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SUR LES

MODULES D’ELASTICITE DE TRACTION

DU CAOUTCHOUC VULCANISE,

Par M. H. BOUASSE,

Professeur a I'Université de Toulouse.

Dans deux Mémoires, parus ici méme ('), j’al déterminé, avec la collaboration
de M. Carriére, la forme des courbes de traction d'un caoutchouc vulcanisé et
étudié les particularités qu’elles présentent. Nous n’avons jamais prononcé le mot
module de traction, nous bornant a classer les courbes et leurs variations.

Je vais montrer dans le Mémoire actuel la cause de cette réserve, et prouver a
quel point il est illégitime de déduire la valeur du module de I’étude des courbes,
ainsi que l'ont fail autant dire tous ceux qui se sont occupés de la question.

Je décrirai plusieurs appareils corrects pour I'étude du module et je comparerai
les résultats qu’ils fournissent ; je reprendrai la question controversée de la varia-
tion du module avec la température ; je discuterai 'emploi des méthodes basées sur
la propagation d’un ébranlement longitudinal ; enfin je mesurerai 1’absorption
d’énergie dans les parcours de faible étendue.

Je ne me propose pas tant de tout dire sur ces phénoménes que de poser le pro-
bléme sur des bases indiscutables et de présenter un résumé critique des Mémoires
qui abondent sur le caoutchouc. Chaque point pourra ensuite étre développé a
Iinfini en faisant varier la nature du caoutchouc; mais ces recherches longues
et minutieuses, fort utiles pour la pratique, tout expérimentateur soigneux les
conduira a bien, pourva qu’il consente & partir de principes strs et 2 user de mé-
thodes correctes.

(1) Courbes de traction du caoutchouc vulcanisé (Annales de Toulouse,t.V, p. 257).
— Réactivité du caoutchouc vulcanisé (Annales de Toulouse,t.V, p. 285).

Fac. de T., 2° 8., VI. 24
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DEFINITION DU MODULE DE TRACTION EN PARTANT DES COURBES DE TRACTION.

1. La définition du module de traction (ou module d’Young) qui mesure '¢élas-
ticité parfaite des métaux n’est pas applicable a priori a un corps aussi exten-
sible que le caoutchouc. Il ne s’agit plus en effet d’allongements qui sont de
I'ordre du milliéme de la longueur initiale, mais d’allongements qui peuvent
atteindre huit fois sa valeur. Le premier probléme a résoudre est donc le choix
d’une définition.

Pour les petites déformations, les formules

(1) L—Lo::"E‘:,
(2) L——Lo:sLT[:,
(3) L—Lozs';gs,
(4) L—Lo:I‘;”}_—TL:EE;

(ol P est la charge, L, s la longueur et la section actuelles, Lo, s, la longueur et
la seclion initiales) sont évidemment équivalentes.
On a proposé encore les formules suivantes :

§ dl __ dP
) L :sEs’

dL _ 1 P
(6) T=5(5)

Pour distinguer les différents E, nous leur donnons comme indice les numéros
de la formule.

Nous allons chercher d’abord ce que ces formules donnent pour la courbe de
traction en admettant : 1° que E est constant ; 2° que le volume ne change pas ;
3° que Pélasticité est parfaite.

Dans un article paru dans le Journal de Physique en 1903, j'ai montré que la
seconde hypothése est trés exactement vérifiée et qu'elle revient & prendre 0,5
comme valeur du coefficient ¢ de Poisson, en donnant  ce dernier une définition
proposée par Rintgen pour les corps trés extensibles. On se reporlera a ce travail.
(Voir une Note a la fin de ce Mémoire.)

La seconde hypothése donne la condition sL = s,L.y, s == s,A~* en employant
les notations déja utilisées dans mes précédents Mémoires sur le caoutchouc.
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Voici ce que deviennent les équations

' _ P
(]) A—"‘I-——SO—E’
! A—1 P
(2) AT T LE’
! ! l——-._P_
(3), (4"), (5") —i=5E
: logA P

Portons A en abscisses, P en ordonnées et faisons varier A entre 1 et . Les
courbes se classent en trois groupes. La courbe (1’) est une droite. La courbe
(3') (4) (5') est une hyperbole, elle a une asymptote horizontale; pour de grands
allongements, la charge tend vers la valeur P = s,E. Enfin, pour le troisiéme
groupe, la charge passe par un maximum. Nulle pour A = 1, elle redevient nulle
pour A = w. La courbe (2’) admet un maximum pour A = 2 et un point d’inflexion
pour A = 3; la courbe (6’) admet un maximum pour A = 2,72 et un point d’in-
flexion pour A = 4,48.

Or la forme de la courbe de traction est connue depuis Villari et représentée
figure 1. Ce n’est ni une droite ni une hyperbole, puisqu’elle posséde un point
d’inflexion. D’ailleurs elle n’a pas de maximum. En définitive elle ne présente
aucune analogie, méme lointaine, avec les courbes que nous fournissent les six
“formules les plus simp]es. Assurément, comme nous le verrons, il n’est guére
permis de définir le module par la courbe de traction ; toutefois I'allure du phéno-
méne différe si complétement de ce que nos hypothéses feraient prévoir, que nous
pouvons déja conclure que le module d’élasticité E ne peut étre constant, quelle
que soit la définition que U’on choisisse, méme en superposant a I’élasticité par-
faite que nous avons admise, un phénomene de réactivité que ’hystérésis considé-
rable du caoutchouc rend absolumeﬂ_t nécessaire.

2. Pour comprendre le sens des essais précédents il ne faut pas oublier qu’il
n’existe aucune analogie entre les courbes dites de traction du caoutchouc et des
métaux. 1l n’est jamais venu i l'idée d’aucun expérimentateur de déduire le mo-
dule d’Young de la considération des courbes de traction d’un métal, parce qu’elles
correspondent évidemment & des déformations permanentes. Nous savons au con-
traire (Sur les courbes de traction, etc., n° 1) que les déformations du caout-
chouc sont presque entiérement temporaires. Si donc nous considérons pro-
visotrement la réactivité comme accessoire, il n'est pas absurde a priori de
chercher & déduire de la forme des courbes de traction un paramétre, soit constant,
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soit fonction bien déterminée de la longueur, ou de la charge, ou de la longueur
et de la charge, qui caractérise les propriéiés purement élastiques du caout-
chouc. D’une maniére plus générale, si la réactivité n’intervenait que comme
correction toujours petite dans la forme des courbes de traction, on pourrait
tirer de celles-ci des indications sur les propriétés purement élastiques du caout-
chouc, vérifier si ellesne sont fonction que de lalongueur et de la charge, ou si elles
dépendent de I'histoire antérieure tout entiére du fil considéré, ... quitte ensuite &
corriger les résultats de l'influence de la réactivité. Je rappelle, ce que j’ai déve-
loppé bien souvent, et en particulier dans un travail paru dans la Revue générale
des sciences pour 1904, que nous devons nous efforcer de classer les phénoménes
en groupes, et ne pas rapporter @ priori & la méme cause des propriétés aussi
différentes que les déformations purement élastiques et la réactivité.

3. Les considérations du n° 1 nous enlévent l'espoir de trouver un para-
métre constant pour caractériser les déformations purement élastiques. Il ne
semble pas d'ailleurs qu’on puisse espérer découvrir un paramétre qui ne soit
fonction que de la longueur ou de la charge. La relation qui existe entre la charge
et la longueur n’est pas déterminée; pour une méme longueur le fil peut, suivant
les opérations antérieures, supporter une infinité de charges différentes ; de méme,
pour une méme charge, le fil peut avoir une infinité de longueurs différentes. En
d’autres termes, le point figuratif peut occuper une portion plus ou moins étendue
du plan longueur-charge. Dans ces conditions, il ne semble guére probable que
les propriétés purement élastiques, @ supposer quon puisse les distraire des
phénoménes de réactivité, ne soient pas fonction de la position du point consi-
déré dans le plan et, par conséquent, 4 la fois de la longueur et de la charge.

En d’autres termes, portant normalement au plan P, L, en un point donné de
ce plan,une longueur qui représente la propriété considérée, généralement Pextré-
mité de cette longueur décrira une surface (2 supposer qu’elle ne remplisse pas
un volume) : il est difficile d’admettre a priori que cette surface est un cylindre
dont les génératrices sont paralléles & I’un des axes de coordonnées.

Mais on peut aller plus loin et montrer que Phypothése que la réactivité n’in-
tervient que comme correction dans la forme des courbes de traction est abso-
lument erronée; en d’aulres termes, ces courbes sont le résultat complexe des deux
groupes au moins de phénoménes, du méme ordre de grandeur, agissant simul-
tanément; il est impossible de tirer généralement de ces courbes une indication
précise ni sur 'un ni sur l'autre des deux groupes, considérés isolément. Cetle
proposition résulte de I’énormité des phénoménes de réactivité, deVextraordinaire
variabilité des cycles suivant la technique, de I'influence considérable que la
vitesse a sur les parcours : tous faits tendant a prouver Pimportance de la variable
temps dans les résultats. Dans ces conditions, le module d’Young, tel que I'ont
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défini de trop nombreux physiciens, & partir des courbes de traction ou méme
plus spécialement a partir de cycles de grande étendue, ne peuat servir qu’a énoncer
d'une maniére plus ou moins habile les propriétés infiniment variables et com-
plexes des courbes de traction, et ne peut avoir aucune prétention a représenter,
méme approximativement, les propriétés purement élastiques, dégagées des autres

phénoménes et en particulier de la réactivité.

4. Quoi qu’il en soit, envisageons d’abord la question sous cet aspect.

Au voisinage d’un point de coordonnées A, P, la courbe de traction est définie
par sa langente. Les formules (1), (2), (3), (4), qui font dépendre le module E de
toute la partie de la courbe de traction comprise entre I'origine et le point con-
sidéré, ne peuvent étre d’aucune utilité. Il nous reste donc le choix entre les for-

mules
dP L
(5) E,= aL s’
‘(5)
déja indiquées, et la formule
_dP L, 1dP
(7) E,= aL 5, s dA’

pour nous en tenir aux plus simples.
Ainsi Villari (Pogg. Ann., t. CXLIII, 1871) calcule la valeur de E par la for-
mule (5), a partir de la courbe de charge d’un caoutchouc neuf. Le volume variant

peu, il pose
"o _ dP L?
SL—Vo, dOU Es—(,_{E‘T-O'

La valeur V, lui est fournie par des mesures de diamétre faites en un grand
nombre de points; elle pourrait étre obtenue plus aisément par la balance hydro-
statique. On a représenté figure 1 une courbe analogue i celles de Villari. Voici
les conclusions que Villari tire de ses expériences :

Le caoutchouc posséde trois modules d’élasticité, un premier constant et petit
de l'ordre de 0,073 ; un second encore constant et grand de I'ordre de 3o; et enfin
un moyen et variable qui croit rapidement et relie le premier au troisi¢me. Le pre-
mier s’applique de A=1 & A = 2, le second pour A > 4, et le troisiéme pour les
valeurs intermédiaires. Les nombres de Villari ne semblent pas vérifier ces con-
clusions ; disons simplement que le paramétre E; de Villari, trés petit et a peu
prés constant pour A voisin de 1, croit réguliérement quand A croit. La courbe E,
(fig. 1), représente I'allure des variations de E en fonction de A.
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Quant aux valeurs numériques, elles sont infiniment variables suivant le caout-
chouc utilisé. E; est exprimé en kilogrammes par millimétre carré. Pour le caout-

Fig. 1.
Charges P.

¢®
v

2 3 3 B) 6 7

chouc dont se sert Villari, une surcharge de of,75 serait donc capable d’allonger
de 1 pour 100 un fil ayant 1™ de section, quand il est tendu par une charge
faible.

Pour faciliter les discussions et préciser les idées, nous admettrons que la
courbe de premiére traction peut se représenter par 'expression

P:a(r— —[-> + S(M—l);
on en lire

dp a

- d*P _ 2a
dAk — A*

7 C iR

“+ bA,

La courbe présente un point d'inflexion pour A*>=2a:b. La tangente a la
courbe P, A s’incline donc au début (au voisinage de A =1), devient le plus hori-
zontale possible pour A= 2a:b (point d’inflexion A), puis se reléve indéfini-
ment. On a

L, I

a
B=(arony), = ;,(F +bA).

La figure 1 représente en unités arbitraires P, E;, E; en fonction de A; les
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calculs ont été faits en posant @ = 800, b = 8o. Elle coincide & peu prés avec une

des courbes de Villari.
Il ne s’agit ici que de préciser les idées. 1l serait bien souvent plus exact de

poser
P:a(r—— —k) + g(As——l),
dP a azpP 2a
77 GRS 7 ety Ciak LS

La courbe présente alors un point d’inflexion pour A*=a:b. On a

_I‘O 4 _._1_ i 2
Bi= 2 (a+ bAY), E,_So(Az—i—bA).

On peut avoir quelquefois a considérer le prbduit

dap dp
Ess—-— JL‘L—— on

Il est, suivant les hypothéses,

ad 2 e 3
+ bA?, A—I—bA.

4

Il peut, suivant les valeurs de @ et de b, présenter un minimum pour A > 1.

3. Les auteurs qui ont défini le module, & partir des courbes de traction, ont
choisi tantét 'une, tantdt 'autre des formules (5), (6), (7). Aussi ont-ils énoncé
les mémes résultats généraux sous des formes trés différentes donnant I'illusion de
véritables découvertes.

Voici, par exemple, Stevart qui, dans une brochure sur I'Elasticité du caout-
chouc vulcanisé (Gauthier-Villars, 1888), prend pour définition du module la
formule

1 dP
(7) E7-—gm‘

Naturellement, il conclut : « qu’a D'origine, il a une valeur maximum correspon-
dant au minimum d’extensibilité (le mot maximum est incorrect); il diminue
ensuite jusqu’au tiers de cette valeur au moment ot la longueur est doublée (ceci
ne vaut que pour I'échanltillon utilisé par auteur), puis augmente de nouveau
jusqu’au point de rupture ».

Imbert (Thése de Marseille, 1880) pose la méme définition, se sert encore de
la courbe de charge et naturellement parvient aux mémes résultats.
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Wertheim avait, lui aussi, déduit le paramétre E de la courbe de charge.

Cantlone (Rend. Ist. Lumb., t. XXXI, 1898) fait parcourir des cycles au f£il de
caoutchouc et déduit les valeurs de E de la forme des courbes d’aller et de retour,
par la définition suivante, dérivée de la formule (6) :

P P
B— 5 S .
logL/—logL

A défaut d’autres avantages, ces derniers calculs ont au moins celui de mettre
en évidence la relativité de la définition. En somme, dire avec Cantone que le
module croit dans la premiére partie du cycle (charges croissantes) et décroit dans
la seconde (charges décroissantes), revient & donner des indications sur la forme
des courbes qui limitent le cycle dans une expérience particuliére. Comme ces
courbes sont différentes suivant les limites du cycle, la maniére dont il est décrit
et généralement toutes les opérations antérieures, les nombres E sont naturelle-
ment trés variables. Ce n’est pas une objection contre leur emploi : mais il est
essentiel de remarquer qu’ils ne peuvent, en aucune maniére, caractériser les pro-
priétés purement élastiques du caoutchouc, aucun procédé ne permettant I’élimi-
nation de I'influence de laréactivité sur la forme des courbes. .

Les physiciens ont le droit de traduire leurs expériences comme il leur plait, a
la condition de ne pas donner le change sur le caractére de leurs résultats. Or, on
attache au mot module I'idée d’un paramétre caractéristique des propriétés pure-
ment élastiques; on n’a plus le droit d’en faire une fonction arbitrairement choisie
des coordonnées d’un point d’une courbe et de sa tangente, alors que cette courbe
est le résultat de deux et méme trois groupes de phénomenes : élasticité parfaite,
ledCUVlle déformations permanentes.

De plus, il est bien inutile d'introduire dans la quesuon le mot module, sile
simple tracé des courbes donne des indications équivalentes : dans toutes les défi-
nitions rappelées, le module est une fonction plus ou moins complexe de L, P, s,

%, quantités que 'on connait immédiatement par le tracé de la courbe.

On ne supprime aucune difficalté en utilisant des cycles étendus fixés. 1l n’est
pas sir que, méme aprés un certain nombre de répétitions, les courbes qui les
limitent deviennent indépendantes de I'histoire antérieure du fil; certainement
elles restent sous la dépendance des phénomenes de réactivité, qu’il faut précisé-
ment s’efforcer d’éliminer pour obtenir une donnée nouvelle sur les propriétés de

la matiere.

6. Définition du module par la vitesse de propagation d’un ébranlement
longitudinal unique. — Supposons que nous soyons parvenus en un point quel-
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conque A d’une courbe de charge ou de décharge pour lequel la charge, la lon-
gueur et la section soient P, L, s. Aprés un temps d’arrét plus ou moins long en
ce point, déplagons brusquement une des extrémités du fil d'une quantité ¢rés
petite, soit pour diminuer, soit pour augmenter la tension. Il nait une onde lon-
gitudinale condensée ou dilatée qui se déplace avec une vitesse que ’on mesure,

La propagation d’un ébranlement longitudinal le long d’un cylindre se fait avec
une vitesse uniforme donnée par la formule

E; est défini par la relation (3); ¢ est le poids spécifique. Cette vitesse est rela-
tivement faible pour le caoutchouc, comme le montre le calcul suivant. Soient
E=o,1 en kilogrammes par millimétre carré, 6 =1 en kilogrammes par déci-
métre cube; pour appliquer la formule nous devons poser g = 9,81 et exprimer
toutes les quantités dans le systéme du kilogrammeétre. On aura donc

E —10° kilogrammes par métre carré, d = 10°kilogrammes par métre cube,

doit
v =31m, 3.

Je donne ce nombre seulement pour fixer les idées. ;

Assurément, la formule présente quelques incertitudes. Outre qu’on ignore si
la déformation estisotherme ou adiabatique, le frottement intérieur, dont nous ne
connaissons pas la loi, mais qui est considérable, peut modifier profondément la
vitesse. Quoi qu’il en soit, admettons comme légitime de poser, dans les condi-
tions précédentes, E; = ko?, k élant un coefficient indépendant de la tension et
de la température; la formule fournit un moyen de déterminer E; pour des ten-
sions et des lempératures quelconques.

. . - d . .
7. Il estessentiel de remarquer que la quantité E; = % %—', déterminée d’aprés
ces hypothéses, se rapporte au point A considéré de la courbe de charge et de
dp .o .
décharge. Le quotient 4K &t celul qui correspond & la courbe de déformation

obtenue a partir du point A quand la tension augmente ou diminue. Il résulte de

li que ce quotient doit généralement avoir une valeur trés différente, si 'on pro-

duit un allongement ou si 'on produit un raccourcissement. En d’autres termés,

a partir d’un état déterminé de tension, obtenu par une suite déterminée d’ opera-

tions, une onde dilatée (qui correspond au déplacement brusque d’une des extré-

mités du fil dans le sens d’un accroissement de longueur) ne se propage pas avec
Fac.de T., 2 S., VL 25



186 H. BOUASSE.

la méme vitesse qu’une onde condensée (qui correspond au déplacement brusque
d’une des extrémités du fil dans le sens d’une diminution de longueur). On peut
méme prévoir que cetle vitesse variera notablement avec le temps que le fil aura
passé sous une certaine charge et que, pour un temps suftisant, les deux vitesses
que nous venons de distinguer se rapprocheront 'une de I'autre jusqu’a se con-
fondre.

Ainsi, cette méthode donnera, avec beaucoup de difficulté et quelque incerti-
tude, des résultats tout aussi variables que ceux qu’on obtiendrait en calculant E
a partir des courbes de charge ou de décharge. Il serait assurément du plus haut
intérét de voir si 'expérience confirme ces raisonnements, mais cela n’a jamais
été fait et, autant qu’on peut en juger, il faudrait une singuliére habileté pour
mener A bien des expériences aussi délicates.

8. En 1872, Stefan (Wien. Acad. Sitzungsberichte, t. LXV) a proposé une
méthode, appliquée depuis par Exner (ibid, t. LXIX, 1874), qui s’appuie sur la
mesure de la vitesse de propagation d’un ébranlement longitudinal, mais qui,
malheureusement, est d’une interprétation extrémement difficile.

1Is utilisent le chronoscope de Hipp. C’est un mouvement d’horlogerie & poids
réglé par une lame vibrante. Un ou plusieurs électros, agissant sur une armature
unique, peuvent instantanément embrayer ou désembrayer les aiguilles entrainées
par le mouvement. L’une d’elles exécute un tour de son cadran en un dixi¢me de
seconde et donne les millitmes de seconde; 'autre fait un tour de son cadran
en 10° et donne les dixiémes de seconde. Nous supposerons, par exemple, que la
rupture d’un circuit électrique A fait partir les aiguilles et que la fermeture d’un
circuit B les arréte ; peu importent les dispositions mécaniques. Voici maintenant
le schéma de 'appareil employé et le résumé de la méthode ( fig. 2).

Fig. 2.
A
alla’
ed P Caoutchouc
7
T
[~

Le caoutchouc tendu applique les pitces métalliques a et b, mobiles autour des
axes « et 3, contre les picces fixes @’ et &'. Le circuit A est alors fermé, le circuit B
est mis en court-circuit et rien ne passe & travers. Les piéces @ et b sont tirées
vers les buttoirs e par les ressorts 7. Enfin, le caoutchouc est relié¢ a la piéce a par
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un fil & coudre f: sa section est d’environ 2™™, sa composition est telle que 1008
doublent sa longueur.

On brile le fil £; brusquement le circuit A est rompu, les aiguilles du chro-
noscope se mettent a tourner. L’ébranlement se propage, la tension décroit le long
du fil; au bout d’un certamn temps, les piéces b et &' se séparent, le court-circuit
disparait, le courant passe dans le circuit B et les aiguilles s’arrétent. On mesure
ainsi le temps ¢ qui s’écoule entre la rupture du contact aa’ et la rupture du
contact b0'. Le quotient de la’ longueur du fil (quelques métres) par le temps ¢
donne une vitesse ¢ qu'il s’agit d’interpréter.

