représentée une surlace de révolution, par conséquent,
par les équations (7) une déformée du premier groupe. Nous avons deux telles
déformées. En égalant ¢ — b a o, nous obtenons la premiére déformée d’une sur-
face générale de révolution du second ordre; en égalant ¢ — @ 4 o, nous obtenons
la deuxié¢me. Cette deuxieme déformée s’exprime sans fonctions elliptiques, car la

troisieme des équations (7) prend la forme 5 = ap.

Déformées d’une surface du second ordre a deux axes écaux.
O

Les déformées, exprimées par les équations (7) pour c—b=o et pourc¢ —a=o,
se déforment en des surfaces de révolution; mais nous pouvons égaler b — a a o

dans les équations (7) seulement pour ¢ infini, savoir, en substituant

+log—= )i a gq
q b\/m q.

Les équations () prennent alors la forme

2

x*+ y? = aie? cosp,

<

(9) | arclang = =e™,

8

(2]

:f\/ﬁ cos?p + a®sin’p dp

et représentent la troisiéme déformée de la surface générale du second ordre, dont
deux axes sont égaux ; mais cette déformée appartient au second groupe, car nous
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pouvons voir, d’aprés le paragr:aphe IIT, qu’elle ne se déforme pas en des surfaces
de révolution.

Nous prendrons cette déformée, si elle est réelle, pour la déformée la plus
simple d’une surface du second ordre a deux axes égaux.

1) Si a et ¢ sont réels, en substituant — — p¢ a p dans les équations (9), nous
2
oblenons la déformée la plus simple
‘ Va?+ y* = ae? sin hp,

Y .
arce . —e 1
) arc langx e~ 9,

(10)

, 5= [\/c2 sinh?p — a2 cosh?p dp

d’un ellipsoide réel a deux axes égaux.

(2) Siaet csont imaginaires, en substituant ai et pi a a et p dans les équa-
tions (), nous obtenons la déformée la plus simple

/

s Va4 y? = ae? coshp,

. Y
(11) \dlCld(l‘”w e-9,

( z:f\/c“ cosh?p —a?sinh?p dp

d’un ellipsoide imaginaire & deux axes égaux.

(3) Si a est imaginaire, ¢ réel, en substituant @i 4 «, dans les équations (),
nous obtenons la déformée la plus simple

s' Vx4 3 = ae? cosp,

v
(}2) ( arc lang; =e1,

5 :/‘\/c2 cos?*p —asin’p dp

d’un hyperboloide & deux axes imaginaires égaux.

(4) Si a est réel, ¢ imaginaire, les équations () ne prennent pas une forme
réelle et nous n'obtenons pas de déformée d’'un hyperboloide a deux axes réels
égaux.

Au second groupe de déformées d’une surface du second ordre dont deux axes
sont égaux, appartiennent encore les déformées d’un paraboloide illimité, des
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.

paraboloides & un paramétre et des deux paraboloides a deux paramétres égaux.
Nous avouns déja exprimé au paragraphe VI les déformées les plus simples des trois
premiers paraboloides, par les équations (20) et (21).
Nous obtenons les déformées les plus simples des paraboloides a paramétres
.

, a? b? , . . T ap
égaux g = —> 2= —-, au moyen des équations (g), en substituant el et

a’.’
en rendant a et ¢ infinis, de telle sorte que le rapport 2 = — reste fini. Les équa-

tions (g) prennent alors la forme

[ V@i y? = aieip,

<

—e 1,

3= f\/})2+ldp.

(13) . arctang

SENS

(8) Si « est réel, en substituant pi & p, nous obtenons la déformée la plus
simple

Vat+ y? = aelp,

,
(14) [ arc Lang; —=e 1,

:acf\/p?——ldp

3]

d’un paraboloide a deux paramétres réels égaux.

(6) Si o est imaginaire, nous n’obtenons pas de déformée réelle d’un parabo-
loide & deux paramélres imaginaires égaux.
Nous donnerons plus loin les déforinées les plus simples d’un hyperboloide

a deux axes réels égaux et d’un paraboloide a deux axes imaginaires égaux.