9. Clest justement ce qu’il est impossible de faire, I’expérience ne correspon-
dant pas a des conditions bien déterminées. Nous sommes loin des définitions
du n° 6. Dans Pexpérience de Stefan, on n’impose pas un petit allongement ou
raccourcissement & partir d’un point du plan longueur-charge; on revient jusqu’a
la tension nulle a partir de longueurs qui peuvent atteindre 5 fois la longueur
initiale. Or, pour que le ressort r écarte 'une de I'autre les piéces b et 0/, il faut
que la tension du caoutchouc au niveau de la piéce & soit descendue au-dessous
de la tension actuelle du ressort 7. Pour nous faire une idée du phénomeéne, sup-
posons qu’on déplace successivement de trés petites longueurs I'extrémité f du
caoutchouc, conformément a la technique du n° 6. Pour chacun de ces petits
déplacements, il nait une onde condensée qui se propage le long du caoutchouc
et dont la vitesse varie (et, comme nous le verrons, diminue) & mesure que le
caoutchouc se trouve de moins en moins tendu. Donc la vitesse qi'on enregistre
doit étre peu supérieure a la vitesse qui correspond & la tension du ressort r,
quelle que soit d’ailleurs la tension initiale du caoutchouc. Pour qu'il soit pos-
sible d’interpréter les résultats, il faudrait donc que la tension du ressort r fit
variable avec 'expérience et toujours trés peu inférieure 4 la tension du caout-
chouc au moment ou l'on brille le fil /. Il ne semble pas que les auteurs aient
systématiquement réalisé cette condition; les résultats obtenus indiquent, en effet,
une augmentation de la vitesse de propagation beaucoup trop petite quand la ten-
sion initiale croit, conformément au raisonnement précédent. La tension du
ressort 7 devait étre, en réalité, assez peu différente d’une expérience a l'autre.

Mais cette précaution eiit-elle été prise, que la méthode n’en resterait pas moins
mauvaise, puisqu’il est impossible, avec la technique employée, de déterminer la
succession des valeurs de E le long d’un cycle. A la fin de chaque expérience, en
effet, la tension est nulle; les résultats successifs ne correspondent pas aux divers
points d’'un méme cycle, mais aux extrémités de cycles différents. Sans parler
de la brutalité de la déformation et de la difficulté de comparer les résultats
d’expériences séparées par de tels chocs.

Comme je 'annonce plus haut, ces considérations sont justifiées par les faits.
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Voici les vitesses trouvées par Exner, a partir des allongements A (page 107 du
Mémoire, Tableau II),

A. 2. 3. 4. 5.
[ Y AT 56™, 2 62™,9 65™, 9
Esoonnnn Ceeeiee. 1 1,47 1,77 1,95

Les valeurs de E; sont déduites de la formule E;= ko2, en prenant E =1
pour A = 2. Or, nous avons vu que Villari, calculant les valeurs numériques de E,
a partir de la courbe de charge et avec Ja méme définition, trouve des nombres
qui varient dans les mémes conditions de 1 a 13, ou de 1 & 34, suivant qu’on
considére les Tableaux II et I1II ou le Tableau I de son Mémoire. Assurément, il
faudrait faire le calcul sur la courbe de décharge du caoutchouc lui-méme utilisé
par Exner : il est cependant certain que les variations de E seraient d’un autre
ordre de grandeur. ' ‘

Considérons d’ailleurs la quantité E; qui est proportionnelle & dP:dA. On
I'obtient, & un facteur constant prés, en divisant E; par le carré de la longueur
actuelle. Comme nous le verrons, dans une définition correcte de E;, E; présente
toujours un minimum au voisinage de A=2,5, méme sur une courbe de décharge.

Or, nous trouvons, d’aprés les nombres d’Exner,

A, 2. 3. 4. 5.

| L 10} 1 110 78  unités arbitraires,

Ot
1

ce qui est stirement inexact.

Ainsi, méme correctement appliquée, la méthode basée sur la vitesse de pro-
pagation d’une déformation unique revient a prendre, pour point de départ de
la définition du module, les courbes de charge et de décharge et esL sujette a de
nombreuses incertitudes. Appliquée comme l'ont fait Stefan et Exner, il est
impossible d’en tirer quoi que ce soit.

Ces auteurs ont aussi étudié I'influence de la température. La vitesse diminue
notablement quand la température croit. Nous aurons I'occasion de revenir sur ce

résultat, intéressant au point de vue qualitatif.

DEFINITION DU MODULE PAR LES CYCLES TRES PETITS.

10. Nous sommes donc amenés & baser sur les propriétés des cycles trés petits
répétés un grand nombre de fois une définition du module.

Un tel cycle est défini par son inclinaison %f—: = &; les deux principales
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méthodes utilisées dans ce Mémoire fournissent directement cette quantité. Elle
ne différe du parameétre E; que par le facteur L, :so. Connaissant €, on peut cal-
culer la valeur de E; d’aprés la loi trés suffisamment exacte, en général, que le
volume est invariable. On a, en effet,

sL=s,Lo, d'ou soLoEy=CL2.

1l saffit de multiplier € par le carré de la longueur actuelle pour obtenir E; en
valeur relative. Ce paramétre intervient directement dans la propagation des
ondes longitudinales : il est immédiatement déterminable par I’expérience.

Le calcul de Eg, a partir de &, exige que I'appareil permette de déterminer non
seulement la longueur actuelle, mais encore la tension actuelle. Méme en admet-

tant la loi précédente, on trouve

syLoE;= EL* 4 PL.

La méthode statique, dont il sera parlé, fournit toutes les quantités nécessaires.
Le paramétre Eg ne correspond pas & une expérience directe; il a été proposé par
M. Cantone, comme conséquence d’idées théoriques passablement confuses, sur
lesquelles je me garderai bien d’insister, et qu’on trouvera tout au long dans le
Nuovo Cimento pour 1898. Jai déja dit que M. Cantone le calcule & partir des

courbes de traction.

11. Dans la premiére méthode de mesure du paramétre &, ou méthode sta-
tique a charge moyenne constante, on applique strictement la définition. On
impose une charge périodiquement variable, suivant une loi connue, entre deux
limites fixes et rapprochées P, ct P,, et 'on mesure la variation correspondante
de longueur. Je reviendrai plus loin sur la technique: on se reportera utilement
au Chapitre I de mon Mémoire Sur les courbes de déformation des fils métal-
liques, ol cetle méthode est appliquée, pour la premiére fois, systématiquement
et correctement (Ann. de la Fac. de Toul., 1899). On obtient un coefficient
proportionnel & E;.

12. Dans la seconde méthode, ou méthode dynamique & longueur moyenne
constante, on utilise 1'élasticité du caoutchouc a entrenir des oscillations pendu-
laires. Voici la théorie de I'expérience (fig. 3).

Un pendule est suspendu au point O et oscille dans le plan du tableau. Soient 9L
son moment d’inertie, C le couple di & la pesanteur pour une élongation 0; la

durée d’oscillation T est donnée par la formule

oI
C

T, = 27T\
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Fixons maintenant au point B du pendule le milieu d’un caoutchouc AG, plus

ou moins tendu entre les points fixes A et C. Soit d = OB. Quand le pendule
oscille, le point B se déplace de la longueur d. Posons

& =dP :dL.

Le couple qui résulte de la variation de tension des deux moitiés du caoulchouc

agissant dans le méme sens est 2& d29. Sous I'influence combinée de ce couple et
de la pesanteur, la durée d’oscillation devient

INU
Tﬂ—”\/m’

C Ti—T;_Qﬂ:?.‘)T{,( 1 1 >

| A—
C== - s T e
I3 12

adi T T} Pz

d’ou l'on tire aisément

Cette méthode permet les mesures absolues, mais se préte surtout aux mesures
relatives, le coefficient G2 2 d? étant rigoureuscment invariable.

1l semble qu’il existe une méthode plus simple : fixons un fil de caoutchouc par
son extrémité supérieure et suspendons librement a son extrémité inférieure une

masse M qui donne un allongement A. Faisons osciller la masse : la durée des
oscillations est
M
T,= 211\/—,7-
s

La difficulté. technique d’application de la méthode dynamique, encore plus

grande sous la seconde forme que sous la premiére, réside dans I'entretien des
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oscillations. Tl s’agit, en effet, de mesurer, non la durée d’oscillations dont 'am-
plitude décroisse rapidement, mais la durée d’oscillations maintenues avec la
méme élongation un temps quelconque. A cette seule condition, les résultats ont
un sens précis; c’esl, en partie, parce qu'il n’en a pas été tenu compte dans les
expériences de Mallock (Proceedings, t. XLVI) qu’elles n’ont aucun intérét.
Mallock utilise un pendule analogue a celui de la figure 3, avec un seul caout-
choue. 1l le laisse osciller librement et détermine la durée d’oscillation. Le décre-
ment est considérable et, outre la mauvaise définition théorique du résultat, il
est impossible d’obtenir une précision suffisante dans la mesure de la durée.
Mallock se borne d’ailleurs & une détermination unique par espéce de caoutchouc
et nous verrons a quel point ce nombre est insuffisant.

La méthode dynamique fournit des mesures absolues, tant de la quantité & que
de I'énergie absorbée par les oscillations. Soit §' I'élongation maxima d’une des
oscillations; calculons I'énergie au passage par la verticale qui suit immédiatement,
en prenant T, pour période. La vitesse angulaire est alors, trés approximative-
ment, 276" ; Ty, et I'énergie cinétique contenue dans le pendule en mouvement a
pour expression

v 4w G\ ./ C
\V.__.——Z—— lg =0 d<2dz—l—w>_1 <2—CF—I—L/>,

en appelant j=0'd I'allongement du caoutchouc quand I’élongation est §'. Si I'on

connait T, et les variations de §', on déterminera I’énergie absorbée pendant les
oscillations. Nous étudierons plus loin la manigre de réaliser ces mesures (n°50).

L’amortissement peut étre rendu aussi faible qu’on veut quand on utilise un
pendule : il suffit d’abaisser le centre de gravité, ce qui augmente la valeur du
couple C. L’amortissement est toujours plus grand, quand une masse est directe-
ament suspendue au caoutchouc: G est alors nul et il n’y a plus qu’un seul caout-
chouc.

Mais le désavantage de cette seconde méthode consiste surtout dans la difficulté
technique de I'entretien : au lieu d’opérer & longueur moyenne constante, on
opére a charge moyenne constante et, par conséquent, & longueur moyenne
variable. Le réglage des appareils devient si difficile qu'il est & peu prés impossible
de maintenir 'amplitude constante, sans modifier la durée théorique d’oscillation.
Enfin, la seconde méthode présente l'inconvénient qu’on ne peat pas faire varier
arbitrairement et indépendamment I'une de 'autre la tension et la durée d’os-
cillation.

13. Ondes longitudinales stationnaires. — On obtient trés facilement un
systéme stationnaire de nceuds et de ventres sur une corde de caoutchouc vibrant
longitudinalement. L'expérience se dispose absolument comme I'expérience clas-
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sique de Melde pour I'obtention des vibrations transversales. La figure 4 repré-
sente ’appareil.

L’une des extrémités de caoutchouc est atlachée a 'une des branches du dia-
pason; l'autre est prise dans une pince qu’on peut déplacer le long d’un banc et

Fig. 4.

F

lia....l
L'Il'l"“"}___G'_lll|"“‘.'i
M ; o N
v

arréter dans une position quelconque a 'aide de la vis de pression ¢. Le banc,
long de 5™, est facilement construit avec du feuillard et des régles de bois vissées
sur une piéce de bois en forme de T renversé. Le banc est aussi rigourcusement
que possible normal aux branches du diapason qui est entretenu électriquement.

Quand la tension du caoutchouc atteint et dépasse 1%¢, la piéce qui supporte le
talon du diapason fléchit et 'une des branches frappe I’électro-aimant; le phéno-
méne devient irrégulier. Pour obvier a cet inconvénient, j’ai fait monter le dia-
pason sur une piéce qui peut tourner, & frottement dur, autour de I'axe O : elle
est terminée par une piéce rigide prise entre les vis V. Par leur moyen, on régle
convenablement la position du diapason, quelle que soit la tension du caoutchouc.

Les branches du diapason oscillent sans battements, malgré la tension du
caoutchouc, ce qui est conforme a la théorie. Pour obtenir des battements, il
faut, non pas exercer une tension sur 'une d’elles, mais ajouter une masse.

L’expérience actuelle, sur le détail et la discussion de laquelle je reviendrai
plus loin, a un sens théorique précis. Les oscillations sont petites et nombreuses.
On s'étonne que Stefan ait cherché a lui substituer une expérience (n° 8) beau-
coup plus difficile et sans valeur théorique.
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VARIATION DU MODULE AVEC LA TEMPERATURE ET HYPOTHESE DE LA LONGUEUR

FONCTION DETERMINEE DE LA CHARGE ET DE LA TEMPERATURE.

14. Nous avons va combien la question de la définition du module est loin
d’avoir regu jusqu'a présent une solution satisfaisante. Nous n’étonnerons per-
sonne en disant que I'étude des variations de ce module avec la température est
peu avancée.

Voici, rapidement résumées, les expériences faites a ce sujet :

Thomas (Les Mondes, 1869g) écrit : « Tous les contremaitres savent que le
caoutchouc chaud est plus raide, comme ils disent, que le froid; c’est-a-dire que
sa force d’élasticité est plus considérable, que le méme effort I'allonge moins. »
Clest la une affirmation sans précision et sans preuve.

Les expériences de Schmulewisch (Pogg. Ann., t. CXLIV, 1871) ne prouvent
pas davantage. Il chauffe un fil de caoutchouc @ longueur constante et détermine
la variation de tension. Le procédé expérimental est peu précis mais original.

L’auteur attache le fil de caoutchouc a une corde de boyau qui repose sur un
sonométre, les autres extrémités du fil et de la corde sont invariablement fixées.
Le caoutchouc est entouré d’'un manchon dans lequel on verse de 'eau pour modi-
fier la température. L'expérience prouve que le son rendu par la corde de boyau
(dont la tension est celle du caoutchouc et dont la longueur reste sensiblement
constante et indépendante de la tension) monte quand on chauffe le caoutchouc,
ce qui prouve uniquement que la tension du caoutchouc, chauffé & longueur
constante, croit.

Ce résultat n’a aucun rapport avec le probléme que Schmulewisch se proposait

de résoudre.

Posons
dA dP
A =edt gy

ce qui n’implique aucune hypothése pour une transformation petite. Faisons

dA = o;

il vient
dP = — aEs dt.

Or, on sait que o < 0, au moins si P n’est pas trop petit; donc on a simultané-
, . . . D
ment dt¢ > o et dP > o, ce que confirme P’expérience : le signe du quotient ?)7
importe peu.
Schmulewisch tire de ses expériences une seconde conclusion : P croit d’au-
Fac.de T., 2°S., VL. 26



194 H. BOUASSE.

, , . P
tant plus pour un méme écart de température, ou si 'on veut ~ est d’autant plus

ot
grand que P est plus grand. Cela veut dire que le produit 2Es, envisagé comme
fonction de P, croit en valeur absolue quand P croit. Or on sait bien que a croil
en valeur absolue quand P croit; mais le produit Eys varie d'une maniére compli-
quée avec ’; on ne sait pas si, généralement, oEs doit croitre avec P.

En définitive, le Mémoire de Schmulewisch n’apprend rien sur les variations
du module avec la température, et ce qu’il apprend élait antérieurement connu.

Riissner (Carls Repertorium, t. XVIIIL, 1882 et Wied. Ann., t. XLIII, 1891)
prend pour E la définition précédente (n°® 3); il opére directement en imposant
des charges variables; il trouve que E; décroit quand la température croit. Lundal
(Wied. Ann., t. XLVI, 1898) arrive & la conclusion opposée. Il est fort inutile
de discuter les expériences de ces auteurs. lls ne se rendent pas compte de la com-
plexité du probléme, et leur point de vue est si différent du ndtre que nous per-
drions notre temps a relever leurs erreurs de raisonnement.

J’ai déja signalé et discuté les expériences de Stefan et d’Exner (n® 8 etY). Voici
comment ce dernier décrit ses résultats :

« Maintenant, pour pouvoir régler les expériences pour des températures plus
élevées, le fil de caoutchouc est placé dans une chambre de chauffe a régulateur.
On a ¢tudié un morceau de caoutchouc vulcanisé, noir, qui a servi aux précé-
dentes recherches. Le Tableau suivant montre la relation de la vitesse de propa-
gation avec la température :

0. 150. 33e. 50°. 60°. T0°.

54™,0 47",0 37"5 30", 7 3o™,2 29", 0

» Aprés cette expérience, on retrouvait a la température du laboratoire le méme
nombre 47™; le caoutchouc n’avait donc éprouvé a peu prés aucune modification
permanente par 'application des hautes Llempératures. » Pour savoir combien fausse
est cette affirmation, au moins si on la généralise 3 toutes les espéces de caoutchouc,
on relira le n° 14 de notre Mémoire Sur les courbes de traction du caoutchouc
vulcanisé. « On voit donc d’aprés ce Tableau que la vitesse de propagation et,
par conséquent, aussi, I'élasticité décroissent quand la température croit. »

Le texte n’indique pas si, pendant Péchanffement, la longueur du caoutchouc
restait constanle, ou si la tension ¢tait maintenue invariable. Il semble que la
premiére technique ait été employée, parce qu’autrement l'auteur donnerait
quelques renseignements sur la maniére de ramener toujours la tension a la méme
valeur.

Quand on chauffe a longueur constante, P croit, au moins pour les A consi-
dérés. Donc, simultanément, la température s’éléve et la tension croit. Exner
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admet, ce qui est exact (voir n® 27) qu’a toule température un accroissement de
tension augmente E; ; puisque Uexpérience prouve que E; décroit par échauffement
a longueur constante, il faut donc admettre a fortiori que E; décroit par échauffe-
ment a charge conslante.

On doit avoir identiquement, au moins autour d'une charge et d’une tempéra-

ture données,

JE OE\ ,  OE ' OF,
(8) dE_(ﬁ;dP—l—(W)pdt_ EI:dL-i—((—)—t—)La’t.
Faisons
dL:O;
il vient
Y B (08)
(W)L“ P dt Jt Jp
Or
JE ar _
d_l') > O’ 'Ei‘t" > 03
donc

) -(2)
Jt /)y, dt Jp
en grandeur et en signe.

. JE . JE ..
expé = t néealif, donc ( — ) est négauif et plus
L’expérience montre que (c?t )L est négalif, 9 s g plus

grand en valeur absolue.
Si, au contraire, I'expérience d’Exner est faite a charge constante, du signe négatif

) i : oE
de (52)}1 on ne peutrien conclure sur le signe de (—‘)—[>L

Il ne faut tenir compte des résultats d’Exner qu’au point de vue qualitatif : nous
avons dit plus haut a quelles graves critiques préte sa méthode (n° 9).

15. Assurément les recherches expérimentales dont je viens de parler ne
peuvent passer pour des modéles de correction; mais que dire des raisonnements
que je vais discuter?

M. Carriére et moi avons surabondamment démontré (Sur la réactivité du
caoutchouc, n° 17 et suivants) que la longueur et le diamétre d’un fil de caout-
chouc ne sont pas des fonctions déterminables une fois pour toutes de la charge
et de la température. Posons cependant comme exacte cette hypothése grossiére-
ment erronée; déduisons-en les conséquences : nous aurons la base théorique
d’un grand nombre de Mémoires. Voici le résumé de ces déductions. Soit A le
rapport D : Dy du diamétre & un instant donné au diamétre sous charge nulle, nous
pouvons poser, grace & 'hypothése,

dA

A —=oadt+

dap dA g
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s est le coefficient de Poisson défini par la condition

dlogA =—gdlogA.

Posons
‘D:V:Vo;
il vient
dd dA  AdA 11— 20
(9) D =23 Ty =(a28)di+ 4P

E a1c1 la définition E;.

Posons

a+2B=y;

a est le coefficient de dilatation longitudinale & charge constante; £ est le coeffi-
cient de dilatation transversale & charge constante; v est le coefficient de dilata-
tion cubique a charge constante. J’ai déja montré directement qu’il est absurde de
supposer que o soit une fonction déterminée de P et de A et nous savons aussi
que E ne peat jouir de cette propriété.

Quoi qu’il en soit, écrivons que dA : A et dA: A sont des différentielles exactes.

Il vient
I
s _(5:) 1 OB 1 o
oP Jt T Es o¢ Es? o¢
Or
ds dA 10s 2 0A
— 2 - — - - —T e
s=nD% = R0 smTaAg =P
de 1 JE 2B
(10) Sd—p_—ﬁ-d—t—-i—.

On doit avoir de méme

o ! I
o &) ()(E—S)__Ld_a_agi
P~ T ot T " Esot T ot T Esoe op’
B« _ 107
(1) 9P TP = Es ot

En particulier, si & ne dépend pas de la température et vaut 0,5, on a

908 da __
ST

Ce sont ces conséquences de I’hypothése qu’on a voulu mettre en euvre.

16. Avant d’aller plus loin, nous devons dire quelques mots de lordre de
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grandeur des coefficients de dilatation. Les trois coefficients o, 3, v ne sont pas
les seuls que I'on rencontre. Il faut encore distinguer : 1° le coefficient v, de dila-
tation cubique sous tension uniforme constante; on ne peut pratiquement en
déterminer la valeur que sous la pression atmosphérique; 2° le coefficient ' de
dilatation cubique & longueur constante.

Voici ce que I'expérience apprend sur leur ordre de grandeur.

Sous la pression atmosphérique, Joule trouve v, = 0,00053. Il pése le caout-
chouc dans I'eau aux températures 2°,25 au-dessus et 2°,25 au-dessous du maxi-
mum de densité.

La dilatation est positive et plus considérable que celle d’aucun autre corps
solide, vingt fois plus grande que celle du platine, trois fois plus grande que celle
du mercure.

Lebedeff (Soc. chim. russe, t. XIII) trouve un nombre encore plus grand :
vy == 0,00007.

[l s’agit dans ces expériences de caoutchouc vulcanisé. Pour du caoutchouc
pure gomme, Landal ( Wied. Ann., t. XLVI, 1898) trouve 1, = 0,00070 4 0° et
¥1=0,00085 a Go°.