Déformées d’une surface de révolution du second ordre.
Des équations d’une surface de révolution du second ordre
Z = a cosp cosq, ¥y = acospsing, z=csinp,
nous déduisons I’élément linéaire

ds*= (a*sin?p + ¢ cos*p) dp* + a* cos’p dgq*
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et, par suite, d’aprés le paragraphe IV, toutes les surfaces de révolution

Z = aacosp cosg,
.G
(135) ‘ y:aacospsmé,

5 :fdcz+ [@*(1 — a?) + 2] sin?p dp,

qui correspondent a cet élément linéaire.
Suivant les signes de a? et de ¢2, ces déformées se partagent en qualre groupes.

Nous obtenons les déformées les plus simples pour 2 =1.
(1) Ellipsoide de révolution avec les demi-axes «, a, ¢,
Z = a cosp cosq, y =acospsing, s =csinp.
(2) Hyperboloide de révolution a une nappe avec les demi-axes «, a, ci,
x —=acoshp cosgq, y =acoshpsing, s =csinhp.
(3) Hyperboloide de révolution a deux nappes avec les demi-axes ai, ai, c.
x = asinhp cosg, y =asinhpsing, sz=ccoshp.

(4) Ellipsoide de révolution imaginaire avec les demi-axes ai, ai, ci, n’existant
pas comme surface du second ordre. Nous obtenons sa déformée la plus simple,

, . Va:— c? . - .
au moyen des équations (2), pour o= Y———, aprés substitution de ai, ci, p¢

T . .
ou ;" — piaa,c, p, dans les deux formes les plus simples,

6 ‘ x=\/c*—a*coshpcosq, y=\c*—a’coshpsing, s=c¢p,
(16) -
| z=ya*—c*sinhpcosq, y=\a’—c sinhpsing, s=cp,

suivant que ¢ sera plus grand ou plus petit que a.
Ces déformées (16), aprés élimination des arguments p et ¢, prennent la forme

(17) x“—’—l—}ﬂ:(02—a’)005112<§>’ x4 Y= (a*— c':)sinh?<g>,

et les déformées de cette forme qui sont décrites, quand la ligne des sinus

y=easin(Bx+vy)
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tourne autour de 'axe des 2, ont encore un ellipsoide réel sous la forme

224 y?=(a*—c?) cosi'(g>

\

et un hyperboloide & une nappe sous la forme

x4 yr=(a®+c?) cosh?<§>-

VII. — Lgs DEFORMEES D'UNE SURFACE DU SECOND ORDRE A TROIS AXES EGAUXN.

Une surface du second ordre, dont Lous les axes sont égaux, devient une sphére,
quand ces axes sont réels.

Une surface du second ordre, dont les équations sont exprimées au moyen des
arguments des lignes de courbure p et ¢ (voir § VI, éq. 1) est réelle entre les
limites @ < g < b, b<p <<ec. Il en résulle que toute la sphére, pour laquelle
« = b= ¢, correspond seulement a une valeur constante a des deux arguments p
et g.

Quand les deux demi-axes \/a et /b sont égaux entre eux, alors, au moyen de
I’élément linéaire général

() a’s‘-’:/)_*—q[ pdp B gdq? ]
4 (a—p)b—p)c—p) (a—qg)(b—q)(c—q)

apreés substitution de

cos2q, a gq,

b+ a b—a
| 7

(2)

c+a c—a .
5 — T cosapr A p,

nous avons obtenu au paragraphe VII 'élément linéaire
(3) ds*= (asinp,+ bcos?p,) dp?—+ acos®p, dg}

des surfaces de révolution du second ordre.