Quoi qu'il en soit, v, est certainement considérable.

Pour étudier le coefficient v/, on détermine la densité du caoutchouc enroulé
sur un petil cadre muui de vis qui permettent d’imposer au fil une longueur inva-
riable et connue dans chaque expérience, mais variable d’une expérience a la sui-
vante. L’eau dans laquelle le cadre et le caoutchouc sont plongés est portée a des
températures variables. Lebedeff a trouvé

A=1, ¥1= 0,000067 ; A=2, 7' = 0,00068.

Ces coefficients sont donc a peu prés égaux et ¢’ est plutét un peu plus grand.
Lundal conclut que ' est indépendant de A, ce qui revient & poser

14

V1=
Ceci posé, reprenons les équations du n° 13 et écrivons

dA = o;
il vient
dpP dA

dt —_— = —_ =
o +ES 0, A

d:
-qi)p-:y’dt: 2(B +oag)dt=[y— (1—20)a] dt;

Gdt— h%dp;— (B + ac) dt,

d’ou enfin les relations

Y=2B 4200 =y — (1—20)a.
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Si l'on admet 5 = 0,3, ce qui est peu éloigné de fa vérité, on aurait donc
) —
V=1="

Or on sait que « est généralement négatif; il faut donc que B soit positif et trés
grand, puisque 'on a 22 =v'— a et que v/ est lui-méme positif et trés grand.

En définitive, quand un caoutchouc est chauffé & charge constante, son dia-
métre doit augmenter considérablement, alors que sa longueur diminue, puisque
son volume augmenle malgré la diminution de longueur. 1l est important de
remarquer que, sous cette forme un peu vague, la proposition n’est que la traduc-

tion de I'expérience. Revenons aux conséquences de 'hypothése.

17. Dans un Mémoire sur ’action de la tension sur les coeflicients de dilatation
des fils métalliques (Pogg. Ann., t. CXLV, 1852), Dahlander arrive a la relation

(p. 151)
da 1 OE

SoP T T ER O

Il néglige donc le terme 2 3: E qui, effectivement, semble négligeable pour les
fils métalliques.

. 1 JE . ’
On peut admettre que, pour le cuivre, B oz et de I'ordre de 0,0007; l'ordre

de grandeur de {3, qui est sensiblement alors égal & o, est 0,00002. Les deux termes
JE
ot
Mais cette formule a été employée par Graétz pour calculer des expériences sur
le caoutchouc (Wied. Ann., t. XXVIII, 1886) dans un Mémoire véritablement
ahurissant. L’auteur commence par admettre que la théorie de I'élasticité s’ap-

et 2{3 sont donc entre eux comme 18 1.

=l -

plique (ce qui est faux) et que, si I'on connait o, on pourra déduire le module de
traction du module de torsion. Ceci posé, il étudie les variations du module de
torsion avec la température, passe par le calcul au module de traction, admet que
la longueur est fonction déterminée de la température et de la charge et en arrive,
d’erreur en erreur, a appliquer la formule (10), sous la forme incompléte connue
en Allemagne sous le nom de Dahlander.

Cherchons si le terme 2§ : E est négligeable. D’aprés les expériences de Joule,

do . e .
on peut admettre que — s ap ©st de 'ordre de 0,025 en kilogrammes par millimétre

(Zoc
opP

de 240™™ de seclion, P étant évalué en kilogrammes.

carré. Joule trouve en effet que la variation est 0,0001 environ pour une corde

. . . Jdo . L. .
Si la corde avait 1™ de section, P aurait une valeur numérique 240 fois plus
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grande environ, de I'ordre de 0,025 par conséquent. Or E, pour de pelits allon-
gements, est de 'ordre de o,1; donc 2 : E est de I'ordre de 20. Il suffirait que 3
soit de 'ovdre de 0,00125 pour que le second terme du deuxiéme membre de
I'équation 'emportét sur le premier et nous avons démontré que f devait étre
positif et grand.

Graélz introduit dans la formule les nombres de Joule obtenus pour un certain
caoutchouc, puis des nombres obtenus par lui-méme sur un autre caoutchouc : il
trouve que la formule n’est pas vérifiée; il serait vraiment extraordinaire qu’elle
le fat. '

Il conclut alors que les résultats ne sont pas les mémes suivant qu’on échauffe
d’abord et que I'on tend ensuite, ou suivant que I'on procéde dans ordre inverse.
Et ce résultat fondamental, que la premiére expérience venue bien faite aurait
prouvé directement avec surabondance, il s’efforce de le déduire de ce fait qu'une
formule incompléte ne se vérifie pas.

18. La formule de Dahlander a pris une certaine importance, parce qu’clle pa-
raissait résoudre le probléme de la variation de E avec la température. Si, en effet,

I'on peut poser
dot 1 JE

T T

comme il est certain que le premier membre est négatif, il faut que E croisse
avec la lempérature, résultat singulier qui a beaucoup excité la curiosité. Mais
nous venons de voir que cette formule est incompléte et que, complélée, elle
contient des coefficients difficiles a déterminer et dont la définition méme est
incertaine.

On a cherché a tourner cette difficulté en prenant une autre définition pour le
module d’élasticité. Posons en effet
[)

dL = o, dt + (—/—~

o

Le coefficient ¢ est alors directement déterminable par expérience (ns 11 et
sutvants). Dans I’hypothése que L est une fonction bien déterminée de la charge
et de la température, on a

(12)

Or I'expérience prouve que le signe du premier membre est toujours négatif.
Ce fait est d’ailleurs une conséquence nécessaire de I’hypothése fondamentale que
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nous discutons. On a, en effet,

OCIIOCL, EF:;)—[—)L+'3'150(;

or
JL

(—)T’>O’ o << o,

sauf pour les petites charges; le second terme est donc généralement négatif et,

. .. . . . o . .
quand il est positif, il est plus petit que le premier. Donc % est bien négatif et
¢ - . .

3—7 est positif. D’ou la conclusion :

C considéré comme fonction déterminable une fois pour toutes de P et de ¢,
crolt quand t croit, a tension constante. Mais cette conclusion ne vaut que ce
que vaut Uhypothese, c’est-a-dire rien du tout. '

Imbert (7T/éses de Marseille, 1880) emploie le parameétre . Mais, aprés avoir
posé la formule (12) et admis que le premier membre est toujours négatif, il con-
J¢ o . .. T .
clut que 5¢ peut étre tantot positif; tantot négatil, suivant le signe de «,. Je ne
reproduirai pas ’étrange raisonnement qui est censé légitimer cette conclusion
déconcertante; je me garderai bien d’entrer dans la discussion d’'un Mémoire que
je signale seulement pour qu’on ne puisse m’accuser de I'ignorer.
En définitive, la question de la variation du module avec la température doit
étre reprise sans faire aucune hypothése, et en partant de définitions du module
qui, appliquées aux déformations isothermiques, soient précises et correctes.

MODULE ¢ A LONGUEUR CONSTANTE. METHODE DYNAMIQUE.

19. Description schématique du pendule et du procédé d’entretien des
oscillations. — La figure 5 représente schématiquement le pendule. Il oscille au-
tour de 'axe horizontal O, porte des masses PP, une tige horizontale légére en
bois EF et un aimant courbe RS dont le centre est au point O. En a, b, ¢ sont
des ponts en fil de cuivre dont les branches plongent dans deux godets pleins de
mercure pour une position convenable du pendule. Les godets @, qui se projeltent
Pun sur 'autre dans la figure, sont reliés quand le pendule est dévié d’un petit
angle vers la droite a partir de la verticale; les godets b et ¢ sont reliés deux a
deux, quand le pendule est dévié d’un petit angle vers la gauche & partir de la
verticale. Ainsi se trouvent fermés des circuits que nous appellerons @, b et c.

En % se trouvent deux nacelles de porcelaine (qui se projettent I'une sur
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I'autre dans la figure) pleines de mercure ; elles font partie du circuit des bobines e
et f et sont reliées électriquement pendant un instant quand le pont de cuivre
qui termine le pendule passe par la verticale.

Toute la difficulté d’entretien du pendule consiste en ceci : lors de deux pas-

Fig. 5.

v

sages successifs par la verticale, les bobines doivent agir dans des sens différents.
1l faut donc, par un procédé quelconque, soit changer le sens du courant, soit
n’utiliser alternativement qu’une des bobines ¢ et f. C’est a ce dernier parti que
je me suis arrété : pour augmenter la régularité de I'entretien, les bobines
n’agissent que par attraction.

La figure 6 représente l'appareil qui élimine automatiquement I'une des bo-
bines. Le courant de deux accumulateurs passe constamment dans les électros E,
et E;, montés en série. Quand 'armature OG, mobile autour de I'axe de O, est
rapprochée d’un des électros, E, par exemple, elle reste collée contre lui. Sup-
posons que nous mettions cet électro un instant en court-circuit, 'armature est

Fac. de T., 2° S., VL. 27
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attirée davantage par l'électro E, et va s’y coller. Elle reste en contact avec lui
quand on supprime le court-circuit.

Les courts-circuits sont produits par les ponts a et ¢ placés sur la tige hori-
zonlale EF. Donc, quand I'extrémité inférieure du pendule passe par la verticale

en venant de la gauche, le court-circuit ¢ vient de se produire, 'armature OG est,
par conséquent, au contact de I'électro E,. Quand, au contraire, 'extrémité in-
férieure du pendule passe par la verticale en venant de la droite, c’est le court-
circuil ¢ qui vient de cesser, et, par conséquent, 'armature OG est au contact
de E,.

L’armature OG porte un ressort flexible GH terminé par une sorte de petit
marteau isolant H. On voit aussi, en MN, deux ressorts flexibles qui peuvent étre
amenés au contact de P et fermer ainsi les circuits I et II. Quand OG touche E,,
le marteau H appuie sur M, N, et ferme le circuit 1. Quand I'armature touche E,,
c’est le circuit II qui est fermé. Les circuits I et Il sont ceux des bobines f et e.

En définitive, voici comment les choses se passent :

Supposons que le pendule soit en repos a extrémité gauche de son oscillation.
Le pont ¢ est abaissé, I'électro E, en court-circuit, 'armature OG au contact
de E,, le circuit I fermé en N, P,. Rien ne passe cependant dans la bobine F, dont
le circuit est encore coupé en H. Les choses se maintiennent en I'état tant que le
pendule n’est pas arrivé a la verticale. Un peu avant qu’il y arrive, le court-circuit ¢
cesse, ce qui ne modifie pas la position de I'armature OG. Au moment ou il y
passe, un courant instantané circule dans f, l'aimant RS est aspiré, le pendule

recoit une petite impulsion.
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Puis il dépasse la verticale, le court circuit @ se produit; I'armature OG se
colle sur E,, le circuit II est fermé en N,P,. Les choses restent en 1’état tandis
que le pendule atteint le repos et revient vers la verticale. Un peu avant qu’il y
arrive, le court-circuit a cessé, ce qui ne modifie pas la position de OG. Quand
il passe par la verticale, un courant instantané est envoyé dans e, qui attire l'ai-
mant et donne une petite impulsion au pendule.

Par ce procédé d’entretien, les impulsions sont produites dans la verticale et
ne changent pas la durée de Uoscillation. On régle leur grandeur avec un
rhéostat, afin de maintenir 'amplitude convenable malgré les amortissements plus
ou moins grands dus au caoutchouc plus ou moins tendu.

Ce procédé d’entretien fonctionne avec une étonnante régularité pendant des
heures et des jours. Il ne comporte pas de ratés. D’ailleurs, si, pour une raison
quelconque, P’armature OG n’a pas fonclionné une fois, il n’en résulte aucun
autre inconvénient qu'une diminution momentanée d’amplitude. On voit en b un
troisi¢me pont : il est chargé d’actionner un chronographe & plume pour l'in-
scription des durées d’oscillation.

Etudions maintenant le détail de 'appareil.

20. 11 faut d’abord régler la durée d’oscillation du pendule, alors que le fil de
caoutchouc n’est pas en place. On obtient le déplacement du centre de gravité
au moyen des systémes de masses PP'. Elles sont contenues dans des cartouchiéres
formées de 10 tubes de laiton de 7°™ de longueur soudées cote a cote (la figure
n’en représente que 6). Les cartouches, de 15 de long, sont obtenues en cou-
lant du plomb dans des tubes de laiton entrant & frottement doux dans les pre-
miers. L’abaissement du centre de gravité s’obtient en transportant la cartouche p
en p', dans une position aussi rigoureusement que possible symétrique de p par
rapport & I'axe de rotation O. Chaque cartouche pése 1808 environ; la distance
moyenne des cartouchiéres a 'axe O est 72™.

C'est donc 18008 qu’on peut abaisser de 1™, 44 : la durée d’oscillation passe
de 7° 4 2°. A l'aide de ces masses, symétriquement placées par rapport a O, jes-
pérais pouvoir, non seulement régler la durée d’oscillation, mais encore résoudre
le probléme suivant : & dépend-il de la durée d’oscillation pour une longueur
moyenne invariable du caoutchouc ?

Qu’on se reporte a la formule du n° 12 :

6_47:23]'0<1 1 )

Si I est invariable, & est obtenu, 4 un facteur constant prés, par la mesure
des durées T, et T, de P'oscillation, sans ou avec le caoutchouc. Or, on modifie la
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position du centre de "gravité (et, par conséquent, simultanément T, et T,) tout
en maintenant MU invariable, en placant la méme masse dans deux positions sy-
métriques par rapport 3 O. Théoriquement, on peut donc résoudre le probléme
posé : malheureusement, la mesure de € perd toute précision dés que le centre de
gravité est bas, parce que T, et T, différent alors peu I'un de I'autre. J'indique
néanmoins la méthode qui peut avoir d’autres applications.

Les contacts de mercure sont faits par des ponts dont les branches sont formées
par des vis qui permettent les réglages. Le réglage minutieux du pont /% est parti-
culiérement indispensable, puisque le mercure ne dépasse les bords des nacelles
que de 1™™ environ. '

A cause de la longueur de 'aimant RS (40°™), les bobines n’agissent chacune
que sur un pdle. Donc, la position du pdle dans la bobine est a peu .prés sans effet
sur la grandeur de I'impulsion, pourvu que le podle entier s’y trouve au moment
du passage par la verticale. On s’arrange de maniére que l'extrémité de 'aimant
soit alors vers le milieu de la bobine.

Le chronographe est du modeéle courant & deux plumes, de’la maison Hipp et
Favarger, réglé par une lame vibrante. Il déroule 1°® de papier a la seconde et
permet d’évaluer & la rigueur le centiéme de seconde. La seconde est fournie par
une horloge entretenue électriquement. Souvent je déterminais la durée directe-
ment avec un compte-seconde, en comptant 50 ou 100 oscillations. .

21. Reste 4 fixer le caoutchouc et a faire varier arbitrairement sa longueur. La
difficulté est d’allonger simultanément de longueurs égales les deux parties AB
et BC, de maniére que leurs tensions restent égales et le point B le milieu de la
longueur totale. J'ai résolu ce probléme a I'aide des appareils représentés figure 7.

Fig. 7.

A 1
S A______ N
g B
]
[ — o
| == 5 _
B

A gauche on voit le coutean C de bronze fixé sur une plaque évidée AB et repo-
sant sur le sillon creusé dans la piéce D. Celle-ci est solidement vissée au bati
général par ses deux extrémités. On donne au couteau une grande longueur (15°™)
pour maintenir invariable le plan d’oscillation. 1l est a peu prés impossible de
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- faire rigoureusement rectiligne une aréte aussi longue; aussi n’en conserve-t-on
que les extrémités, comme le montre le dessin CC, qui représente la vue latérale.
On pourrait aussi constituer le couteau par deux pointes reposant dans deux cra-
paudines; nous verrons plus loin un exemple de cette disposition.

Normalement a la plaque B est fixée horizontalement, par une machoire non
représentée, la piece dessinée & droite de la figure : elle rend le milieu du caout-
chouc solidaire du pendule. Dans un carré creusé dans la tige AB passe une
seconde tige CD, carrée a une de ses extrémités, cylindrique et filetée a l'autre.
Les deux tiges portent les piéces cylindriques B et C formant maichoires. Le
serrage entre B et C est obtenu a I'aide de ’écrou E, qui se visse sur le filet D. Les
piéces B et C sont écartées par un ressort 2 boudin non représenté et situé dans la
tige AB.

Enfin, au milieu de la figure, on voit 'appareil qui sert a étirer le caoutchouc.
Une roue dentée R tourne autour de 'axe O et est entrainée par la vis sans fin S,
filetée sur la tige TT. La roue R porte un pignon p qui engréne sur la crémail-
lére AB. Quand la tige TT tourne, la crémaillére AB se déplace vers la droite ou
la gauche. A I'une de ses extrémités A elle porte une pince dans laquelle 'une
des extrémités du caoutchoue est serrée. Imaginons deux appareils identiques
placés & 3™ de distance I'un de I'autre et commandés par la méme tige TT; leur
seule différence consiste en ce que pour I'un la vis S est & droite, pour 'autre la
vis S est @ gauche. Le moteur entraine la tige T'T par I'intermédiaire de poulies et
d’un inverseur de mouvement qu’il est inutile de décrire.

Grace au filetage inverse des vis S, la rotation de la tige T produit des mouve-
ments inverses rigoureusement égaux des crémailléres et des pinces qui les ter-
minent. Le caoutchouc est donc symétriquement étiré par rapport au point B
(fig. 5) solidaire du pendule, qui reste au milieu du caontchouc.

Il peut arriver que le morceau de caoutchouc ne soit pas parfaitement cylin-
drique et qu’un allongement égal des deux moitiés ne corresponde pas tout i fait
ala méme tension. On est alors forcé de desserrer la pince qui rend le caout-
chouc solidaire du pendule et de la resserrer aprés avoir laissé le caoutchouc
équilibrer ses tensions.

Quand on veut opérer & des températures différentes de la température ordi-
naire, on emploie deux manchons, dont 1'un est représenté schématiquement
figure 5. Ils sont parcourus par un courant d’eau chaude fournie par un radia-
teur dont on trouvera la description dans mon premier Mémoire : Sur les courbes
de traction du caoutchouc. 1l est nécessaire que les manchons laissent eatre eux
un intervalle de quelques centimétres, pour permettre l'oscillation de I'extrémité
de la pince qui rend le miliea du caoutchouc solidaire du pendule. On ne main-
tient ouvert que juste 'espace nécessaire, grace a une lame de cuivre qui forme
un cylindre presque complet, sauf un espace de 2™ ou 3" compris entre deux
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génératrices; elle relie 'une & I'autre les surfaces extérieures des deux manchons.
Pour éviter les courants d’air, les crémailléres de la figure 7 portent, & leur extré-
mité voisine des pinces, un bouchon qui glisse a frottement doux dans le tube
intérieur des manchons.

22. On régle 'amplitude de Poscillation en modifiant le courant qui traverse les
bobines d’entretien ¢ et f( fig. 5). Quelques considérations générales facilitent le
réglage. Considérons un pendule dont le moment d’inertie 91U est donné : sa durée
d’oscillation est

oL
Ty=ony\/ -
! C
Supposons d’abord qu’il y ait un amortissement proportionnel & la vitesse :

Péquation est

d*0
M —— TP +fdt + Cf=o.

Cherchons 1'énergie absorbée pour une oscillation d’amplitude §'. On trouve

= [

Elle est évidemment en raison inverse de la période, le frottement étant lui-méme

en raison inverse de cette période. Elle est évidemment proportionnelle au carré
de 'amplitude.
Qu’on se reporte maintenant aux formules du n° 12, on a
am20'? T,
W =91 1?,, , _Ih
T VV o

La fraction de I’énergie totale absorbée a chaque oscillation est proportionnelle a
la période. D’ailleurs, 'intégrale de I'équation est

6—06'eMsinam—~ —_.
2 l', ’ 2 L
Calculons le temps ¢ nécessaire pour passer de I'amplitude 0 a lamplitude 6
on a
14
0, — log8, ==t = Lo .
logf, —1lo SO
Ce temps est indépendant de la période, pourvu que, dans le changement de la
période, le moment d’inertie reste constant. Le nombre d’oscillations nécessaires
pour passer de 6 4 0} est, dans ces conditions, en raison inverse de la période.
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Il s’agit de compenser ces pertes d’énergie.
.. Nous pouvons admettre que 1'énergie fournie a chaque oscillation est indépen-
dante de la période. Elle est, en effet, mesurée par le produit du couple qui résulte
de I'action des bobines sur I'aimant, par le déplacement angulaire pendant le
passage du courant dans les bobines, quantité indépendante de la vitesse angu-
laire, pourvu qu’on puisse admettre que ’espace du contact avec le mercure est
constant et que le courant s’établit & peu prés instantanément par rapport & la pé-
riode. Si, de plus, on admet que I'énergie fournie est proportionnelle & ’intensité
du courant, il résulte de I'expression de S que, pour maintenir I'amplitude uni-
forme, il faut que P'intensité du courant soit en raison inverse de la période et
proportionnelle au carré de 'amplitude.

On arrive donc, quand on suppose les frottements proportionnels a la vitesse,
a ce résultat paradoxal : que le nombre d’oscillations qui amortit le mouvement
est en raison inverse de la période, que chaque période produit, par conséquent,
un amortissemeut d’autant plus grand qu’elle est plus longue; que cependant le
courant nécessaire pour maintenir 'amplitude constante est d’autant plus petit
que cette période est plus longue. Cela tient a ce que, dans I'expression de
I'énergie W accumulée dans le pendule, la période entre par le carré de son

mverse,

23. Etudions expérimentalement le fonctionnement de I'appareil précédent et
cherchons dans quelle mesure ’hypothése d’un frottement proportionnel 4 la vitesse
est réalisée. Supposons d’abord qu'il n’y ait pas de caoutchouc. L'expérience
montre nettement que ’absorption d’énergie, mesurée par la grandeur du courant
d’entretien, n’est pas proportionnelle a la vitesse et, par conséquent, n’est pas en
raison inverse de la période. Assurément il est impossible de trop compter sur les
indications fournies par la grandeur du courant; les contacts & mercure A (fig-5)
ne se font pas sur une longueur absolument invariable et les contacts métalliques
(/ig. 6) ne sont pas parfaits. Cependant I'expérience prouve que l'intensité i du
courant d’entretien et la période sont relides par une formule

= % —+ K/,

ot K’ est fort loin d’étre nul. Si, par exemple, on évalue T en secondes, on trouve
des courantsreprésentés en unités arbitraires par la formule précédente, avec K/ =1,
K = 4,4. Les durées d’oscillations variaient de 2% a 7% par déplacement des
masses P ( fig. 5). Il n’importe pas, d’ailleurs, que le moment d’inertie du pen-
dule reste invariable, pourva que, dans le déplacement des masses, la forme varie
assez peu pour que la résistance de I'air ne change pas, la période étant supposée
constante.
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Le résultat précédent s’explique par le nombre des contacts & mercure ct par
la perfection toute relative du couteau. D’ailleurs, pour des amplitades de I'ordre
de celles que j'emploie, le frottement de I'air n’est pas proportionnel a la vi-
tesse (voir n° 33). ‘

Installons maintenant le caoutchouc; la méme formule relie encore le courant
d’entretien et la période en modifiant seulement la constante K'. Donc, 4 la pré-
cision de cette méthode et dans les limites indiquées pour les variations de la
période, I'amortissement par le caoutchouc est & peu prés indépendant de la
vitesse. De toutes maniéres il n’est pas proportionnel & celle-ci (voir n° 47).

La mesure du courant d’entretien nous fournit une seconde conclusion prati-
quement importante. Faisons varier 'amplitude : I'expérience prouve que I'in-
tensité du courant et, par conséquent, I'énergie fournie, sont sensiblement propor-
tionnelles au carré de 'amplitude. C’est ce que nous apprend laformule dun° 22 dans
I'hypothése de frottements proportionnels a la vitesse ; mais ¢’est ce que nous ne
pouvions pas prévoir quand cette hypothése n’est plus vraie. Nous aurons I'occa-
sion de revenir la-dessus aux n° 33 et suivants.

De ces résultats nous pouvons conclure que, tant pour la bonne définition des
expériences que pour obtenir un entretien correct, il faut prendre des amplitudes
aussi petites que possible. Les impulsions sont alors fort réduites et 1'on s’écarte
peu du pendule libre.

Mais il se présente alors une objection : supposons que la distance des positions
extrémes du contact & soit de 10°™ et que la largeur du mercure dans les nacelles
soit de 1°", 5. L’impulsion ne se fait plus au passage par la verticale, elle n’est
plus instantanée. Ne va-t-elle pas modifier la durée de l'oscillation? Je renvoie
pour la discassion & mon Mémoire Sur les oscillations & peu prés sinusoidales
a longue période (Ann. de Toulouse, 1897, p. 22). On verra que la durée n’est
pas modifiée, pourvu que la position d’équilibre coincide avec le milieu du mer-
cure. On obtient ce résultat par le déplacement de masses légéres j sur la ba-
guette i ( fig. 5).

Pour s’assurer que I'amplitude a bien une valeur invariable, un fil métallique
lié a la base du pendule se déplace devant une plaque de verre sur laquelle sont
gravés des traits. On fait varier le courant d’entretien jusqu’a obtenir 'amplitude
convenable. On ne peut pas réduire indéfiniment celle-ci pour ne pas géner le
fonctionnement des contacts a, b et c.

I1 est nécessaire que 'amplitude soit invariable, parce que la durée en dépend
d’une maniére appréciable. Le parcours de I'index fixé a la partie inférieure du
pendule est 7 fois plus grand que le parcours de la pince qui relie le milieu du
caoutchouc au pendule. Si ce pércours passe de 14°™ & 7°, 'allongement total du
caoutchouc pendant I'oscillation (qui représente le double de I'amplitude) passe
de 2™ & 1°™; la durée diminue sensiblement, surtout pour de petits A. Je prenais
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généralement 10°™ pour parcours de I'index; amplitude de I'allongement sinu-
soidal du caoutchouc est alors de 0°™, 72 environ. J'ai expliqué plus haut pourquol
il est difficile de diminuer davantage cette amplitude.

.

24. Résultats généraux. — Voici d’abord quelle est I’allure générale des phé-
noménes. On opére sur de la corde de 4™ de diamétre (pure gomme et soufre),
qui n’a jamais été allongée que d’une petite fraction de sa longueur. On lui fait
parcourir des cycles entre A—=1 et A=275. En un certain nombre de points de
ces cycles, on maintient la longueur constante le temps nécessaire pour déter-
miner Je module €.

La longueur initiale est de 18°™; les valeurs de L pourlesquelles on détermine &
sont 25°™, 35°™, 50°™, 65, 8o°™, go®™. Avant de procéder a la mesure de ¢, on
attend 3 minutes et I'on détermine la durée de 20 oscillations, soit en enregistrant,
soit a 'aide d’un compte-seconde. Les allongements sont effectués a l'aide du
moteur, a vitesse constante. Si rapides que soient les opérations, la description
d’'un cycle exigeant 11 déterminations de ¢ ne peut s'effectuer en moins
d’une heure et demie; en une matinée de travail, il est difficile de décrire plus de
trois cycles complets. '

Voici les nombres obtenus pour le premier et le troisiéme cycle :

L. 25. 35. 50. 65. 80. 90.
Cocle 1 o fallero 472 296 281 351 566 816
Y& eveeenn retour ........ 43 243 192 214 340
{ aller.......... 413 225 184 194 290 460
rele III.. ... i
Cyele © | retour....... . 418 230 179 193 267

La courbe I de la figure 8 représente le cycle I. On déduit du Tableau précé-
dent les conclusions suivantes :

1° Les modules &, déterminés & longueur constante, décroissent quand A
croit, a partir de 1; ils passent par un minimum ou, pour mieux dire, restent i
peu prés constanls pour toute une série de valeurs comprises entre A =2
et A =4; puis croissent trés vite jusqu’aux plus grands allongements possibles.
En particulier pour le premier cycle, c’est-a-dire quand le caoutchouc n’a jamais
é1é allongé, le module ¢ peut devenir, pour les plus grands allongements que le
caoutchouc soit capable de supporter, plus du double de ce qu’il est pour A =1.

2° A mesure que le nombre des cycles croit, les valeurs que prend ¢ pour un A
déterminé décroissent, d’abord vite puis lentement. Cette diminution porte prin-
cipalement sur les € qui correspondent a de grands A. L’expérience montre par
exemple que les valeurs de & pour A = 5 sont dans les trois cycles 816, 535, 460.

3° Les modules poss¢dent une hystérésis énorme pour le premier cycle et qui

Fac. de Toul., 2* S., VL. 28
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décroit & mesure que le nombre des cycles augmente. Les courbes d’aller et de
retour sont déja presque confondues pour le troisiéme cycle, surtout dans la partie
des courbes qui correspondent aux A voisins de 1. Il semble méme que pour ce

Fig. 8.

7]

34

A

! 2 3 4 5
cycle la courbe de retour passe au-dessus de la courbe d’aller au voisinage de A=1.
Bien que les différences soient faibles, le phénoméne se reproduisant toujours,
on ne peut douter qu'il existe dés que le nombre de cycles parcourus est grand.
Tl a pour cause trés probablement une déformation permanente.

4° L'énergie nécessaire pour entretenir les oscillations, plusexactement'énergie
absorbée dans chaque oscillation, qui est mesurée par I'intensité du courant
comme je I'ai expliqué au n®22, estreprésentée pour le premier cycle par la courbe
pointillée de la figure 8. Elle suit donc une loi analogue & celle du module; elle a
aussi de I'hystérésis. A mesure que le nombre des cycles augmente les courbes
d’aller et de retour du courant se rapprochent et finissent par se confondre approxi-
mativement, celle de retour étant cependant toujours un peu plus basse que celle
d’aller.

Les phénomenes précédents sont généraux et se retrouvent pour toutes les
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especes de caoulchouc, méme pour ceux qui contiennent une surcharge énorme
de matiéres étrangéres.

L’aprés-midi du jour ol ont été parcourus les cycles dont je viens de parler,
j’ai décrit 5 fois le cycle A =1, A = 3 sans aucun arrét, puis un cycle identique
a ceux du matin. Voici les modules obtenus toujours en unités arbitraires :

L. 25. 35. 50. 65. 80. 90.
Aller......... 392 221 178 186 255 398
Retour....... 407 222 . 170 180 243

Ces résultats sont représentés par la courbe Il ( fig. 8). Ils confirment les régles
données ci-dessus.

Enfin sur un fil neuf j’ai repris 'expérience pour de petits allongements compris
entre A =1 et A =1,330. Voici les résultats :

A. 1,055.  1,110. 1,165.  1,220.  1,275.  1,330.
Aller......... 889 800 720 660 593 555
Retour....... 855 766 684 626 578

Les résultats sont conformes aux précédents. Pour A =1 rigoureusement, il est
impossible d’expérimenter, puisque dans une partie de la course du pendule un
des caoutchoucs ne serait pas tendu. On constale, surtout pour Ja courbe d’aller,
une légére diminution de £ & mesure que le nombre des oscillations augmente,
résultal conforme aux résultats plus généraux dua n° 25.

Enfin les courants d’entretien, qui diminuent rapidementde A = 1,05 4 A =1,30
(ils passent de 1 4 0,60), sont notablement plus petits pour la courbe de retour.

25. Influence d’une station sous une longueur donnée et influence des oscil-
lations sous cette longueur.

A partir du moment ott U'on parvient & un allongement donné, le module &
alongueur constante croit d’abord trés vite, puis plus lentement, pour tendre
vers une valeur limite.

Cette régle a une importance théorique toute parliculiére.

Il est trés difficile de savoir ce qui se passe juste au moment o I'on impose
un allongement. Les réglages (serrage de la pince médiane, réglage dua courant,
mise en marche de I'enregistreur, etc.) prennent un temps notable (2 ou 3 mi-
nutes au moins). A partir de ce temps on peut suivre les variations de & avec
commodité, puisqu’il suffit de laisser dérouler le papier de l'enregistreur.
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On constate que le module € croit avec une rapidité relativement grande.
Voici quelques nombres pour fixer les idées.

Un caoutchouc qui avait déja beaucoup servi (Lo=18™) et venait de passer
plus d’une heuare & la longueur 60°™, est porté & go°™. Aussitdt aprés le réglage,
on met en marche le pendule de 'enregistreur, et on détermine & par la durée
de 4 fois 10 oscillations. On trouve les valeurs suivantes : 376, 378, 386, 386. La
durée d’une oscillation étant voisine de 5°, en 200° le module a passé de 376 4386
augmentant de plus de ;5 de sa valeur. On attend 15 minutes, & = 4o7; on attend
encore 40 minutes, & = 427. En 1 heure le module a augmenté de 5'1'unités, soit
de ¢ environ. Il est probable que, si Pon pouvait le mesurer immédiatement aprés
Pimposition dela longueur, on trouverait au début un module assez inférieur a 376,
de Pordre de 350 par exemple. ‘

Méme phénomeéne, lorsqu’on aboutit & une longueur déterminée par longueurs
décroissantes. Voici des exemples.

Un fil ayant beaucoup servi (L = 18°™) est maintenu pendant plus de 12 heures
a la longueur L = go°™. On le raméne alors & L = 80°™. On détermine ¢ aussitot
leréglage fait et 15 minules aprés; on trouve les nombres 270, 284. Aprés 1 heure
sous cetle longueur, on raméne a L= 60°™. Les 30 premiéres oscillations aprésle
réglage donnent, par groupes de 10, £ =183, 184, 185. Aprés 15 minutes on
trouve ¢ =193. ,

L’expérience montre que ’énergie absorbée par chaque oscillation décroit
au début des oscillations, pour tendre rapidement vers une limite. Le courant
d’entretien d'une amplitude donnée est au début un peu plus intense qu’apres
quelques dizaines d’oscillations. Pratiquement je réglais les premiéres oscillations
a une amplitude légérement inférieure a ce qu’elle devait étre en définitive;
Pamplitude croit peu a peu et se fixe bientét & une valeur conslante. La durée
d’oscillation étant a peu prés indépendante de 'amplitude, pour des variations de
cet ordre de grandeur, cette technique n’a aucun inconvénient. Ces indications
seront complétées au n° 56. & :

Un probléme se pose : on peut maintenir le fil sous une longueur donnée soit
au repos, soit en entretenant les oscillations. Quelle est sur le module & I'influence
de ces oscillations dont le nombre peut se chiffrer par milliers?

On utilise un caoutchouc neuf (Ly=18"); on 'améne & L = go°™ et 'on dé-
termine de temps en temps le module &, soit en maintenant au repos dans l'inter-
valle des enregistrements, soit en entretenant les oscillations. Le Tableau suivant
résume les résultats.
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Re. e T..... . om 30 60 1030
AEPOS +ee e 3 Cornn. 639 650 660  -o> & croit de —+ 66
Oscillati e, O™ 30 60 120 180

seiations. % Eaone ©so5  ro4 700 694 691 & décroit de — 1§
R T..... o™ 180 1335

CPOS-eeeet e L 691 69t -07 & croit de + 16

. T o 135
illations.
Oscil auong % Coon Z07 698 & décroit de — g
T...... o 140 1090 )

Repos...... ; E.o... 698 7og ~16 & croit de —+ 18

Quand on entretient les oscillations, & décroit. On a donc simultanément deux
influences inverses; le fait que la longueur moyenne est invariable tend a
augmenter ¢; le mouvement oscillatoire tend a le diminuer. Au début du séjour
sous une longueur donnée la premiére influence I'emporte, au moins quand le fil
vient d’éire suffisamment allongé. C’est la seconde quand le fil est maintenu 4 la

méme longueur depuis assez longtemps, ou lorsque I'allongement est trés petit.

26. Conséquences théoriques des faits précédents. — Les faits relatés dans
les deux numéros précédents nous permettent de poser la question suivante
Est-il possible de trouver une fonction bien déterminée de la longueur et de la
charge qui représente le module &? Par fonction bien déterminée il faut entendre
une fonction qui ne dépende que de la valeur actuelle de P et de L, et non des
opérations par lesquelles on a amené le fil au point P, L du plan charge-allon-
gement.

L’hystérésis de & ne prouve rien, En effet, quand on passe par une longueur L
sur une courbe de charge et qu'on y revient sur une courbe de décharge, les va-
leurs P de la charge a I'aller et au retour sont différentes : méme dans ’hypothése
d’une fonction bien déterminée, ¢ ne doit pas reprendre la méme valeur. Cependant
cette hystérésis donne un premier renseign'ement. Sur une courbe de décharge,
€ est généralement plus petit que sur une courbe de charge, au moins pour des A
assez grands; nous savons d’autre part que sur la courbe de traction, pour une
méme longueur L, les valeurs P, et Py (¢ = charge, d = décharge) satisfont a la

-
relation Pc>Pgy. Si la fonction bien déterminée existe, il faut que g—;>o,

puisque & diminue pour une méme longueur quand P diminue.

La détermination directe de ¢ en Lout point du plan P, L est impossible avec
notre appareil, puisque nous ne connaissons pas la tension. Si méme nous nous
bornons & des raisonnements qualitatifs sur les résultats du n° 24 par comparaison
avec ceux da n° 2 du Mémoire Sur les courbes de déformation du caoutchouc
vulcanisé, Phypothése d'une fonction bien déterminée n’a rien d’absurde. *
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Les résultats du n° 25 modifient complétement cette maniére de voir. Ils
prouvent en effet qu'a longueur constante £ croit a partir du moment ot la lon-
gueur est imposée. Or, sur la courbe de charge nous savons que, a longueur

S 1. o< . .
constante, P décroit, et considérablement; donc Sp <o;cette conclusion contredit

la précédente. Sur la courbe de décharge au contraire, & partir du moment ou la
longueur est imposée (pourvu encore que certaines conditions soient satisfaites),

. . . . . dC .
on sait que la tension croit; on aurait donc bien P > 0; mais celte concordance

importe peu devant la discordance constatée sur les courbes de charge.

On peut présenter le méme raisonnement d’une maniére différente.

Supposons que I'on s’arréte a une longueur L sur une courbe de charge, en un
point correspondant & un A notable. La tension P, décroit. Sur la courbe de dé-
charge, pour la méme longueur, la tension Py croit : du moins nous pouvons nous
arranger de maniere qu’il en soil ainsi. Les deux tensions vont donc se rapprochant
I'une de I'autre, au moins dans les premiers instants a longueur conslante sur la
courbe de décharge. Par conséquent, si C est une fonction bien déterminée de P
et de L, & devrait décroitre dans le premier cas, croitre dans le second, puisque
nous savons que & > Cy.

Nous ne savons cependant pas si, oul ou non, les variations de &, quand on
maintient la longueur constante, sontliées a la réactivité. Nous pouvons seulement
affirmer que les variations sont de méme signe, que la réactivité entraine un

accroissement ou une diminution de la tension.

27. Avant d’aller plus loin, comparons nos résultats a ce qu’on aurait obtenu
en définissant € par l'inclinaison de la tangente aux courbes de traction. On se
reportera i la figure 2 da Mémoire Sur les courbes de déformation du caoutchouc
vulcanisé.

La courbe de charge donnerait pour € des variations analogues & celles que I'on
trouve en appliquant la définition basée sur les petits cycles. Nous avons vu quon
peut la représenter en gros par 'équation suivante, ou toute autre de méme forme

(n° 5),

(1) [’:a(l—%) —%—é(zﬁ—r),
(2) Z[;:—af_,—l—bA".

La courbe (2) a I'allure générale de la courbe expérimentale.
Mais la courbe de décharge ne conduit généralement a rien de semblable. Par
exemple le quotient dP:dL sur la premiére courbe de décharge de la figure 2
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(loc. cit.) est d’abord trés grand et négatif, croit jusqu’a — o, passe a + o, puis
diminue considérablement pour devenir vers A = 5 beaucoup plus petit que surla
courbe de charge. La réactivité influe énormément sur la forme de ces courbes :
le choix que nous avons fait de la définition par les petits cycles maintes fois
répétés a précisément pour but d’éliminer cette influence, au moins en partie.

Naturellement, & mesure qu’on opére sur des courbes moins étendues et corres-
pondant & des A plus petits, I'impossibilité de définir un module par la tangente
a ces courbes est moins évidente; mais les cas extrémes servent justement a nous
prémunir contre des erreurs grossiéres. Toutefois la définition par les petits cycles
fournit a Pextrémité des parcours un seul nombre, comme on doit le prévoir, si
le module caractérise (au moins approximativement) les propriétés purement élas-
tiques actuelles; tandis que la définition par les tangentes donne deux valeurs
distinctes, c¢’est-a-dire une discontinuilé dans ces propriétés, ce qui est inadmis—
sible (voir le n° 34).

D’aprés les nombres du n° 24 ct du cycle I, calculons les valeurs de E; en
admettant que le volume ne change pas; il faut multiplier la valeur de & par le
carré de 'allongement actuel. Voici les nombres obtenus :

L. 2. 35. 50. 65. 80. 90.
Ao, 1,38 1,94 2,77 3,60 4,44 5,00
Cycle I. — Es. Aller....... 100 123 240 507 1237 2270
(Unités arbitraires.) { Retour..... 87 101 164 309 743

Ils croissent d’abord lentement, puis de plus en plus vite : la courbe a une
forme simple et réguli¢re. Les autres cycles donneraient des résultats analogues.
La vitesse de propagation longitudinale d'une onde, étant reliée au parameétre E;
par la formule E; = K ¢2, ot K est un nombre constant, croit donc d’'une maniére
continue suivant une courbe d’allure parabolique, ainsi que nous le vérifierons
plus loin directement. Dans le cas précédent les vitesses ¢ seraient (en unités arbi-
traires) :

L. 25. 35. 50. 65. 80. 90.
v (aller).... 100 Tt 155 225 352 476
¢ (retour).. 93 100 128 176 273

Maintenant 'on comprend mieux ce que nous disions au n® 9 de la méthode de
Stefan. Entre les A=12 et 5, nous venons de trouver que la vitesse de propagation
varie dans le rapport 100 : 430. Exner trouve une variation dans le rapport beau-
coup trop faible 659 : 472 = 100 : 139g.

Quel que soit le caoutchouc qu’on emploie, quelque surcharge de matiéres
étrangeres qu’il renferme, les variations du module E; sont de 'ordre que nous
venons d’indiquer.
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Quelles sont les valeurs de € et de E; pour A =1?

Nous avons dit (n°® 24) qu’il est impossible de faire I'expérience jusque-la: cher-
chons comment il faut extrapoler. La forme des courbes représentaunt € et E5 en
fonction de A conduit & I'hypothése que 'extrapolation est plus stire pour E; ;
nous poserons donc que pour de petits allongements le paramétre Ej est
constant. L’expérience confirme cette maniére de voir ; reprenons l'expérience

qui est a la fin du n® 24. Multiplions les & par les carrés des allongements A, nous
trouvons :

A. 1,035, 1,110.  1,165. 1,220. 1,275. 1,330.
CA2...... 989 968 977 982 964 982
952 927 928 931 960

La moyenne des 6 nombres d’aller est 977 et les écarts a cette moyenne corres-
pondent & des erreurs sur la durée des oscillations de I'ordre de grandeur des
erreurs d’expériences; la moyenne des quatre derniers nombres sur la courbe de
retour est 934. L’étude delavitesse de propagation confirme cette hypothése trés
naturelle, puisqu’elle revient a dire que la matiére se transforme peu.

28. Continuons 'exposé des résultats expérimentaux.

Prenons un caoutchouc neuf, portons-le a la longueur A =5, mesurons &;
ramenons a A = 1, retournons aussitot & A = 5; attendons quelques minutes,
mesurons C; et ainsi de suite de maniére que les mesures de ¢ se fassent de 15
en 13 minutes. ’

Voici les nombres obtenus ; ils sont conformes & ce que nous savions (n° 24) :

v 670 448 399 375 35
Différences .. .. 229, 49 24 18

~

Le dernier nombre obtenu, abandonnons 105® sous la longueur A =5, mesu-
rons ¢ & nouveau, puis recommencons la série des opérations :

ettt it 386 340 330 326
Différences ........... 46 10 4

1l y a augmentation pour le premier résultat conformément au n° 25, puis on
retrouve des nombres réguliérement décroissants. Le dernier nombre obtenu,
ramenons 4 A = 1 et abandonnons 2 heures sous tension nulle. Recommencgons
alors la série des opérations ; allongeons jusqu’a A =5 et déterminons & :

Eovvvnnnns e N Cheeaaees ... 369 331
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Ainsi le repos sous tension nulle produit un accroissement de &.