En égalant b — a a zéro, nous obtenons, par suite, I'élément linéaire
(4 ds*= a(dp}+ cosp, dgy)

d’une surface du second ordre, dont tous les axes sont égaux. Les arguments p,
el ¢y, par suite des équations (2), correspondent, pour toutes leurs valeurs, a une
valeur conslante a des deux arguments p et ¢, puisque b —a=o0,c —a=o. Il
en résulte que I'équation (4) exprime I’élément linéaire de la sphére dans toute
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son étendue, et nous appellerons toutes les surfaces correspondant & cet élément
linéaice (4), des déformées de la sphére. Ces déformées s’appliquent sur des
surfaces de révolution, et le produit des rayons de courbure que nous obtenons,
d’apres le paragraphe IIl, au moyen de I'élément linéaire (4), a une valeur constante
et égale a a.

Quand @ = b = ¢, I'élément linéaire (1) prend seulement pour p=a et g =«
la forme (4); mais il reste aussi réel pour p et ¢ variables, sans prendre cette
forme (4).

Si nous introduisons seulement un argument ¢,, correspondant a une valeur
conslante @ de 'argument ¢, en admettant des variations arbitraires de l'autre

b4+ a b—a

argument p,, alors, en substituant cos2q, & g dans V’élément

linéaire (1) et en égalant @ — b a zéro, nous obtiendrons I'élément linéaire

R pdp a(a—p) dq}
ds? = -+
fp—a)e—p) T c—a
— 2
qui, aprés substitution de @ (1 — p*) a p, (L—am a g3, et pour c—a=o, prend
la forme ‘
(5) dsz:a<2"p—+z'dp=+p?dqﬁ).

Par cette équation (5) s’exprime une seconde forme de ’élément linéaire de la
surface du second ordre dont tous les axes sont égaux.

Parmi les déformées que nous en déduisons, se trouvent, d’aprés le paragraphe I11,
des surfaces de révolution; mais il ne se trouve pas de sphére, car le produit des
rayons de courbure que nous en Lirons sous ia forme a2(p*—1)? est ici une
quantité variable et non constante comme dans les déformées de la sphére; nous
appellerons toutes les surfaces correspondant a cet ¢lément linéaire (5) des dé-
Jormées de surface du second ordre a trois azes égauz.

Outre ces deux formes, I'élément linéaire général (i) prend encore, pour

a=b = c, aprés substitution de ap et — aq a P et g, la troisicme forme

(6 m:“(/“”l)[ pap’ g dg? ]
) “ i LG=pr T aagp

Nous appellerons toutes les surfaces correspondant a cet élément linéaire (6)
des déformées d’une surface du second ordre & trois axes égauzx. Ces surfaces
ne se déforment pas en des.surfaces de révolution.

Toutes les déformées d’une surface du second ordre, dont les trois axes sont
¢gaux, se parlagent par conséquent en Lrois groupes. Mais, d’aprés le signe du

Fac. de T., »* S., VIL 13
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carré des axes, chacun de ces trois groupes se partage a nouveau en deux groupes.
En outre, I'élément linéaire de chaque groupe peut prendre différentes formes
réelles entre différentes limites, mais les surfaces correspondant a de telles formes
différentes sont des déformées en dehors des limites d’'une méme surface.

(1) Déformées d’une sphére réelle. — Les surfaces de révolution qui, d’apres
le paragraphe 1V, correspondent a ’élément linéaire de la sphére
paragrap ) P p
(4) ds* = a*(dp*+ cos’p dq*)
sont représentées par les équations suivantes :
(7) x=aacos 7 = inZ 5= / 2sin?p d,
7 = P cos y=aacospsin_, s=a [Vi—a?sin?pdp.
Elles s’appliquent entiérement sur la sphére
x =acospcosq, y=—acospsing, s=asinp,
mais ne couvrent pas deux segments de cette derniére si 2 >1.
(2) Déformées d’une sphére imaginaire. — L’élément linéaire d’une sphére

imaginaire, dont les trois axes sonl ai, ai et ai, a trois formes réelles que nous
obtenons au moyen de 'équation (4) :

(1) ds* = a*(dp*+ €% dg?),

apres substitution de ai, (p + k)i, 2qe™*a a, p, q, 00 k =x;
(2) ds*=a*(dp*+ cosh?p dy?),

aprés substitution de ai, pi, gi i a, p et ¢ dans I'équation (4);
(3) ds*= a®(dp*—+ sinh®p dq?),

aprés substitution de ai, S —pidactp dans Péquation (4).