Enfin laissons 14 heures sous A=25, nous obtenons &= 445, trés voisin du
nombre 448 donné par la seconde opération. Si le repos fait croitre ¢, on ne
retrouve pas, méme aprés un nombre d’heures d’une ou de plusieurs dizaines, la
valeur primitive qui correspond au caoutchouc neuf. Peut-étre, pour un repos de
plusieurs mois, le caoutchouc allongé reprendrait-il un élat identique a celui du
caoutchouc neuf; en tout cas, la démonstration est difficile. Les observations
journaliéres ont montré depuis longlemps que peu a peu le caoutchouc des poires
de photographes, des tubes, etc. durcit, et qu'on empéche ce durcissement par
des secousses, des déformations fréquentes : ces faits vulgaires doivent étre liés &
ceux que je viens d’étudier.

La diminution de ¢ est notable surtout pour les grandes valeurs de A. J'airepris
Iexpérience précédente avec des fils neufs pour A =3 et A =1,7; voici les
résultats. Le repos sous tension était encore de 105 minutes.

A=3...... .. 221 188 180 174 171 Repos........ 173 169 169
A=1,7...... 275 261 260 261 Repos........ 259 258

Ainsi le retour a la tension nualle produit un effet qui diminue beaucoup quand
A décroit.

Quand on raméne a la tension nulle, qu’on y abandonne le caoutchouc un cer-
tain temps et qu'on allonge de nouveau, la valeur consécutive de C est accrue,
comme dans le cas de A = 5.

Pour A =3, 2heures sous tension nulle font remonter & de 169 4 192. Pour
A =1,7, 18 heures sous tension nulle le raménent de 258 4 265.

Le retour & la tension nulle agit aussi sur I'énergie absorbée par le mouvement
oscillatoire. Voici, en unités arbitraires, les courants d’entretien pour les 5 pre-
miéres expériences de la premiére série (A=15): 56, 41, 38, 37, 35. A mesure
que le nombre des cycles (A = 1, A =5) augmente, 1'énergie absorbée dans une
oscillation d’amplitude déterminée diminue (comparer au n° 53, 3°). Mémes
résultats pour les deux autres séries.

Enfin j’ai fait, toujours avec un fil neuf, une quatriéme série pour l’allongement
A=15. Les opérations étaient identiques aux précédentes, mais je ramenais non
plus @ A =1, mais a A= 3. Le repossous A = 5 entre les mesures 3 et 6 est encore
de 105 minutes. Pour faciliter la comparaison, je transcris les nombres donnés
plus haut :

Ramené a A=1.... 670 448 399 375 357 Repos..... 386 340 330 326
Ramené 8 A=3.... 620 614 592 585 571 Repos..... 598 510

Si les caoutchoucs étaient identiques et de méme longueur initiale, les premiers
Fac. de T., 2¢ S., VI. 29
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nombres seraient égaux. Sans qu’il soit nécessaire de calculer les rapports, il
apparait immédiatement que l'effet du parcours des cycles (A =5, A=3) est
incomparablement plus pelit que celui du parcours des cycles d’étendue double
(A=5,A=1). On a dailleurs

(670 — 357) : 670 =o0,47,
tandis que
(620 — 571) : 620 = 0,08,

29. Les faits précédents et d’autres que j’exposerai plus loin obéissent & une

régle que voici :

Tout allongement, toute diminution de longueur, d’une maniére générale,
toute déformation tendent a diminuer le paramétre & correspondant & un A
donné. Tout arrét tend & augmenter A et cette augmentation croit & mesure

que l'arrét a lieu sous un A plus voisin de 1.

La premieére partie de la régle est bien d’accord avec les fails exposés au n° 28.
Au contraire, la seconde partie de la régle semble d’abord contradictoire avec eux.
Supposons que nous mesurions ¢ pour A,=3; & mesure (ue nous revenons
a des A plus voisins de 1, Pexpérience précédente nous montre que ¢ diminue
davantage.

Cependant une observation nous donne I’éveil ; st nous maintenons le fil 2 heures
sous tension nulle, le paramétre &, qui décroissait & chaque parcours, remonte au
contraire de 326 a4 369. D’ou résulte que, dans un parcours quelconque, nous
devons distinguer deux effets opposés : celui qui provient de ce qu’on est resté plus
ou moins longtemps sous un certain A, celui qui provient de ce que le fil a été
déformé depuis la station a cet allongement jusqu’au A ou se fait la mesure.

Mesurons € toujours pour A; = 5; de temps en temps revenons i un allongement
A, variable et passons-y un temps T notable et toujours le méme. Si T est assez
grand et si le paramétre & pour A, = 5 était tombé trés bas du fait de grands par-
cours préliminaires, la régle précédente rend probable I'existence d’un A, opti-
mum, qui remonte ¢ le plus possible dans un temps T donné.

En effet, 4 mesure que A, devient plus voisin de 1, la transformation du caout-
chouc qui résulte de la station & cet allongement, augmentera d’aprés la régle.
Mais la déformation, pour retourner & A,, augmentera aussi, Si ce second effet
estintense, et il l'est, il y aura avantage & prendre un A, plus grand. L’effet de la
station sous A, sera, il est vrai, diminué, mais I’effet inverse de la déformation de
retour deviendra beaucoup plus petit; d’ou gain pour &. Toutefois si A, devient
trop voisin de A,, le premier effet sera trés faible ; le second aura beau étre négli-

geable, ¢ augmentera peu. 4 fortiori, si A, = A, nous savons qu'’il y a accroisse-
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ment de & en maintenant A, constant, mais cet accroissement n’est pas aussi im-
portant que celul qu1 correspond au A, opnmum.

Bien entendu tous ces phénoménes dépendent du temps T. Si T est trés peut
le parcours diminuera presque toujours la valeur de & pour A; au contraire, si T
devient trés grand, s'il se chiffre par jours et par semaines, le A, optimum peut
devenir égal a 1.

On s’explique ainsi le phénoméne fondamental de I'hystérésis du paramétre £,
qui n’est qu’un cas particulier de 1'application de la régle.

Reste 4 démontrer qu’il en est bien ainsi; U'expérience suivante ne laisse aucun
doute a cet égard.

Le caoutchouc a une longueur L, = 17°™. On lui fait parcourir quatre fois le
cycle Ay =1,35 — A, =15,3. Puisonl'améned A, =3,5; on mesure C; on raméne
a A,, on mesure ¢, et ainsi de suite de maniére que les mesures de € se fassent de
15 en 15 minutes. Quand, dans la suite de ’expérience, on ne donne aucune indi-

cation, il sera entendu que les mesures de € se font de 15 en 15 minutes :

C sous As..... et .e.. 2f0 258 266
ES0US Aferrverrneeeennenennns 710 888

On abandonne g5 minutes sous A, :

€ sous Agevvevnnnnnnn.. R ceee 274 274
& sous Ageennennnn.n. e 970 962

L’effet de la déformation commence a 'emporter surl’effet de la station sous A,.

On décrit & nouveau quatre fois le cycle Ay, A, (mercredi, 3b). Naturellement ¢
diminue beaucoup et tombe & 593 ; aprés 4 heures sous A,, il esL remonté & j02.
Aprés 17 heures sous Ay, il est remonté a 754. La station sous A, augmente &, ce
que nous savons bien (jeudi, 8").

Mais parcourons alors le cycle Ay, A, en faisant les mesures de & toutes les
15 minutes :

Csous Ajevveennnnnns ceerieee. 754 785 812
Es0us Agevvvvvnnnnnnnnn. 269 274

Tandis qu’en 13 heures sous A,, € croit seulement de 754 — 702 = 52 ; en une
heure de parcours entre A, et A,, ce qui correspond & une station de 30 minutes
environ sous A,, & augmente de 812 — 754 = 58.

On raméne a A, aussitot la derniére mesure faite; aprés 105 minutes sous A,,
on relourne & A,:& = 8oo0. Enfin, on ramé¢ne a A,, on abandonne 24 heures :
on retourne a A, &= 1003 (vendredi, 2").

En définitive, si le fil, aprés les quatre parcours effeciués le mercredi a 3 heures,
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était resté 48 heures sous A, en mettant les choses au mieux,  pour A, serait
monté vers 800; en le maintenant 25 heures & Ay, € atteint 1000, malgré Deffet
produit par les déformations qui correspondent au passage de Ay a A,.

Je vais montrer maintenant que A, = 3,5 est approximativement I'allongement
optimum quand il s’agit d’augmenter le paramétre & qui correspond & A, =35,3
(bien entendu pour le caoutchouc utilisé et dans les conditions de 'expérience).
Je recommence & peu prés la méme expérience sur le méme caoutchouc, mais en
utilisant les deux A : Ay =15,3; A; = 4,4 (vendredi, 2). Je parcours d’abord
quatre fois le cycle A;, A, pour abaisser notablement C; il tombe a 549, remonte
en 2 heures passées sous A, & 632 el en 18 heures (samedi, 8*) & 710.

Je décris alors le cycle A, A; en faisant les mesures de ¢ toutes les 15 minutes:

- C»
w w
o o
s =
w w
-
& I
(S ]
=)
wo
—~
<
~1
=]
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-—
=)
~1
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Aucun effet appréciable. Je raméne & A; et j’abandonne jusqu’au dimanche 8".
& remonte & 780. L'effet de la station sous I'allongement A; est donc beaucoup
plus petit que Pellet de la station sous'A;. Dimanche, & 2", je vais jusqu’i I'allon-
gement A, = 2,6, jereviensa A, ; naturellement € décroit notablement et retombe
4 669. Je retourne a A, et je laisse la nuit entiére sous cet allongement. Le len-
demain (lundi, 8) & n’est remonté que jusqu’a 721 pour l'allongement A,.

Ainsi ni la station de 24 heures sous Ay= 4, 4, ni celle sous A,= 2,6 ne sont
capables de faire remonter ¢ & une grande valeur; A, est donc voisin de I’allonge-
ment oplimum.

Voici la contre-épreuve ; lundi, 8", aprés la mesure préeédente, je raméne &
A, =3,5; mardi, 8", je trouve, pour A,, £==937. Malgré tous les parcours inter-
médiaires, et aussi peut-étre a cause d’eux comme on va le voir, C est en train de
remonter  la valeur la plus grande possible qui corresponde a A,.

On maintient alors 4 heures sous A,, & =981; 4 heures de plus, & =1001. De
ce dernier fait nous pouvons conclure que laccroissement de & sous A; dépend
de I'état dans lequel on améne le fil & cet allongement. Il est plus que probable
que si, aprés I'observation du samedi, ot £ = 710, on avait laissé le caoutchouc
indéfiniment sous l’allongement A,, l'accroissement de ¢ (qui, sous cet allon-
gement, avait été de 10— 632=78 en 16 heures), n’aurait pas atieint la
valeur 1001 (c’est-a-dire crit de 1001 — 710 =291) dans les trois jours qui
séparent le samedi du mardi (exactement 79 heures). On sait en effet que tous
ces phénoménes se ralentissent rapidement et qu’en 79 heures on est loin d’avoir
cinq fois l'effet obtenu en 16 heuares. L’expérience du jeudi est peut-étre sur ce
point encore plus démonstrative. :

Il résulte immédiatement de la régle, et Uexpérience confirme, qu’afin de donner
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cn un temps T le plus grand effet possible & la station en un certain A pour l'aug-
mentation du & correspondant & un certain aulre Ay, il faut que la station soit
effective ; par exemple, il ne faut pas revenir trop souvent a A sous préteste de
voir a quel point se trouve remonté le paramétre .

Nous avons vu au n° 25 que les oscillations, méme petites, autour de A, font
décroitre C; cela revient & dire que la régle s’applique méme au voisinage de \,.

Nous supposons dans ce qui précéde que Ay, As, A; sont Lous inférieurs a A,.
S’ils étaient supérieurs, ils produiraient I'effet inverse ; ils tendraient a diminuer
le paramétre & correspondant a A,. Mais il ne faut pas se héter de conclure qu’il
y aura nécessairement diminution. Si, par exemple, pour aboutir & A,, on vient
d’un A beaucoup plus petit, I'effet de la déformation peut 'emporter. Il peut
arriver alors que la station en des A supérieurs a A, détruisant cet effet, aung-
mente indirectement la valeur de ¢, surtout si les A supériears & A; n’en sont pas
trés différents. Il y aurait peut-étre des restrictions a faire en ce qui touche les
modules correspondant aux valeurs de A trés voisines de 1 : le phénoméne se
complique alors de petites déformations permanentes dont 'influence est surtout
notable pour ces A.

Je rapporte maintenant une expérience qui m’avait beaucoup intrigué au début
de mes recherches et dont l'explication est immédiate d’aprés la régle précédente.
Il peut se faire que les parcours plusieurs fois répétés de certains cycles se dis-
posent dans un sens inverse de celui obtenu en partant d’un fil qui n’a jamais
servi.

Un caoutchouc neul a subi plusieurs fois le parcours A = 1, A = 6, puis a été
maintenu 24 heures au voisinage de A = 2. On lui fait alors parcourir le
cycle A =4, A =06, avec arréts (10 minutes) pour la mesure de  aux

A=f—4,66—5,33 —6.

Voici les & obtenus (unités arbitraires) :

A 4 4,66. 5,33 6

o §Alerooooiiiiill evinins 132 17 267 551

Yl Retour. e e, 144 ‘168 236

. % Aller.......... cenaaeans eees 183 311 682
T Retour. ...l 149 172 251

. La figure g représente la courbe obtenue.

On voit & quelles erreurs on s’exposerait, si 'on ne tenait pas compte de ces
phénoménes dans Iétablissement de ce qu’on peutappeler la loi d’accommodation
du caoutchouc, ou, si I'on veut, la loi suivant laquelle les cycles plusieurs fois

répétés se fixent.
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Lorsqu’on répéte plusieurs fois un cycle petit, dont I'extrémité supérieure ne
dépasse pas le A qui correspond an minimum de &, il se fixe trés rapidement, et
I'hystérésis est quasi nulle.

Voici par exemple ce qu'un caoutchouc ayant déja servi a donné pour le

Fig. 9.

cycle A =1,33, A=3,33. Les mesures de & se faisaient (avec arréts de 15 mi-
nutes) aux A=1,33 — 2 — 2,66 — 3,33.

Aller. Retour. Aller. Retour. Moyennes.
P 1,33 376 370 370 372
2,00 165 168 167 171 168
2,66 125 124 126 125 125
3,33 120 119 120

30. Influence de la température. — L’étade du module C le long des parcours
isothermiques, 4 des températures autres que la température ordinaire, n'a pas
grand intérét : les phénoménes ont la méme allure, pourvu qu’on ne dépasse pas
la température oi commence la modification chimique plus profonde de la ma-
tiére, que I'on reste par exemple au-dessous de 80°.

Au contraire la comparaison des valeurs de ¢ successivement obtenues & deux
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températures différentes est importante, mais difficile. Nous retrouverons les phé-
noménes déja signalés, & propos de la réactivité et du parcours des cycles étendus,
aux n° 18 et suivants du Mémoire Sur la réactivité du caoutchouc. Le résultat de
la comparaison desvaleurs de & & deux températures t, et t, dépend essentiel-
lement de la facon de croiser ces températures; un échauffement produit une
modification du caoutchouc qui r’est pas fonction déterminée de la tempé-
rature, mais subsiste plus ou moins longtemps. Clest ce phénoméne fonda-
mental que je vais d’abord mettre hors de doute.

On améne un fil neuf a I'allongement A = 5. A la température de 13° environ
que nous appellerons ¢y, & augmente peu a peu. En 320™ il passe de 705 a 731.
On porte a une température voisine de 46° que nous appellerons ¢,. Aprés 3o™ de
chauffe, on trouve £ =368 et I'on éteint. Aprés une demi-heure, on mesure de
nouveau ¢ a fy : &= 444. Mais € croit d’'une maniére continue, de sorte qu’aprés
13 heures on trouve & = 4g1.

On recommence la méme opération; aprés 3o™ pendant lesquelles 1'étuve est
at, £=2366. On éteint : 3o™ aprés, &= 436. On attend encore go™ a ¢, :

On retrouve pour le module & un phénoméne déja signalé; a chaud il prend
beaucoup plus vite sa valeur limite qu’a froid. Si donc on croise les deux tempé-
ratures, en faisant varier le temps T passé a la température ¢y, le temps T, passé
alatempérature ¢, restant invariable, on obtient a froid des valeurs qui diminuent
quand le temps T, diminue.

Continuons I'expérience.

On porte maintenant étuve i la température £,— 78° pendant 3o™ : le caoutchouc
ne s’échauffant pas instantanément, ne reste pas 3o™ a la température ¢,; & = 226.
On éteint les brileurs; aprés 3o™, & = 250. Mais le module croit assez rapidement :
150 minutesaprés 'extinction, & = 344 ; 1160 minutes aprés I'extinction, E = 425.
Aéinsi la modification par I’échauffement est & la fols énorme et temporaire :
le module croit de 250 & 425, si I'on attend qu’elle disparaisse a la température

invariable ¢,.

Le résultat de la comparaison des valeurs de & & deux températures t, et ¢,
dépend donc essentiellement de la maniére de croiser les expériences.

Les modifications de la matiére se décélent aussi par les variations du courant
d’entretien des oscillations. Reprenons I'expérience précédente.

Pendant que ¢ passait de 705 a 731, le courant d’entretien ¢ tombait de 80 a 51
conformément & ce que j’ai dit au n° 23. On chauffe; 'absorption d’énergie décroit
beaucoup a chaud : /=17. On refroidit : pendant qu’a ¢, & s’accroit de 444 4 491,
¢ passe de 24 a 37. Ainsi le fil recuit participe des propriétés du fil chaud par la
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diminution, non seulement du module ¢, mais encore du courant d’entretien . A
mesure que le temps passé a ¢, augmente, & et ¢ s'accroissenl.
On recuit : £ =366,  =19. On éteint : & passe de 436 & 454, ¢ de 27 a 36.
Jai déja dit qu’il ne faut pas compter sur une grande précision dans 1'évaluation
du courant d’entretien; les résultats précédents n’en sont pas moins d’une parfaite
netteté. ‘
Quelle que soit la complication introduite par les phénomenes précédents,
I'expérience prouve qu’on peut conclure d’une maniére générale :

1> Le module & déduit de Uinclinaison des petits cycles répétés un grand
nombre de fois diminue quand on chauffe, la longueur restant constante;

2% L'énergie fournie pour entretenir une oscillation diminue quand la tem-
pérature s'éléve.

31. Ezxpériences réguliérement croisées aux températures t, et t,. — Pour
avoir une idée de 'ordre de grandeur des variations de € quand on passe de ¢,a ¢,
il faut donc croiser systématiquement les expériences. Voici quelques résultats.,

On mesure & & ¢, (13° environ); aussitdt aprés on allume les brileurs, Pétuve
chauffe rapidement jusqu’a ¢, = 47°. Une demi-heure aprés la mesure précédente,
on détermine € & ¢, on éteint les brileurs ... et ainsi de suite. Les mesures sont

o

donc faites systématiquement loutes les 30 minutes : la valeur de ¢ résulte de la
durée de 20 oscillations.

; 2 L 509 495
A=5. .
lovenannn 425 419 Rapport... 1,198
L3 Lo eeeenenn 231 203 203
T 3 Bveennnnn 193 194 Rapport... 1,046
fgeeneeess 266 262
A=oa.
g [ 7S 241 Rapport... 1,096

De cette expérience on peut conclure :

1° Il y a accommodation, c’est-a-dire qu’aprés un certain nombre de eycles les
valeurs de ¢ tendent vers des limites. Mais, si A est grand, il faut pour arriver
pratiquement aux limites un nombre de cycles notable;

2° La dimination relative de & passe par un minimum qui correspond a peu
prés au minimum de ¢ pour les deux températures.

3° Alors méme que le fil a été porté a la température ¢, pour un A plus grand
que le A actuel, il y a une plus grande diminution du module pour le premier

recuit.

32. Voici une expérience plus compléte ol tous les phénomeénes se trouvent
rassemblés.
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Un fil qui avait déja été allongé a 5 fois sa longueur, mais qui n’avait jamais été
chauflé, est mis en place : Ly=18. On fait aux différentes longueurs 25, 35, 5o,
65, 80, go des expériences réguliérement croisées, a 14° et & 48° environ, de 30
en 30 minutes, comme il est dit ci-dessus. Voici les nombres obtenus; on donne
aussi les rapports R, des ¢ aux deux températures, calculés d’aprés les derniers
nombres, et le rapport R, des intensités des courants d’entretien :

S Coeeennnnn 415 412 409 R;=1,076
D = 25. N s
(tpeeenven. 381 382 Re=1,45
D=3 { Zoeeennnn. 266 268 269 Ry = 1,055
= ? [ 7T 253 254 Re=1,44
D Coeeeennnn 233 230 Ri= 1,022
= So. Cpeeennnn. 225 Ry=1,32
D= 65 Coeevnnnnn 258 259 Ry = 1,033
R A 245 Ry=1,31
D — 8o 3 oeeennnn. 401 363 Ri=1,110
- ) Cyveevnnnn 3‘27 Rg: 17_15
D= a0 S toeeunnnnn 650 515 537 Ri=1,170
B 160 {60 Ro= 1,50
D—sg g [ 7R 324 324 Ri=1,110
= 8o.
[ 7T 292 Ry=1,41
D= 63 g ooeenennn 250 238 Ry= 1,035
- ’ N 2 TN 230 R;z: [,33
R T RS 297 222 Ri= 1,028
D = jo.
20 } fleeienn.. 216 R,=1,30
D—35 V loeeennnn. 278 269 Ri= 1,055
A I 255 '
D=5 ( loeeven... 420 Ry= 1,071
T e 392

Remarque. — Pour faire une pareille expérience ii faut 3 jours; il est donc
impossible de croiser aussi réguliérement qu’on le voudrait les diverses opérations.
Il est d’autant plus remarquable qu’on retrouve sur la courbe de décharge les
rapports R, qui correspondent & la courbe de charge. Ils présentent un minimum
parfaitement net. 11 semble aussi que ce minimum se retrouve pour les intensités
des courants d’entretien et par conséquent pour les absorptions d’énergie.