A ces trois éléments linéaires correspondent, d’aprés le paragraphe 1V, trois
groupes de surfaces de révolution.

Les équations da premier groupe

9

q
xr = oael cos=,
2

y:ocael’sin%, 3= f\/l—-aﬂe“’dp, ds®=a?(dp*+ e*P dq?)

représentent cependant, pour toutes les valeurs de la constante de déformation «,
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une méme surface qui, aprés substitution de et ag a eP et ¢, prend la
P

coshp
forme

acosy asing
X = ’ = ’
coshp “  coshp

(8) s=a(p—tanghp).

Nous prendrons cette surface pour la déformée la plus simple d’une sphére ima-
ginaire.

Les surfaces de révolution du deuxiéme et du troisiéme groupes

x:aacoshpcosg, r—oaa sinhpcosg,
y:aacoshpsing, y=uaasinhp sing,
;:af\/:omdp, z:af\/mdp,
ds*= a®(dp*+ cosh?p dq?), ds*=a*(dp*+ sinh?p dq?),

sont non seulement des déformées en dehors des limites de la déformée la plus
simple, mais s’appliquent réellement 'une sur I'autre, et sur la déformée la plus
simple, de différentes maniéres. Pour la détermination des points correspondants,
nous avons les équations suivantes : '

L’élément linéaire de la déformée la plus simple
du?+ e** dp?
se lransforme, aprés substitution de

log[sinhp + coshpcosh(g +B)] a «,

coshpsinh(g + B)
sinhp + coshp cosh(g + f3)

+y a v,

en I’¢lément linéaire du second groupe
dst=dp*+ cosh®p dq?,
et, aprés substitution de

log[coshp +sinhp cos(g +B)] a «,

eoshpsin(g + B)
coshp +sinhp cos(g + )

+y a
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en I'élément linéaive du troisiéme groupe
ds*=dp*—+ sinh?p dqg*.
Par la nous pouvons, pour des valeurs arbitraires des deux constantes {$ et y des

déplacements, déterminer le point u, ¢ de la déformée la plus simple, qui corres-
pond a un point quelconque p, ¢ d’une déformée quelconque.

(3) Déformées d’une surface de révolution du second ordre a trois demi-
axes réels égaur a, a, a. — Nous obtenons I'élément linéaire de ces déformées

au moyen de I'équation (5), aprés substitution de a? a a, sous la forme

ot
(9) ds’= a2<P—2 dp* + p? dq2>.
p
Les surfaces de révolution qui, d’apres le paragraphe IV, correspondent & cet
élément linéaire, aprés substitution de —— » aq a p el ¢, prennent la
1-— a?cosp

forme

cos sin
(10) r==>0 (], =107, s=a(langp —p),

cosp cosp
oll h = — ——— est une constante de déformation.

1 — ot

Nous obtenons la plus simple de ces déformées, pour 2 = \/l, sous la forme
2

() LY _ g sing

= s =a(tangp—p).
cosp’ cosp’ (tangp—p)

(%) Déformées d’une surface de révolution du second ordre a trois deni-
axes imaginaires égaux ai, ai, ai. — Nous obtenons I’élément linéaire réel de
ces déformées, apres substitution de ai, pi & @, p, dans I'élément linéaire (9), sous
la forme

(12) ds*= a2<]% dp?—*—/ﬁdq2>.

Les surfaces de révolution qui, d’aprés le paragraphe IV, correspondent a cet

¢lément linéaire, aprés substitution de ——————etag i p et ¢, prennent la
1—a?sinhp
forme
cosq sing
13 —t =b - s=a(cothp +
(13) sinhp’ sinhp’ ( p+p)
ot b= — est une constante de déformation.
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La délormée la plus simple s’obtient, pour « =1, sous la forme
(14) X =ap cosq, ¥ = apsing, s =alogp,
ou, par élimination des arguments, sous la forme

s =logyxt+ y*.

Nous appellerons cette surface une surface de révolution logarithmique.