La derniére expérience & ¢, = 48° était faite un vendredi a 11"30™.

On maintient la température jusqu’a 2 heures de 'aprés-midi, ce qui correspond
a peu prés a 3 heures passées a 48°. On retrouve exactement & = 392. Comme
nous Pavons déja dit, ce fail prouve qu’on arrive trés vite a haute température a
la valeur limite.

On allonge alors & chaud jusqu’a D = go et I'on maintient la température ¢,
jusqu’a 4" o™ : & se maintient a peu prés constant a la valeur 344, avec unelégére

Fac. de T., 2 S., VI 30
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croissance (de 341 a 344) dans les premiers instants. Méme conclusion que ci-
dessus.

Ou refroidit alors. Ala température ¢, on trouve successivement pour D = go :

Vendredi 4" jo™ : 422, 425, 429; samedi 7" 50™ du matin : 528, 534 ; lundi 8"20™
dumatin : 572, 577. Onlaisse osciller : aprés 2 heures d’oscillations on retrouve 577.
Ainsi, sauf peut-étre au début, au moment de la mise en train, la continuation du
mouvement oscillatoire ne produit pas d’effet notable, ce qui est d’accord avec ce
que nous avons dit a la fin du n° 25.

On remarquera ’énorme accroissement (422 a 577, soit 100 4 136) du module ¢
par le repos aprés le refroidissement : on comprendra quelle prudence et quelles
précisions ce fait nous impose, quand nous parlons des effets de la température.

La premiére partie de I'expérience durant 3 jours, il y a nécessairement des
arréts plus ou moins longs (nuit ou durée durepas de midi) entre certaines déter-
minations. Par exemple, aprés la premiére expérience a D = go, le caoutchouc
reste & ¢, 2 heures sous cet allongement. Le module & passe de 537 a 570 : ce
dernier nombre est & peu prés celui qu’on obtient & la fin de I'expérience tout
enti¢re. Donc tous les parcours et opérations imposés entre la premiére et la
seconde opération a D = go ne modifient pas beaucoup les valeurs limites de ¢.

Enfin, des variations fréquentes et notables de température sous tension donnent
au caoutchouc desallongements permanents relativement considérables. Ils peuvent

atteindre 8 a 10 pour 100 pour des échauffements & go® sous un allongement de

A=5.

33. L’expérience suivante nous fait avancer d'un grand pas.

Le fil avait déja servi, mais n’avail jamais été échauffé. On mesure toujours &
sous 'allongement A, = 5,3; mais de temps en temps on raméne a I'allongement
Ay =1,35. Ce sont les effets du cycle A, — A,, soit & £,=14°, soit a t, = 48°, que

I'on veut comparer.

Premuére série. — On impose au fil trois fois le cycle A, — A5 on améne

a A, et 'on mesure & a froid et & chaud.

M30™....iu.t Eo= 758 M E1= 462
')"30'" .......... Co = 5h5 3" ............. CO = 562

Les faits sont conformes a ce que nous savons.
On retourne alors 4 A,, on revient aussitdt 4 A, et ’on mesure C.

$hEm. L =555 $hEEM... 1= 432 5T o= 512

On abandonne alors dans les conditions A, ¢, jusqu’au lendemain.
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Toutes les expériences antérieures nous avaient appris que le fait de ramener a
tension petite diminue considérablement C. Nous conslatons ici au conlraire que
¢y passe de 562 & 555, c’est-a-dire ne diminue qu’a peine; mais ’échauffement
avail amené &, de 758 a 555. Nous pouvons donc prévoir que le parcours du
cycle a froid supprime en grande partie Ueffet produit par U’échauffement.
Cette hypothése n’a d’ailleurs rien d’extraordinaire, puisque nous savons que les
effets des parcours et de 'échaullement sont en grande partie subpermanents, c’est-
a-dire disparaissent avec le temps, au moins quand il s’agit de fils ayant parcouru
déja plusieurs fois le cycle imposé.

La continuation de I'expérience met cette interprétation hors de doute.

Seconde série. — Lendemain :

g™, Eo=573 8hg5m. .. Ey= j23 9"I5™... Eo= 99}

Sous ¢y, on parcourt le cycle Ay — A, :

9Mad™. L Eo =524 QUuss™ . &= fo7
Sous ¢;, on parcourt le cycle Ay — Ay... ;=341 Eo= 436
Sous #y, on parcourt le cycle Aj— Ay ... Eo= 468 &1 =388
Sous ¢, on parcourt le cycle Aj— Ay ... &;=1335

Ainsi le parcours du cycle peut augmenter la valeur de &, parce qu’un échauf-
fement le précéde immédiatement. Les expériences sont faites toujours de la méme
maniére;  est mesuré aussilot avant el un peu aprés le parcours; on attend une
demi-heure pour échauffement et le refroidissement. On est arrivé ainsia 11" 45™;
on laisse refroidir.

A 1" 45™, £y = 462 ; lendemain a 5" 30™, &, = 528.

On parcourt le cycle Ay — Ay; &y=4754. A 9g"30™, £o=514.

Reprenons la discussion. Dans I'expérience de la veille, on avait maintenu ¢,
pendant une heuare avant de décrire le parcours; &, avait eu le temps de croitre un
peu et le parcours 'avait diminué légérement. Dans la premiére expérience de la
seconde série, on ne maintient ¢, qu’une demi-heure : la description du parcours
fait passer &y de 499 a 524; &y est devenu plus grand. De méme ¢, péssera de
436 & 468 dans la troisiéme expérience. Au contraire, dans la cinqui¢me, on attend
17 heures et demie sous ¢, avant de décrire le parcours; &, passe de 528 a 474.

Naturellement le parcours diminue considérablement ¢, : dans la deuxi¢me expé-
rience, il passe de 407 a 341; dans la quatrieme, de 388 a 333.

Nous savons déja qu’en revenant a A, & croit rapidement dans les premiers
instanls, que l'on opérea ¢, ou a ¢,; les valeurs données de & correspondent

approximativement & un repos de 5 minutes sous A,.
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Nous pouvons donc conclure de I'expérience précédente que 'échauffement
transforme la matiére en une variété asses instable qui subit la transforma-
tion inverse soit lentement par un simple repos, soit plus rapidement par des
déformations suffisamment étendues.

Une partie sealement de Ueffet de I'échauffement et du parcours est subper-
manente; nous savons, par exemple, que I’échauffement sous tension allonge le fil
d’une maniére permanente.

On fait sur les courants d’entretien des remarques analogues.

Lorsque toutes les opérations sont isothermiques, le fait de ramener a tension
petite diminue le courant nécessaire a I'entretien des oscillations sous A,. Le con-
traire se produit si le fil vient d’étre échauffé. Ainsi, dans la premiére expérience
a t, de la seconde série, le courant passe (en unités arbitraires) de 34 a 41. Dans
la troisiéme, il passe de 30 a 35. Mais dans la cinquiéme il passe de 36 4 35 : les
conditions sont alors toutes différentes.

Bien entendu, lorsque le cycle est parcouru & chaud, le courant d’entretien di-

minue.

34. Remarques sur quelques résultats antérieurement obtenus. — Le para-
métre & @ longueur constante diminue donc quand on éléve la température.
Quelques résnltats antérieurement oblenus paraissent contredire cette proposition.

Jai montré, au n° 16 du Mémoire Sur les courbes de traction du caouchouc
vulcanisé, que, pour des températures régulierement croisées, le cycle est plus
redressé et plus aplati & chaud qu’a froid. Or, si le paramétre C est plus petit a
chaud qu’a froid en chaque point du cycle, celui-ci semble devoir faire avec la
verticale un angle moyen plus grand a chaud qu’a froid. La conciliation s’obtient
aisément & 'aide du n°® 15 du Mémoire Sur la réactivité du caoutchouc vulca-
nisé. La réactivité diminue beaucoup quand on chauffe le fil; la dimination est
assez considérable, non seulement pour compenser la diminution de &, mais
encore pour produire un redressement. Le fait que le cycle est plus aplati a chaud,
que hystérésis est alors moindre, apporte un supplément de preuve a cette inter-
prétation.

Nous avons vua au n® 30 que I'énergie a fournir pour entretenir les petites
oscillations est plus petite a chaud qu’a froid. Ce fait concorde avec la diminution
de réactivité : il est pour les petits parcours la marque d’une diminution d’hysté-
résis.

On comprend maintenant a quel point se méprennent ceux qui calculent le
module d’élasticité & partir des courbes de traction. Quelquefois ils concluent que
ce module augmente quand la température s’éléve; d’autres fois ils concluent que
le module diminue. Dans le premier cas ils ont croisé les expériences (n° 15 du
Mémoive Sur les courbes de traction du caoutchouc vulcanisé); dans le second
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ils n’ont pas pris cette précaution (n° 16 du méme Mémoire). Dans les deux cas
d’ailleurs leur énoncé est faux; ils oublient de discerner les divers groupes de
causes qui produisent des phénoménes inverses dont I’ensemble est inexplicable,
sion ne les isole pas avec le plus grand soin.

ONDES STATIONNAIRES LONGITUDINALES.

35. Pour comprendre les expériences qui suivent, il faut préciser la nature
théorique du probléme. J’ai décrit au n° 13 'appareil employé. J’admets d’abord
qu’il n’y a pas absorption notable d’énergie, c’est-a-dire qu’on peut utiliser I'équa-
tion

Is _ 0%
ot -J)dx

?

i

ou s est le déplacement de chaque point de la corde a partit de sa position d’équi-
libre,  la distance au diapason, ¢ le temps, ¢ la vitesse uniforme de propagation.
Prenons I'intégrale sous la forme

. 2T . 21t
$ =8 sIn -3 -+ ¢ ) sin T .

La seule condition & satisfaire est A=y¢T; les paramétres s, et & sont arbi-
traires. Imposons au diapason une oscillation d’amplitude déterminée

. 2mt
s =9Ssin Z~—-
T

Il faut faire 2 = o dans l'intégrale, et la condition devient

S =, sing;
I'intégrale peut alors s’écrire
o]

S . x . ¢
s= ——sin(2n < + o )sinam—=-
sing A T
Soit maintenant L la longueur du caoutchouc : nous devons avoir s = o iden-
tiquement pour z = L. D’ou

(1) s—= § sinan—xsinzﬂi-
. L A T
sinam -

Cette formule parait d’abord absurde, tant elle choque I’idée qu’on doit assimiler
toujours et dans tous leurs détails les vibrations longitudinales aux phénoménes
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dont les tuyaux sonores sont le sicge. D'aprés elle, en effet, Pamplitude est maxima
aux ventres, quand il y a un ncead au point d’attache, c’est-a-dire sur le diapason
méme. 1l est vrai qu’alors 'amplitude est infinie, solution quantitativement inad-
missible et qui provient des hypothéses simplificatives. Nous écarterons facilement
ces difficultés.

Poisson, dans son Mémoire Sur les mouvements des fluides élastiques dans
les tuyauz cylindriqgues (M. de I’ Institut, 1817, p. 348), trouve pour les tuyaux
fermés une formule identique. C’est, qu’il propose pour le bout du tuyau ot I'on
entretient [’amplitude, 'hypothése que nous faisons, a savoir que le déplacement
peut y étre arbitrairement choisi comme une condition du probléme. Cette hypo-
thése a été attaquée pour les tuyaux sonores, entre autres par Quet (J. de Liou-
ville, t. XX, 1855). Quet dit avec bon sens que si, dans un probléme abstrait,
on peut choisir arbitrairement des données qui ne se contredisent pas, on est
obligé, dans un probléeme de Physique, d’accepter les choses comme elles sont. On
ne peul se donner ce qui est inconnu en réalité, que provisoirement et sous bé-
néfice d’inventaire. Pour les tuyaux sonores I’hypothése de Poisson est erronée,
puisque la formule (1) est contredite par les faits. On sait que pour le son de plus
forte résonance, le bout du tuyau ou se trouve 'embouchure de flite, loin d’étre
un nceud, est approximativement un ventre.

Le probléeme est bien différent dans le cas actuel; c’est réellement que nous
pouvons nous donner P'amplitude de l'oscillation du diapason et, autant t‘{lt
moins que I équation différentielle est admissible et que 'hypothése que autre
bout est invariable est exacte, la formule (1) doit représenter les phénoménes.

Effectivement on constate que, pour un fil pas trop long, 'amplitude maxima
n’est pas nécessairement au voisinage du diapason, qu’il y a des ondes station-
naires, quelle que soit la longueur du caoutchouc. Toutefois le diapason se refuse
a vibrer ou vibre avec une amplitude trés faible, si 'on s’arrange pour que la lon-
gueur du caoutchouc soit un nombre exact de fois la demi-longueur d’onde. Tous
ces faits se déduisent immédiatement de la formule. Ils ont une importance capi-
tale pour l'objet que nous poursuivons, puisqu’ils facilitent singuli¢rement

I'obtention des ondes stationnaires.

36. Le phénomene est cependant plus complexe que le numéro précédent le
suppose, parce que I'équation différentielle est insulfisante & représenter la pro-
pagation. Il y a absorption d’énergie; si I’on considére une corde de caoutchouc
indéfinie, & une des extrémités de laquelle on impose un mouvement vibratoire
d’amplitude donnée, ce mouvement se propage en s'affaiblissant et devient rapi-
dement insensible. Sur le caoutchouc que nous employons et pour une amplitude
initiale de ™™ a 2™ (2™™ 4 4™™ entre les extrémités du parcours), c’est a peine

si oscillation reste visible & I'eeil nu aprés un parcours de quelques métres, 6™,
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par exemple. On sent encore un frémissement, quand on pince légérement la corde,
mais on ne voit plus de mouvement. La grandeur de I'amortissement dépend
d’ailleurs de I'allongement actuel du caoutchouc. '

Pour nous rendre compte de ce qui se passe alors, faisons une hypothése, qui
est d’autant plus prés d’étre exacte que la corde est plus longue. Supposons que
dans la formation des nceuds (qui ne sont plus que des minimums du déplace-
ment s) n’interviennent qu’une onde incidente et une onde réfléchie, se propa-
geant uniformément et se réfléchissant sur la pince comme sar un obstacle abso-
lument immuable. C’est précisément ce qui a lieu, pour d’autres raisons, il est
vrai, dans I'expérience classique avec laquelle Savart prouvait I'existence des
neeuds, en faisant interférer une onde sonore incidente et l'onde réfléchie sur un
mur, cette derniére ne revenant plus.

Nous admettrons que l’absorption est représentée par l'exponentielle e¢=#+;
nous reviendrons sur cette hypothése au n° 37.

L’amplitude est alors donnée en un point quelconque par la somme

. ¢ x s . ¢ 22— X
e~k smzrr(T — X> — e~ki2x,=%) gipn 27r<T — —‘3\——)-

On met facilement cette expression sous la forme
. t 3 Xog— X .
sin a7 5 e~k cosam —0-):— [ eF@e=®) — e=kix,—)]
1A . Lo— X
+ CosaT ek sin o —“—)\— [eFtw—a) 4 e—klx,—2)],

Laissant de colé les facteurs indépendants de x et posant
Xy— T =3
il vient, pour 'intensité,

I = e%5 4 ¢ sv5— 200541:;\- = (eks— e—k3)2 4sin221r%-

)

nceuds a des distances du point ou se fait la réflexion, égales 4 un nombre entier

Si k= o, nous retrouvons l'expression bien connue 4sin22w?, qui donne des

de fois la demi-longueur d’onde.
Pour trouver la position des minima et maxima de 'amplitude, il faut résoudre
I'équation

kA

4—7%(6””‘5—6‘2"") -+ Sinlnt —=oo.

Posons
sih=u, e —m;
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m est le nombre par lequel 'amplitude, en un point d’un fil indéfini, doit étre di-
visée pour obtenir I'amplitude en un point distant d’une longueur d’onde.
L’équation précédente devient

log nép.m(m?**— m=*) + {rsinfru—=o,
équation transcendante que nous pouvons résoudre en construisant les courbes

. lognép.m
¥y =—sin47u, y,:g_p_
b

(m?r— m—2v),
pour des valeurs convenables du paramétre m : la variable u est le nombre de
longueurs d’ondes comptées sur le fil, & partir du point ou se fait la réflexion.

Il est d’abord évident que les nceuds et les ventres (minima et maxima d'am-
plitude) sont en nombre limité, puisque les valeurs correspondantes de w« sont
données par I'intersection d'un sinusoide (dont les ordonnées dans la partie utile
oscillent entre o et 1) et d'une courbe dont les ordonnées croissent continiiment et
sans limite.

Lorsqu’on a k = o, les ventres correspondent aux valeurs de « égales a 23, 573,
125, 175, ... centitmes; les neuds correspondent aux valeurs o, 50, 100, 150,
200, ... cenlietmes. 1l suffit de tracer grossiérement une sinusoide et une courbe
constamment croissante, pour voir que les ventres correspondront maintenant aux
valeurs de w égales a 25 +¢,, 75 4+ ¢y, 125 4 ¢; cenliémes, et les neeuds, aux
valeurs de u égales & 50 — ¢}, 100 — ¢}, 150 — ¢}, ..., les nombres posilifs ¢
croissant a mesure que leur indice croit.

La distance d’un ventre au neeud suivant diminue donc quand u croit, jusqu’a
ce que les ventres et les noeuds disparaissent.

L’expérience fournit seulement les neeuds avec quelque précision; pour fixer
les 1dées, j’ai calculé en fonction de la longueur d'onde prise pour unité les
distances des trois premiers nceuds (le premier correspondant & u = o) en faisant
successivement m = 2, 3 et 4, Voici les résultats :

Positions des nceuds. Distances des nceuds.

T — N — e ———— A ————
m==2...... 0,494 0,985 0,194 0,491
m=3.... . 0,482 0,940 0,482 0,458
m==4¢...... 0,472 » 0,472 »

Pour m = 4, il n'y a qu’un seul nceud.
’ yaq
1° Comme il est & peu prés impossible de corriger les résultats bruts de I'expé-
rience de 'influence de 'amortissement, il résulte de ce calcul que la méthode ne
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peut pas donner des résultats bien précis; la limite de ce qu’on est en droit
d’attendre d’elle est ;5 environ dans les cas favorables.

2° A mesure qu’on s’éloigne de la pince, la distance des nceuds diminue; 'expé-
rience confirme ce résultat. Les différences sont de I'ordre de celles qu’on vient de
calculer pour m = 2 ou 3.

3° L’amortissement varie avec I'allongement actuel de la corde. Généralement
il est impossible de voir plus de 4 ou 5 nceuds; quand la longueur d’onde est
grande, il n’en existe quelquefois pas plus de deux. L'ordre de grandeur de m est
donc tel que nous 'avons supposé.

37. Quoi qu’il en soit des imperfections de la méthode, elle est commode et
d’une incontestable élégance. La mesure du premier entrenceud donne sensible-
ment la moitié de la longueur d’onde. De la relation X = ¢T, si 'on connait T
(fig. 10), c’est-a-dire la période du diapason, on tire la vitesse ¢ de propagation

longitudinale d’une onde. Enfin, de la connaissance de cette vitesse, on déduit
la valeur du paramétre E;, qui est trés sensiblement proportionnelle a o?.
Fac. de T., 2¢ S., VI. 31
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Le paramétre E; est défini par équation

dP L L
E=ans =%

La formule de Newton apprend, d’autre part, que

o hl
jeB

;ﬁ(

)

(<%

ol ¢ est le poids spécifique. Pour le caoutchouc, ¢ est a peu prés invariable; il
Pest rigoureusement & la précision de I'expérience que je discute. Donc E; est
proportionnel au carré de l'intervalle des deux neeuds.

La méthode donne ce paramétre toujours par défaut et 'erreur commise croit a
mesure que l'amortissement augmente. 11 est, d’ailleurs, toujours plus correct
d’opérer sur une corde ayant plusieurs demi-longueurs d’onde; on s’approche
ainsi des hypothéses du n° 36 : les neuds sont dus & Uinterférence d’une seule
onde incidente et d’une seule onde réfléchie.

Etudions de plus prés 'hypothése du n® 36 sur la forme de la fonction d’amor-
lissement et montrons qu’elle concorde avec ce que nous apprendront les expé-
riences directes (n° 53). Prenons I’onde dans une de ses posilions et considérons
un cerlain point; I'amplitude y est s'= ¢=#*; I’énergie contenue dans une longueur
d’onde, prise a partir de ce point, est proportionnelle au carré de I'amplitude en
ce poinl; nous pouvons poser

W = Ae3x,

Considérons mainlenant cetle méme onde, aprés qu’elle s’est déplacée de dr.
L’énergie qu’elle contient a diminué de

AW =—2kAe**dy =— 2k As?dx.

Donc, admettre la loi exponentielle de décroissement pour les amplitudes, revient
a admellre que 'absorption d’énergie est, a chaque instant, proportionnelle au
carré de 'amplitude.

On peut encore prouver ce résultat d’une autre maniére. On sait qu’en admet-
tant un frottement proportionnel i la vitesse, on retombe sur une absorption
d’énergie proportionnelle au carré de 'amplitude (n° 22). Je vais montrer que
I'’hypothése d’un frottement proportionnel A la vitesse conduit 2 compléter de la
maniére suivante I’équation régissant la propagation d’un ébranlement longitu-

dinal
d*s , 0°s s

= N
2 da? Jt

a¢? dx
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; . s , . ds
En effet, la déformation de I'élément ds est mesurée par le quotient yrt la

: 1l résulte de cette vitesse un

2

dx dt

frottement proportionnel. Enfin, la force sur un élément dx du cylindre est la ré-

vitesse de déformation est donc mesurée par

sultante de deux forces produites par les vitesses de déformation des deux éléments
adjacents, résultante dont 'expression est proportionnelle a

9 [ 0%\ _ O
Z)Tv(dx()t T oztot’

Ceci posé, on vérifie facilement que 'équation différentielle admet des inté-

. /¢ x
e~krginen | 5 — = )e
§ z)

En substituant et égalant a o les coefficients des sin et des cos, on trouve deux

grales de la forme

équations de condition, qu’on résout facilement grice a la circonstance que A est
assez pelit devant 2w:A, pour qu’on puisse négliger A* devant 4=2:)2.