(8) Déformées d’une surface du second ordre a trois axes imaginaires
égaur. — Nous obtenons la déformée la plus simple d’'une surface du second
ordre a trois demi-axes imaginaires égaux ai, ai, af, au moyen des équations [(11),
§ 7] d’un ellipsoide imaginaire a deux axes égaux, en égalant & zéro ¢ — a, sous

la forme suivante :

(13) \/x’—1—]’:—. ae? coshp, arulang% —e Y, s==ap,

ou, aprés élimination des arguments, et pour 2 =1, sous la forme

L e —
arc tang = -\/x*+ y?= coshs.
x
(6) Les déformées d’une surface du second ordre & trois axes réels égaux cor-
respondent a I'élément linéaire que nous avons exprimé par I’équation (6) et au-
quel sec raméne ’élément linéaire (15) du groupe précédent.
Nous obtiendrons, au paragraphe X, la déformée la plus simple de ce groupe.

IX. — Lks DEFORMEES DES SURFACES DU SECOND ORDRE

A AXES INFINIMENT PETITS.

Une surface du second ordre
(1) X = acosp cosq, y = bcospsing, 5= csinp,

dont les demi-axes sont a, b, ¢, se transforme, pour toules les valeurs finies des
y Oy, Cy y P
arguments :
(1) Dans un plan, si nous égalons un axe a zéro;
(2) En une ligne droite, si nous égalons deux axes & zéro;

(3) En un point, si nous égalons les trois axes a zéro.

Il en résulte que, s'il existe des déformées de surface du second ordre a axes
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nuls, ne s’appliquant pas sur un plan, ces déformées doivent correspondre a des
valeurs infinies de I’'un au moins des arguments.

Pour des axes infiniment petits, I’élément linéaire

(2) ds*=|sin*p[a®+ (b*— @) sin’q] + ¢ cos’p| dp?

+2(a*— b*)sinp cosp sing cosq dp dg + cos?’p[a®+ (b* — a®) cos?q]dg?,

que nous obtenons au moyen des équations (1), doit prendre une forme finie
déterminée, et le produit des rayons de courbure qu’on en déduit, doit étre fini.

Les fonctions trigonométriques d’un argument infini deviennent indéterminées.
Par conséquent, dans I'élément linéaire (2), les fonctions trigonométriques d’au
moins un argument doivent disparaitre avant que les axes deviennent nuls. Cecl
ne peut évidemment avoir lieu que quand a®>—b*=o0, et, dans ce cas, 1'élé-
ment (2) prend la forme

(3) ds*=(a?sin*p + c*cos?p) dp?+ a® cos® p dg?,

ui ne contient pas de fonctions trigonométriques de I'argument ¢g. A cet élément
q p 8 q 8 q
linéaire correspondent des surfaces de révolution.

En égalant ¢ a zéro, nous obtiendrons I'élément linéaire d’un plan. En laissant

ce cas de coOté, et en égalant @ i zéro, nous obtenons, aprés substitution dans (2)

de c;l a ¢, I'élément linéaire fini et déterminé
(4) ds®=c? cos?p(dp*+ dg?)

d’une surface du second ordre, dont deux demi-axes sont égaux a zéro, et le troi-
sitme demi-axe est c.

Le produit des rayons de courbure
c?cos?p

que nous en déduisons, d’aprés le paragraphe VII, est, en effet, fini.
Le demi-axe ¢, qui entre dans I’élément linéaire (4), ne peut étre nul; mais son
carré peut étre :

(a) inférieur a zéro, () supérieur & zéro, () infini; c’est pourquoi les défor-
mées d'une surface du second ordre avec axes infiniment pelils se partagent en
trois groupes de caténoides.

() Si c2 est inférieur & zéro, en substituant c¢, pi, qi a ¢, p, q dans (4), nous
obtenons 'élément linéaire '

(5) ds* = c* cosh?p (dp*+ dq?)
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d’une surface du second ordre dont les trois demi-axes sont 0, o, ¢i. Parmi toutes
les surfaces de révolution qu’on en déduit, d’aprés Uéquation (3) du paragraphe 111,
on distingue la surface

(6) z=ccoshpcosq, y=ccoshpsing, s=cp,

que nous appellerons caténoide, parce qu'elle est engendrée par une chainette
z = ccoshp, 5 = ¢p, qui tourne autour de I'axe des s.