Donc, ’hypothése faite sur la forme de la fonction d’amortissement revient bien
4 admelttre une absorption d’énergie proportionnelle au carré de I'amplitude. Il ne
faudrait pas induire du raisonnement précédent que le frottement intérieur dans
le caoutchouc est proportionnel a la vitesse; bien d’autres hypotheses conduisent
a une absorption d’énergie proportionnelle au carré de 'amplitude.

38. Variation cyclique du paramétre E;. — On retrouve avec la méthode
actuelle les résultats généraux que nous connaissons, pour les variations du para-
métre E;, le long d’un cycle de traction. Il y a hystérésis; Deffet est surtout
marqué, comme on doit le prévoir, pour les premiers cycles effectués avec un fil
neuf. '

Il semble pourtant que le paramétre L;, déterminé par la méthode actuelle,
présente un hystérésis moins considérable que déterminé par la méthode du pen-
dule entretenu, surtout quand le cycle est répété plusieurs fois. A priori il n’y a
aucune contradiction & ce qu’il en soit ainsi. Nous ne savons pas encore siirement
dans quelle limite les diverses méthodes que nous étudions éliminent les phéno-
ménes qui ne sont pas d’élaslicité parfaite; nous ne savons méme pas quel est le
nombre des groupes de ces phénoménes. Chacun d’eux peut avoir son hystérésis
propre, et ce que nous observons comme hystérésis des premiers & et E;, est dii
a la superposition de tous ces hystérésis. Il n’y a donc rien d’étonnant i ce que
des opérations effectuées dans des conditions aussi différentes que celles qui déter-
minent ¢ par la méthode du pendule entretenu et E; par les ondes longitudinales,
ne donnent pas des résultats identiques.
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On s’étonnera peut-étre que je n’aie pas fait des mesures absolues qui permis-
sent la comparaison numérique des résultats des deux méthodes; si 'on veut bien
réfléchir que de telles comparaisons ne peuvent acoir un sens qu’effectuées sur
le méme caoutchouc et avec un appareil construit de maniére qu’il soit pos-
sible de passer d’une expérience a U'autre sans que le caoutchouc soit touché
le moins du monde, on conviendra que j'avais mieux a faire que perdre mon
lemps a des essais pour le moins prématurés.

39. Parmi les phénoménes étudiés par la méthode du pendule, il importe de
vérifier, avec la méthode des ondes stationnaires, I'influence d’une station sous un
allongement donné.

On utilise un caoutchouc neuf, Ly == 80™. On 'améne a I'allongement A =35,
I'entrenceud immédiatement déterminé est 177°™. On maintient sous cet allonge-
ment 15 heures, 'entrenceud devient 193°™. La vitesse croit donc dans le rap-
port 193:177 =1,09; les paramétres E; ou & croissent dans le rapport

2 ——2

193 1177 =1,18.
On revient successivement aux divers allongements A, on retourne 8 A =3 et
'on détermine chaque fois la distance du premier nceud a la pince. On trouve

A, 5,00 4,37, 3,75. 3,12, 2,50. 1,87.  1,%.  1,00.

-

Entrenceud....... 193°™  192™  18r™ 177 164" 130 14r™  13g™

On laisse 3 heures sous l'allongement A =3, I'entrenccud remonte & 138;
3 heures aprés, il est revenu a 167",

Comme le diapason fait 50 vibrations & la seconde, la vitesse de propagation
est représentée en méltres par les nombres précédents, qui expriment en centi-
métres la demi-longueur d’onde. Ces résultats sont entiérement conformes a ce
que nous savons.

J’ai terminé I'expérience précédente en mesurant la longueur de Ventrenccud

pour les allongements A, suivants, qui varient réguliérement de 5 a1 :

A, 5,00. 4,75. 4,50. 4,25. 4,00. 3,75. 3,50.  3.25.
Entren(ﬁud e l671:111 l38mll 11 gcm 10 /'Cln Q,Zcm 8 ‘(:m 72cm 6;.'1‘""
A, 3,00. 2,75. 2,50. 2,25. 2,00. 1,75. 1,50. 1,25.
Entrenceud.... 58" 52°™ 48m 44°™ fre™ 4o°™ 4o 4o°™

La figure 1o représente trois courbes. La courbe marquée ¢ est obtenue en
prenant comme abscisses les A, précédents et comme ordonnées les longueurs des
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entrenccuds directement déterminées. Comme nous le faisions prévoir au ne 27,
la vitesse de propagation est constante pour de petits allongements. La courbe E;
s'obtient en portant en ordonnées des nombres proportionnels aux carrés de la
vitesse de progagatioh ou de la longueur des cntrenccuds. Enfin la courbe &
s’obtient en divisant les ordonnées de la courbe précédente par le carré de 1’allon-
gement A. Elle présente I'allure que nous ont fait connaitre les expériences effec-
tuées avec le pendule.

MODULE & A CHARGE CONSTANTE. METHODE STATIQUE.
40. Description des appareils. — Le probléme expérimental est analogue a
celui qu’on trouve résolu dans mon Mémoire Sur les courbes de déformation, etc.,
Chap. I, p. 179. Mais les fils de caoutchouc, a I'inverse des fils métalliques, sont

Fig. 11.
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si extensibles qu’il devient nécessaire de transformer I'appareil. Il est représenté
schématiquement figures 11 et 12.
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La partie essentielle ( fig. 11) est le fléau AB. C’est celui d’une balance hydro-
statique Lrés sensible; sur I'aiguille, a la hauteur du couteau central, est fixé un
miroir M permettant d’évaluer, 4 'aide d’une lunette non représentée et de la
régle de verre divisée R, les déplacements verticaux du couteau A.

Le caoutchouc C est serré dans une pince (non représentée) dont le manche
supporte le systéme rigide DE. A la piéce DE ( fig. 12) est soudé un disque

Fig. 12,

x
et
[
oL

en laiton sur lequel on peut empiler des disques de plomb fendus suivant un
rayon; chacun d’eux peése 668, Le crochet A’ est relié par un fil fin au crochet A
de la balance. Le cylindre de verre FG est lesté par du mercure et & peu prés
équilibré, ainsi que I'éirier DE, par des poids P placés dans le plateau de la ba-
lance. On peut donc régler, a I'aide tant des disques de plomb que du poids P, la
charge que supporte le caoulchouc.

Je viens de dire que le caoutchouc était pris dans des pinces; dans mes précé-
dents Mémoires, je n’ai pas indiqué un artifice par lequel on évite que la corde
ne soit abimée par la pince qui la serre. Il faut, au moment du serrage, tendre
fortement avec les doigts le caoutchouc au point ot les méchoires s’appliquent ;
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on est siir qu’il ne se déchirera pas, méme a la surface, pour toutes les tensions
inférienres ou peu supérieures a celle que 'on a alors exercée.

Le cylindre FG plonge dans un tube KH rempli d’eau; ce tube porte des mon-
tures W formées d’un bout de tube de laiton et d’une plaque horizontale. Ces
plaques sont percées de trous dans lesquels passent les fils métalliques verti-
caux 1J, fixés solidement en 1 et J, tendus et servant de guides. On donne au
systéme formé par le cylindre KH et ses montures, un mouvement alternatif
sinusoidal par rapport en temps a l'aide d’un excentrique. Je n’insiste pas sur le
détail de ce mécanisme, dont on imagine aisément I'essentiel et dont la forme dé-
pend, naturellement, de I'espace disponible et de I'installation générale du labo-
ratoire.

L’excentrique est porté par unc roue a laquelle on donne un mouvement uni-
forme convenable. On peut ainsi imposer au caoutchouc, a partir d’une charge
moyenne déterminée, une variation de charge alternative, suivant une loi parfai-
lement connue.

41. Avant de discuter la méthode, je termine la description de I'appareil. Le
caoutchouc doit étre porté a des températures variables et connues. Il est donc
renfermé dans un tube AA ( fig. 12) entouré d'un tube plus large BB. On peut
faire circuler entre les deux tubes un courant CDBE d’eau portée 4 une tempéra-
rature connue par des appareils de chauffage décrits dans mon Mémoire Sur les
courbes de traction du caoutchouc vulcanise, p. 260.

Il est nécessaire que le point A ( fig. 11) oscille autour d’une position a peu prés
invariable. Il faut donc pouvoir déplacer I'extrémité supérieure du caoutchouc.
Elle est fixée ( fig. 12) a un tube M rempli de plomb et bouchant a peu prés com-
plétement le tube AA. Un fil d’acier MNIJ le supporte; il s’attache au point J &
un crochet fixé sur I'écrou d'une vis verlicale ayant 1™,20 de long et qu’on peut
faire tourner a 'aide de la poulie =. Enfin la position de Iécrou, et par conséquent
de I'extrémité supérieure du caoutchouc, est déterminée au moyen d’une lunette
qui vise la régle RR, attachée en K ct relenue verticale par le poids P ( fig. 12).

L’observateur a donc, 'une & coté de 'autre, deux lunettes : avec 'une il vise
larégle R ( fig. 11); avec l'autre il vise la régle R ( fig. 12). 1l a, de plus, sous la
main, la commande d’un appareil d’embrayage permettant de faire tourner la
poulie = dans un sens, dans V'autre, ou de I'arréter instantanément. Il peut donc
s'arranger de maniére que le milieu de l'oscillation coincide toujours avec le
milieu de la régle R ( fig. 11). Celle-ci est gravée sur verre en millimétres et
éclairée par transparence a I'aide d’une lampe électrique & verre dépoli, qu’on peut
déplacer verticalement pour lui donner une position convenable.

Pour éviter tout accident, si le caoutchouc cassait, un support S est disposé de
maniére a recevoir les masses de plomb E; un autre support S8’ empécherait
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Iétrier DE de culbuter et, au besoin, amortirait la chute du tube plein de
plomb M ( fig. 12). Si, au contraire, le caoutchouc n’est pas assez tendu, I'étrier
batte contre le support S'. On évite ainsi que le fléau ne soit dangereusement
soulevé.

La distance AM des couteaux de la balance est de 14°™. La distance du miroir
a I’échelle est de 1™. Le rapport du déplacement vertical du point A a la diffé-
rence des nombres lus sur la régle R est donc voisin de

142200 =1 14.

On apprécie aisément le {; de millimétre sur la régle R; on peut donc compter
sur le -7 de millimétre pour I'estimation des variations de longueur du caout-
chouc. L’expérience montre que cette précision n’est pas illusoire. J'ai été moi-
méme étonné de la régularité avec laquelle fonctionne P'appareil que je viens de
décrire et dont la complexité est grande. Je vais maintenant discuter la méthode
d’obtention des charges variables et montrer pourquoi la disposition qui était
commode pour les fils métalliques (loc. cit.) ne peut plus servir pour le caout-
chouc.

42. Soit x la variable qui fixe la position du vase HK ( fig. 11); dx est complé
positivement quand le vase descend. Soit L la longueur du caoutchouc dont je
suppose I'extrémité supérieure invariablement fixée : L détermine la position du
tube FG. Soient enfin % la quantité dont ce tube s’enfonce dans I’eau, H la hau-
teur de I'eau dans le vase HK, s la section extérieure du tube FG, S la section
intérieure du tube HK. Une figure auxiliaire permet de suivre le raisonne-
ment.

Ecrivons que le volume de l'eau est invariable : ce volume a pour expres-
sion HS — /is; d’ou

(1) S dH = s dh.

Si le vase HK s’abaisse de dz, le niveau absolu de I'eau s’abaisse de dx — dH.
Mais le caoutchouc se trouve plus tendu; il s’allonge de dL. Donc la hauteur 4,
de laquelle il plonge dans l'eau, varie de

(2) dh =—dzx + dH + dL.

Posons maintenant
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soit 8 le poids spécifique du liquide. Nous avons, évidemment,

3) dP =— sdhd, dL:—%adh.

Pour trouver la relation entre z et L, il suffit d’éliminer dk et dH entre les
équations (1), (2) et (3); il vient

dL — dx _ dx

/1 1 < s\
‘+§(;—§) ‘+a—s<‘—§>

Cette formule montre que, si 'amplitude du mouvement oscillatoire du vase HK

reste constante, € et dL ne sont en raison inverse I'un de 'autre que si le second
terme du dénominateur 'emporte beaucoup sur le premier, qui est 'unité. Pour
qu’il en soit ainsi, il faut évidemment que s soit petit et S grand. Or, le tube FG
n’a jamais ea plus de 11™™ de diamétre environ, le tube HK a 35™®. Le rap-
port s:S <1:10. Mais, en diminuant s, on se trouve dans la nécessité d’aug-
menter beaucoup la course du tube HK, pour que la variation du poids soit
suffisante. Un tube de 11™® de diamétre a pour section 0™ g5. Une course
de 40°™ donne une variation de poids qui est voisine de

0,95 < (0 x L — 348,
10
Avec de pareilles courses, le procédé de vases communicants employé pour les
fils métalliques n’est décidément plus pratique. .
En définitive, nous pouvons poser

o dz
\/—K<E -—I).

I est donc toujours possible de faire la correction : mais, avec les dimensions que
nous avons employées, dx :dL est ordinairement de ’ordre de 4o0. Aussi, bien
que les expériences donnent des nombres comparables & une bien plus grande
approximation, comme il sera généralement question dans ce Mémoire, non de
valeurs absolues, mais de valeurs relatives et de variations de la quantité &, nous
nous dispenserons généralement de la faire.

43. Interprétation des résultats. — Pour préciser les idées, supposons qu’on
arrive a la charge Py, qui sera maintenue constante en moyenne, par charges
croissantes. On superpose & cette charge une charge alternativement positive et
négative, de sorte que la charge totale est de la forme Py P’ sinwe. On déter-
mine alors les longueurs pour les charges Py== I’ et I'on obtient une série de

Fac. de T., 2 S., VL. 32
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points A, A’, B, B, ... (fig. 13), dont la position indique que non seulement le
fil subit des allongements et des raccourcissements périodiques, mais encore que
la réactivité intervient pour produire un allongement continu.

Les points expérimentalement obtenus, on les joint par deux courbes conti-
nues ABC ..., A’B'C'.... On admet alors que, si la réactivité n’existait pas, la

Longueurs

Temps

o o’ (3,‘3'

distance des maxima et minima consécutifs de Ja longueur serait égale a la distance
verticale des courbes que nous venons de tracer. En d’autres termes, & est a
chaque instant mesuré par I'inverse de la différence des ordonnées correspondant
A cet instant.

Cette maniére d’interpréter les résultats parait incontestable, lorsque le témps
passé sous une charge donnée a été tel que la vitesse de I'allongement provenant
de la réactivité soit devenue trés petite. Il n’est méme plus alors nécessaire de
construire les courbes ABC, A’B’'(Y : il suffit de prendre la moyenne

(Aa+BpB—2A'a"):2,

les longueurs étant d’ailleurs comptées & partir d’une origine quelconque.

Dans les premiéres minutes, au contraire, la réactivité est considérable pour
peu que la charge soit grande. Il n’est plus certain qu’il soit légitime de prendre
inverse de la distance verticale des courbes comme mesurant le paramétre C.

Assurément, si 'on était str qu'il y etit simple superposition des allongements
dus 4 la réactivité et des allongements et raccourcissements périodiques dus a la
variation de la charge, on éliminerait certainement l'action de la premiére cause
par le calcul précédent. Il revient, en effet, & admettre que la vitesse d’allonge-
ment de réactivité est constante, au moins approximativement, pendant une
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période de la charge variable. La question est précisément de savoir s'il en est
ainsi.

Jai montré dans un précédent Mémoire (Sur la réactivité du caoutchouc,
n® 22), que I'allongement a charge constante est sensiblement le méme, quand la
charge P, est rigoureusement constante, ou bien quand on lui superpose une
petite charge variable, alternativement positive et négative, de maniére que la

t
1 . . .
somme ?f P dt conserve une valeur invariable. L’appareil actuel permet de
0

prouver commodément qu’il en est ainsi. On compare les résultals d’expériences
convenablement croisées : dans toutes les expériences, on part de la charge nulle,
on améne sous la charge P, avec une vitesse déterminée d’allongement. Le moment
ou P, est imposée sera I'origine des temps. On détermine alors ’allongement
pour les temps 1™, 2™, 4™, ..., 16™, par exemple, soit en maintenant la charge P,,
soit en établissant une charge périodique Py + P’ sinw¢, ce que I'appareil permet
précisément de réaliser. Les 16 minutes écoulées, on revient & la charge nulle;
immédiatement ou aprés un temps T toujours le méme, on allonge le caoutchouc
pour I'expérience suivante, et ainsi de suite.

De ce que, somme toute, il se fail une compensation, il ne résulte pas qu’elle ait
lieu a chaque instant. D’ott un doute sur l'interprétation des résultats que nous
avons adoptée.

Imaginons, par exemple, que la variation périodique de la charge entrainc une
variation périodique de la vitesse d’allongement due a la réactivité. Pour simpli-
fier, admettons que cetle vitesse devienne double pendant que la charge croit et
nulle quand elle décroit. Somme toute, 'allongement total de réactivité restera le
méme. Mais nous n’aurons plus le droit d’admettre que le calcul de &, tel que je
I'ai indiqué, élimine la réactivité. En eflet, supposons d’abord que la vitesse ¢
d’allongement due a la réactivité soit approximativement constante pendant une
période dc la charge périodique. La distance A’B qui correspond a une augmen-

tation de charge est s+v-2-; la distance BB/, qui correspond a une diminution

r

T .
de charge, est ¢ — ¢ et la moyennc est bien encore ¢.

Dans le second cas, au contraire, A’/B—¢+ ¢T; BB'=¢, et la moyenne

I<

v T . T : \
este+ —- La courbe qui correspond & la charge moyenne étant, par hypothése,

restée la méme, la courbe ABC est transportée parallélement vers le haut de la
quantité o124 et la courbe A’B'C/ vers le bas d’une quantité égale.

Il est probable qu’un phénoméne de cette nature intervient dans les premiers
instants aprés 'imposition de la charge : on constale, en effet, un brusque accrois-
sement de & calculé comme l'inverse de la distance des courbes passant par les
maxima et les minima de la longueur. Ce qui rend, au contraire, probable Ia
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légitimité du calcul, sauf pour ces premiers instants, est Ja régularité et la faible
courbure des courbes obtenues 4 charge constante, en prenant comme coordon-
nées le paramétre € et la longueur, comme nous le montrerons au numéro suivant.

44. Résultats généraux. — 1l n’est pas utile de calquer les expériences que
nous ferons avec la méthode statique, sur celles qui ont été effectuées par la
méthode dynamique. Il vaut mieux profiter de ce que l'appareil donne a chaque
instant le paramétre ¢ en fonction a la fois de la charge et de la longueur, pour
élucider des questions générales importantes.

J’ai montré, au n® 26, qu’il est impossible de considérer & comme une fonction
déterminée, une fois pour toutes, de P et de L. En d’autres termes (fig. 14),

Fig. 14.
P
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si nous prenons pour plan horizontal le plan L, P et si nous élevons des perpen-
diculaires dont la longueur mesure &, elles n’aboutissent pas a une surface
unique ¥, déterminable une fois pour toutes. On pourrait dire que cette surface
existe, mais qu'elle se déforme & mesure que les déformations imposées au fil sont
de plus grande amplitude : méme ainsi généralisée, I'hypothése est inadmissible.

J’ai montré, en particulier au n® 26, que pour une méme longueur, c’est-a~dire
dans le plan vertical CC'T, & est plus petit en €/, sur la courbe de décharge,
qu'en C, sur la courbe de charge; ce qui implique que la courbe d’intersec-
tion ¢c'y de la surface £ avec le plan vertical CC'T, courbe représentée en per-
spective, s’abaisse a mesure qu'on s'approche de I'axe ATA. D’autre part, sur la
courbe de charge, a longueur constante et, par conséquent, & charge décrois-
sante, 'expérience montre que € croit, comme l'indique la courbe cc’.

La méthode statique, qui donne a chaque instant la longueur et la charge,
permet de vérifier que, pour une charge déterminée P, les points qui figurent & en
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fonction de A ne se mettent pas sur une courbe unique, mais occupent une partie
considérable du plan &, A. Chaque expérience consiste & arriver i la charge P,
suivant une loi déterminée et & maintenir cette charge pendant un temps plus ou
moins long; le point figuratif décrit alors dans le plan €A une courbe : il s’agit
d’étudier le faisceau de ces courbes correspondant & une méme charge, quand on
fait varier la maniére de Iatteindre.

45. Faisceau des courbes €, A, pour une charge P invariable. — Tichons
d’abord de nous faire une idée du maximum de simplicité de ce que nous pouvons
trouver. Nous savons que, arrivé en un point C sur une courbe de charge, la lon-
gueur a charge constante croit indéfiniment. Revenu 4 la méme charge en un
point E d’une courbe de décharge, il y a généralement a charge constante un
raccourcissement, puis un allongement.

Sur la droite CE les points figuratifs marchent donc, aprés quelque temps,
dans le méme sens. Arriveront-ils i se rejoindre en un point limite e, quelle que
soit la maniére suivant laquelle nous avons atteint la charge, c’est-a-dire quels que
soient les parcours qui nous out amené sur la droite CE? A cette question, il est
impossible de répondre théoriquement; mais pratiquement la limite unique e
n’existe pas, & moins d’admettre qu’elle ne sera atteinte qu’aprés des mois, ce qui
rend toute vérification expérimentale illusoire. Une charge constante donnée
influe sur la longueur d’une maniére différente, suivant les opérations par les-
quelles on I'a imposée : la longueur tend vers une valeur limite fonction de ces
opérations. On ne peut pas tracer dans le plan AP une courbe limite & laquelle on
parviendrait & charge constante, soit en partant du point G sur la courbe de
charge, soit du point E sur la courbe de décharge.