Nous nommerons toutes les surfaces correspondant & I’élément linéaire (5)
des déformées d’une caténoide dont le paramétre est ¢, ou des déformées d une

surface du second ordre dont les trois demi-axes sont o, o, ci.

(B) St c? est supérieur a zéro, alors, outre ’élément linéaire (4), nous en dé-
duisons, aprés substitution de 5 T PLqla la place de p et ¢, encore un second

élément linéaire de forme réelle,
(7) ds*=c*sinh?p (dp*+ dg*).

Les deux séries de surfaces de révolution que nous obtenons, d’aprés le para-
graphe 1X, au moyen des éléments linéaires (4) et (6), sont des déformées en de-
hors des limites.

Nous appellerons toutes les déformées de ce groupe, des déformées de la caté-
noide imaginaire (7) dout le paramétre est ci, ou des déformées d’une surface du
second ordre dont les demi-axes sont o, o, c.

Nous obtenons la déformée la plus simple de ce groupe, de I'élément linéaire (4),
d’aprés le paragraphe IV, pour a =1, sous la forme suivante

& = C COsp cosq, Y =ccospsing, s:cfv’coszp dp.

. I, . o, . o . T q .
(v) Si, dans I'élément linéaive (4), c2=o0, en substituant 5 Lo L apet

Ve ¢

¢, nous obtenons I'élément linéaire homogene
(8) ds*= p*(dp®+ dq?),

auquel, d’aprés le paragraphe V, correspondent des surfaces illimitées et leurs
déformées.

Nous appellerons toutes les surfaces correspondant & cet élément lindaive (8)
des déformées de caténoide illimitée, ou des déformées d’une surface du second
ordre dont les demi-axes sont o, o, .

Nous obtenons, d’aprés le paragraphe V, toutes les déformées illimitées de ce
groupe; leurs équations sont assez compliquées.
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Toutes les surfaces de révolution de ce groupe, que nous obtenons d’aprés le
paragraphe 1V, forment une méme surface a échelle arbitraire. Les équations de

cetle surface

:v:apcosg, _y:ocpsing, s= | Vp*—atdp,

aprés substitation de a coshp, aq a p et ¢, prennent la forme
(9) o =oa*coshpcosq, y=ua*sinhpsing, s = a*(sinhp coshp — p)

ol o est une constante arbitraire de déformation. Nous prendrous cette surface (9)
pour la déformée la plus simple d’une caténoide illimitée.

X. — LESs DEFORMEES D'UNE SURFACE DU SECOND ORDRE REELLE

POUR TOUTES LES VALEURS DES AXES.

Si la surface est représentée par les équations
(1) x = um, y =un, 5=y,

ou « et v sont des fonctions arbitraires de 'argument p, m et n des fonctions
arbitraires de I'autre argument ¢, nous obtenons, pour élément linéaire de celle

surface,

(2) ds?=(m?+ n?)(u~+ ¢2)dp*+ 2(mmy+ nn,)uu' dpdg + u*(m?+ n?)dp?,

ou
u' = du ol — .‘ig' nm, — i’zl_ -— (l_ll.
& T @ 'Tdg’ ' dg
Si, par les équations
(3) M4+ N2=m?+n*—a, M} Ni=mi+ni,

nous déterminons deux nouvelles fonctions M et N de I'argument ¢, o « est une

constante, et par ’équation

(4) V2= 12— qu'?

une nouvelle fonction V de l'argument p, alors, aprés sabstitution des fonc-
tions M, N, V a m, n, ¢, dans I’équation (2), nous obtenons le méme élément li-

néaire, dans lequel o a disparu.
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Il en résulte que, parles équations

(5) X =uM, Y =uN, 7=V,

s'exprime une surface qui, pour toutes les valeurs de la constante de la déforma-
tion 2, s’applique sur la surface donnée z, y, 3
En déterminant V, M et N au moyen des équations (3) et (4), nous obtenons

V= f\/o-—au-dp M=rcoso, N=rsino,

ol
r=VmiE i, c?:/\/(mnl—;::;i:_)j;z;mf_‘_ /1‘;’)(1(/'
En faisant, dans les équations données (1),
= Ccosp, v =csinp; m = acosq, n=1bsing,

nous obtenons les équations d’une surface générale du second ordre
& = acosp cosq, y =bcospsing, z=csinp,

et, par suite, sa déformée

X =rcosqcosp, Y = rsin¢cosp, 7= [Vc? cos?p — asin?p dp,

o

— a?b? + a(a*sin*q + b* cos?q
r=\y/a*cos*q + b*sin*q + a, o= [V ( A =) dq.
: c*costqg + b*sin*qg +

En posant « = — «? dans I’équation (7), nous obtenons la déforméc que nous
avons exprimée au paragraphe I par les équations (5), ou au paragraphe VII par
les équations (7).

En égalant a zéro a — b pour p et ¢ finis, nous obtenons des déformées d’une
surface de révolution du second ordre.

o < . - 2a . .
En égalant a zéro @ — b, aprés substitution de <q —+ log \/————b‘) taq,a*(z—1)
a2_ '2/

a 2, nous obtenons les déformées

X=rcosgcosp, Y=rsingcosp, Z:f\/cﬂcosﬁp——az(a—x)sin?pd/»,
(8) _
\/(a~—1 el — o

r=aya+ e¥,
o+ e

de toutes les surfaces du second ordre a deux demi-axes égaux finis @ = 0.
Fac. de T., 2° S., VI 14
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‘n substituant, dans les équations (8), 5 7” a p et en rendant @ et ¢ infinis,

a? . ; .
de telle sorte que le rapport - =7 reste fini, nous obtenons les déformées

s X=ypreoso, Y=vyprsinog, Z:/f\/pQ—i—l—oza’p,
(9) Ty
R vy V e —a
( r=yoa €%, 0 / p— ej,; d
. s \ , a? b2
de tous les paraboloides & deux paramétres égaux Y= 7=

En égalant a & zéro, et en substlituant — €27 & e2¢ dans les équations (8) et (9),
nous obtenons les déformées que nous avons exprimées par les équations (g) et
(13) au paragraphe VII, et par les équations (14) au paragraphe VII. Au moyen
de ces équalions, nous avons obtenu les déformées les plus simples de toutes les
surfaces du second ordre a deux axes égaux, en laissant de c6té les trois surfaces
qui, pour o.= 0, deviennent imaginaires. Les déformées réelles de ces trois sur-
faces sont les suivantes :

(1) En égalant azéro ¢ — a dansleséquations (8), nous obtenons des déformées
réelles d’une surface du second ordre a trois axes réels égaux

!

\ X =rcospcosp, Y=rsingcosp, Z:af\/l—oc'-’sin‘-’ﬁdp,

—_ 2q
r=ayoa+ e, fW“ 1e £ % dy.

o+ e*?

(10)

(2) En substituant piet ci a p et a dans les équations (8), nous oblenons des
déformées d’hyperboloide a deux axes réels égaux

X =rcosg coshp,

Y =7 sing coshp,

Z ::f\/(ﬂ cosh’p —a*(a — 1) sinh?p dp,

e o—1) "/—oc
r=aya+ e, @—f\/(

oc—t—e”l

(3) Nous obtenons, au moyen des équations (9), des déformées réelles d’un pa-
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.

raboloide & deux paramétres imaginaires égaux v, seulement pour ¢ infini, aprés

substitution de qi — = , pi, 2*, yi a q, p, 2, v, sous la forme

X:w/pcosg, Y:ocypsing, Z:yf\/l—pf—acﬂdp;

mais, dans ce cas, le paraboloide a deux paramétres imaginaires égaux se transforme
en un paraboloide imaginaire de révolution.