Bien entendu, si cette courbe existait, elle devrait étre aussi limite pour des
déformations a longueur constante : on devrait aboutir 4 un méme point g, que
l'on parte & longueur constante du point C ou du point C*

Ce qui précéde revient aussi a dire que I’hystérésis qui sépare les courbes de
charge et de décharge ne provient pas seulement d’une viscosité, d’un frottement;
on ne verrait alors aucune raison pour que la courbe limite n’existat pas.

Revenons maintenant au paramétre ¢ : il n’est pas une fonction déterminée de
la charge et de la longueur; pour une charge donnée P, nous avons une infinité
de courbes qui représentent ¢ en fonction de L. Si la courbe limite dont nous
venons de parler existait, il serait naturel que les courbes précédentes tendissent
vers un méme point limite : toutes les courbes correspondant i une méme charge,
suffisamment prolongées, viendraient aboutir en ce point. L’expérience montre
qu’une telle hypothése est absolument gratuite.

[l résulte d’abord de ce que j’ai dit plus haut sur Iinexistence de la courbe
limite, que nous ne possédons jamais que des fragments des courbes &, L, assez
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courts relalivement & leur espacement dans le plan. En d’autres termes, le point
figuratif parti de C (fig. 14) ne fait jamais, sur la droite CE, qu’un chemin rela-
livement petit par rapport & la distance ou peuvent se trouver entre eux les points
analogues & C et E qui correspondent aux différentes courbes de charge et de
décharge. Ces fragments sont méme généralement trés courts quand on arrive par
une courbe de décharge a la charge P et leur inclinaison dans le plan &, L assez
mal déterminée.

Quoi qu'il en soit, ces fragments sont sensiblement des courbes paralléles assez
rapprochées de Ja droite, quand elles ont pour origine un point d’une courbe de
charge, analogue a C par conséquent. Cela revient a dire que chaque fois qu'on
arrive a la charge donnée P par une courbe de charge, 'effet sur la variation de ¢
des variations de longueur & charge constante est indépendant, dans une large
mesure, de la longueur au moment ot 'on atteint la charge P et de la valeur cor-
respondante du paramétre ¢. Il m’a é1é impossible de trouver dans les inclinaisons
des fragments de courbe des changements systématiques.

1l en est de méme pourles fragments qui ont pour origine un point d’une courbe
de décharge, analogue & E (fig. 14) par conséquent; mais l'inclinaison moyenne
n’est plus la méme.

1l faut excepter des régles précédentes ce qui se passe dans les premiers instants
aprés 'imposition de la charge (n° 43). Quand l'origine est sur une courbe de
charge, la courbe ¢ (abscisses), L (ordonnées) est d’abord beaucoup plus verti-
cale qu’elle ne sera ensuite : elle reprend d’ailleurs rapidement son inclinaison
normale. Quand l'origine est sur une courbe de décharge, et que la charge est
grande, il y a d’abord diminution de ¢ tant que dure le raccourcissement, puis
augmentation de & quand le fil recommence a s'allonger. Si, au contraire, la
charge est faible, le raccourcissement qui peut durer trés longtemps, pratique-
ment, méme indéfiniment, entraine bien entendu un accroissement de C.

Ce serait perdre son temps que de rapporter des nombres sur un tel sujet. Je
veux seulement, par un exemple, fixer les idées et donner des ordres de grandeur,
pour montrer combien le paramétre ¢ est loin d’étre fonction déterminée de la
charge.

Soit une corde de caoutchouc de 16°™ de longueur. Sous la charge de 8008, elle
peut prendre, & mesure que l'on augmente le nombre des parcours entre les
charges o8 et 10608, toules les longueurs comprises entre 64™ (A= 4) et
96°m (A =06): le paramétre & peut, toujours pour cette charge unique de 800¢,
passer de 1 a 4 en valeurs relatives. On voit dans quelle énorme partie du
plan &, L peuvent se trouver les courbes que nous étudions. Sur une des courbes
4 charge constante dont I'origine se trouve sur une courbe de charge, par exemple
décrite apreés retour a la charge nulle, la variation de longueur en 4 heures peut
étre de 8°™ environ, pendant que ¢ croit de 1 4 2 en valeurs relatives.
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Bien entendu, l'aire du plan CL, dans laquelle on peut se trouver pour une
charge donnée P, diminue notablement & mesure que P décroit, pour s’annuler

approxumahvement pour P—o.

46. Valeur de & aux divers points d’un cycle. — Est-il possible d’obtenir, a
I'aide de la méthode statique a charge constante, une courbe continue, analogue
a celle du n® 24, qui donne la valeur de  aux divers points d’un parcours? Cest
évidemment possible; mais, I'expérience prouvant que la valeur de € est beaucoup
moins variable quand on se donne la longueur que quand on se donne la charge,
il faudra préciser avec soin la définition de I'expérience. Nous n’avons eu aucune
difficulté avec la méthode a longueur constante, parce que, a la senle condition
de laisser passer quelques minutes sous longueur constante, on obtient des nombres
qui, assurément, varient avec le temps, mais considérablement moins vite qu’a
charge constante.

La condition la plus simple qu’on puisse poser est qu’on attendra un temps
invariable T sous chaque charge avant de commencer les lectures. A chaque
valeur de T correspond une courbe. Les courbes peuvent étre construites soit
en fonction de la charge, soit en fonction de la longueur; elles ont dans les deux
cas des formes trés différentes. On pourrait faire foisonner les résultats, sans au-
cun profit d’ailleurs, en s’amusant a traiter tous ces cas particuliers.

Je choisirai un seul exemple : les charges croiiront en progression arithmétlique
ctl’on attendra uniformément 15 minutes sous chacune d’elles avant de déterminer
le paramétre C.

Le Tableau suivant donne les résultats pour un fil ayant déja subi de nombreux
parcours entre les charges oy et 16y : nous prendrons celle-ci comme extrémité
supérieure du cycle. Le symbole y représente un disque de plomb, soit 668

(n° 40).

Charges. 0vy. 2. 4y. 6. 87v. 10+. 127. 14y 16y.
Courbe de charge.

Longueur...... 1622 207f 2785 3889 5106 6239 7343 8405 gI118
Covvnnivnnnnn. 3932 1585 966 732 =97 845 1208 2342 4100
Courbe de décharge.

Longueur...... 1680 2227 3056 4810 7275 8201 8738 8g4o
Covvvvnnnnnn ... 2660 1427 886 765 1149 1876 2770 3570

La courbe qui représente ¢ en fonction des longueurs a la forme habituelle :
les branches d’aller et de retour différent peu. Au contraire, la courbe qui repré-
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sente ¢ en fonction des charges a une allure trés singuliére et un hystérésis con-
sidérable ( fig. 15). La comparaison des deux courbes (nous n’avons pas jugé

Fig. 15.

Charges
12 . 16

utile de reproduire la premiére) montre & quel point les € sont mieux déterminés
en fonction de la longueur qu’en fonction de la charge.

Jai dessiné la figure 16 pour montrer & quel point différent les parameétres &
déterminés comme précédemment, de ce qu'ils seraient calculés d’aprés I'incli-
naison et la courbe.

Pour faire la réduction, on saura que la variation de charge pendant le petit
cycle était 5,23 fois plus petite que le poids de 668 environ désigné par la lettrey :
le plongeur était de trés petit diamétre.

D’ailleurs les allongements mesurés par réflexion sur le miroir et dont les in-
verses donnent le paramétre & en valeur relative, sont 15,5 fois plus grands que
les allongements véritables.

Ceci posé, on peut calculer quel serait ’allongement pour la variation de charge
27 si la courbe de traction élait rectiligne et avait l'inclinaison caractérisée par le
parameétre C.

Par exemple, pour 8y au point A de la courbe de charge, £ = 727. L’allonge-
ment mesuré sur ’échelle transparente est, en dixiémes de millimétre, 'inverse



SUR LES MODULES D’ELASTICITE DU CAOUTCHOUC VULCANISE. 249

de ce nombre, soit 1375. L’allongement réel pour 2y, en admettant la propor-
tionnalité, doit étre
(2 <1375 % 5,23) :15,5 = g28.

Or les allongements entre 6y et 8y d’une part, 8y et 10y de I'autre, sont 1217
et 1133. L’inclinaison de la courbe de traction au point A est sensiblement la
moyenne de ces nombres, soit 1172. J’ai représenté par.une fléche 'inclinaison
qu’aurait la courbe si elle était définie par le paramétre C.

On voit qu’en, tous les points de la courbe de charge, la fleche est plus verticale

Fig. 16.
Charges
16
12
8
4
0 / , i " Longueurs

que la courbe, ce qui est tout naturel vu le réle de la réactivité. Il en est de méme
sur la courbe de décharge, sauf tout & fait a l'origine, pour des raisons que l'on
comprendra facilement. L’écart angulaire entre les fléches et la courbe est maxi-
mum sur la courbe de décharge et au milieu de celle-ci.
Ce sont donc bien & des propriétés entiérement différentes qu’on a affaire quand
on parle de l'inclinaison définie par 1: ¢ ou de linclinaison sur une courbe de
Fac. de T, 2* S., VL 33
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charge et de décharge. Nous savons’ déja que les diverses valeurs de & qui corres-
pondent 4 une méme longueur varient peu, tandis que, pour une memealongugur,
les inclinaisons des courbes de déformation-sont infiniment variables.

41. Influence de la vitesse avec laquelle les petits cycles sont parcourus.--—
La méthode slahque permet de modifier la penode de variation de charge et de
savoir si elle intervient dans la valeur da parametre .Oni impose al excentrique
(n° 40) des vitesses différentes, soit avec un pignon changement de v1te>se monté
sur le train d'engrenages dont un des axes porte lexcentnque, soit par le chan-
gement des poulies qui servent a relier le moteur au train.

On obtient ainsi les quatre périodes 120, 9o*, 43°, 30%. Le pignon modifie la
période dans le rapport 1: 3, les poulies dans le rapport 1:1,43.

Dans I'expérience suivante, on maintient d’abord la charge constante un temps
suffisant pour que la longueur du caoutchouc devienne sensiblement invariable;
puis on met en marche excentrique. On emploie les périodes 43°* et 129°. Le
Tableau suivant donne, pour une courbe de charge et pour une courbe de
décharge, les & qui correspondent a la période 43¢, le rapport des & pour les déux
périodes, enfin le temps T que le fil est resté sous la charge constante avant qu’on
ne fasse la comparaison. Celle-ci dure 30™ environ et comporte une expérience
avec la période 120° intercalée entre deux expériences avec la période 43°,

Charges imposées. 0y. 4. 8. 167.

Courbe de charge.

Eoviiii 1366 » ' 351 2688
Rapport.......... 1,044 » 1,019 1,019
A Toh » 7o™ 280™

Coiii i 1248 434 789 »
Rapport.......... 1,045 1,043 1,023 »
U 3o™ Go™ 6" »

Apres trois nouvelles heures sous oy, on reprend la deuxiéme experlence qui
donne ¢ =1294 etle rapport 1,046. : ‘ ‘

Incontestablement, la grandeur-de la période influe sur & toutefois les varia-
tions sont petites et de Pordre de quelques centié¢mes. Conlralrement a ce qu'il
semblerait & premiére vue; elles sont plus grandes pour de faibles A que pour de
grands. 1l faut distinguer en somme deux sorles de réactivités qui n'ont pas les
mémes caractéres. De ce qu'un corps s’allonge beaucoup sous charge constante, a
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partir de P'imposition de la charge, on ne peut pas conclure qu’une petite variation
de charge influera considérablement sur I’état d’équilibre une fois atteint.

La variation de grandeur du rapport ne provient pas de la grandeur relative de
la déformation; en effet, quand la charge varie de oy & 167, le rapport diminue
réguliérement, tandis que Pallongement périodique par vnité de longueur actuelle
du caoutchouc passe par un maximum. Il y a lieu de croire que des variations du_
méme ordre s’observeraient pour des parcours périodiques beaucoup plus petits que
les précédents. Voici une expérience favorable a cette opinion.

Déterminons sous charge trés faible le rapport des & pour les deux périodes 43°
el 129° etle méme caoutchouc, en nous servant successivement de deux plongeurs
de volumes différents et tels que la variation de charge soit 128,20 pour 'un et
268,15 pour I'autre. On trouve les rapports suivants : premier plongeur, 1,044;
second plongeur, 1,046. Le dernier chiffre significatif n’étant pas sir, on peut
conclure que les rapports sont égaux. Cela revient a dire que les variations d’am-
plitude en fonction de la période sont proportionnelles aux amplitudes.

Vers quelle limite le rapport tendrait-il pour une période trés courte? Clest un
probléme difficile. ‘ o

1l ne faat pas compter sur la méthode dynamique pour le résoudre. On est forcé
de déplacer, d’ajouter ou de retrancher des masses pour modifier la période : le
rapport des moments d’inertie n’est jamais connu avec une grande approximation.
Au n° 20, j’étudie un procédé pour maintenir constant lé moment d’inertie; mais,
a’supposer qu’on réalise rigoureusement par construction les conditions indiquées,
la mesure de la période, dans le cas des oscillations rapides ou la pesanteur intec-
vient beaucoup, n’a pas une précision suffisante pour faire apparaitre une varia-
tion de & en fonction de la période. Pour les périodes qu’on peut ainsi réaliser et
qui ne varient guére que de 1 4 3, & semble constant.

Pour résoudre le probléme, il faudrait passer d’une maniére continue d’une
période de I'ordre de 2™ & une période de P'ordre de 1°. On tracerait la courbe
des € dans cet intervalle et 'on chercherait la limite pour la période nulle.

Je m’en suis tenu a la période 43° et je n’ai pas cherché & la diminuer. Théo-
riquement, P'appareil fonctionne pour toutes les vitesses; pratiquement, on
déplace des masses lourdes : pour de grandes vitesses, il y a des trépidations qui
génent considérablement les mesures. La variation étant de I'ordre du centiéme,
il faut une précision considérable dans les mesures pour ne pas obtenir une valeur
illusoire du rapport.

J'ai cherché si I'influence de la vitesse dépend de la température : j’ai répété
les expériences pour oy et 16y & 50°. J'ai trouvé les rapports 1,031 et 1,013, au
lieu de 1,044 et 1,019. ‘

“L'influence de la période diminue donc & mesure qu’on opére i des: tempéra-
tares plus élevées : ce résultat n’a rien de surprenant, puisque nous savons (S ur
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la réactivité du caoutchouc vulcanisé) que tous les phénomeénes qui dépendent
de la réactivité perdent de 'importance quand la température s'éléve (voir aussi

n° 34).

48. Influence de la température. Prévisions théoriques. — Cherchons a
prévoir les phénomeénes a charge constante d’aprés les résultats obtenus a longueur
constante et d’aprés les variations du coefficient de dilatation que j'ai désigné
par o, (n° 18).

Au voisinage d’une tension et d’un allongement donnés du fil, on peut toujours

poser

dL:aidt—I—iE-
&

Cette équation n'implique aucune hypothése si a; et & sont censés déterminés
par Vexpérience dans l’état particulier o se trouve le fil. Nous avons dit
(n° 18) dans quelles absurdités on tomberait si 'on imaginait @ priori une rela-
tion entre o, et C; par exemple si I'on supposait que L est une [onction déter-
minée une fois pour toutes de la tension et de la température. Evidemment, poser
la relation précédente revient bien a admettre qu’autour du point de I'espace L,
t, P, ot 'on se trouve actuellement, il n’y a que deux variables indépendantes;
mais la relation qu’on imagine entre ces variables et la troisiéme ne vaut pas
toujours et dans tous les cas, mais seulement a I'instant et autour du point consi-
dérés.

On peut donc admettre qu’avec les mémes restrictions, & est une fonction de
deux variables indépendantes et poser identiquement

o 00 00 ar=ar+ (%)
dp_(de+<ot>Pdt__deL+ Y Ldt,

les coefficients différentiels ayant pour indices P et L correspondant aux cas ol

I’on fait
dP —o ou dL = o.

Soit maintenant
dP = (03

o0y _dedl (%)
B_z)p—()L dt m),‘

Or % — u, est 'accroissement de longueur quand la température croit & charge

il vient identiquement

constante. Nous savons que 2, est positif pour de trés petits allongements, s’an-
nule pour un allongement A & peine supérieur & 1, puis devient négalif et croit en
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9

valeur absolue quand A ou P croissent. L’expérience nous a montré que (W)
L

-

est toujours négatif : posons-le égal & — 2. Il vient en définitive

w0y o
ot Jp 'OL :

Reportons-nous maintenant & ce que nous savons des variations de & & tempé-
rature constante.

Déterminées par l'une ou l'autre des deux méthodes statique ou dynamique,
¢ décroit d’abord trés vite pour des allongements A voisins de 1, passe par un

minimum, puis croit ensuite rapidement.

A : 3 M d“ . .
Nous sommes donc siirs du signe négatif de (-d—: > soit pour de trés petits
l)
N

allongements <:/., >o, 5‘1—\: < 0>, soit pour de grands allongements (a, <o,
A . . , L ‘ ,
5K >0>; nous sommes méme sirs qu’alors Ja diminution de ¢ a charge con-
slante pour une méme élévation de la température, sera plus grande qu’a longueur
constante.

Au contraire, pour des allongements A qui ne sont pas trés petits et pour les-

»

. . Jal S -
quels on a simultanément «, < o, oL <0 la variation de ¢ a charge constante
avec la température se présente sous la forme de deux termes de signes différents;
. . C . &
nous ne savons pas a priori quel en sera le signe. Quoi qu'il en soit, 5. )
l)

d’abord négatif pour A =1, augmente (c'est-a-dire diminue en valeur absolue),
pourra devenir positif, passera par un maximum, puis diminuera de nouveau
vour étre sirement négatif et grand en valeur absolue pour des valeurs considé-
vables de A. v

J'ai fait au n° 14 un raisonnement identique au sujet du paramétre E;. 11 avait

JE __dEzil_’% (@).
ot )y~ 0P det " \at),

conduit a la relation

Les conséquences de cette équation, de forme tout a fait analogue a la précé-
dente, sont cependant bien différentes.

. JE . .
Nous pouvons poser, quel que soit A, (d_l =— r'2. Mais I'expérience montre
L

(n° 37) que(—d)% a un signe invariable positif; posons ce quotient égal & —+ 7”2,
L’équation devient

JE\ 2 OP 1
(37>P._—~r g[— — 1"
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apP
Or R ¢est-a-dire la variation de la- tension quand la temperature croit 4 lon-

gueur constante, subit des variations analoorues, mais deé swne contraire-a celle
de a,; il est négatif pour A voisin de 1 et positif dés que A prend une valeur tant
soit peu supérieare a 1. ‘

Nous sommes donc sirs que <f)d—l;;> <o et plus grand en valeur absolue que

<—07>L, dés que A est un peu supérieur a 1. Pour A trés voisin de 1, nous ne pou-
vons rien prévoir; algébriquemenf, il se pe\ut queb (%l;>l).soit positif. Cependant
celle conclusion estimprobable sil’on considére que g]g est quasi—ndl au voisinage
de A =1 (comme le montre I'expérience) et que, par conséquent, I'influence du
premier terme est alors negllgeable.

En définitive, il est a prévoir que E; ‘diminue toujours quand la temperature
s'éleve, el'qne'cette diminution ést propornonnellement d’autant plus grande, pour
une méme variation de température, que. A est plus grand. :

Toutes ces prévisions sont minutieusement vérifiées par lexpenence Il était
trés important d’insister sur les phénoménes différents qu’on peut obtenir suivant
le paramétre auquel on s’adresse. Toutes les contradictions que nous avons signa-
lées doivent pfé’cisément tenir & ce qu'on n’a pas spécifié les conditions expéri-
mentales. Il est inconcevable que je sois le premier, depuis qu’on étudie le caout-
chouc, & distinguer : 1° les variations par la température a tension constante et a
longueur constante; 2° les phénoménes qui ont trait au paramétré ¢ des phénoQ
ménes qui se rapportent au paramétre E;.

49. Résultats expérimentauz. — Conformément aux prévisions précédentes,

R
Pexpérience prouve que le quotient <(())—: )P, d’abord négauf pour A = 1, s’annule,

devient positif pour des valeurs de A comprises entre 1 et 2, p;isse par un maxi:
mum, décroit, s’annule une seconde fois pour des valeurs de A généralement
comprises entre 2 et 3, devient négalif et croit ensuite trés vite en valeur absolue
jusqu’aux plus grandes valeurs admissibles pour A..Il est bien entendu qtl’il s’agit
ici d’expériences réguliérement croisées a deux températures différentes. .

Il semble bien que M. Imbert (These de Marseille, 1880) ait observe un chan-
gement de signe du paramelre &. Malheureusement :

1° Il explique ses résultats en s’appuyant sur I'’équation 1nadm1551b]e (19) [n° 18]
et & V'aide d’un raisonnement d’ane incontestable absurdité : I'é quatlon (12) ne
peut conduire a aucune conséquence semblable.

2¢ Il lie le changement de signe de <%£;> .au changement de signe de ;.
P .
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Pour ;> o, et par conséquent pour des charges faibles, & doit, suivant lui, aug-
menter quand la température croit; pour 2, = o, & doit conserver la méme valear
quelle que soit la température ; enfin pour o, <o, et par conséquent pour des
tensions assez grandes, C doit'diminuer quand la température s’éleve. Toutes ces
conséquences sont aussi fausses que les raisonnements qui y ont conduit.

3° Au point de vue expérimental, sans parler de la technique rudimentaire,
les faits sont mal observés ; car (Z—f passe, non pas une fois, mais deux fois par o et
ne peut étre positif que précisément si a; est déja négatif.

Les résultats que j’énonce n’ont donc aucun rapport avec ceux de M. Imbert ;
en admettant-que le phénoméne observé par lui et par moi soit en partie le méme,
les commentaires qu’il ajoute au résultat brut de I'expérience enlévent a son
observation tout intérét, puisqu’ils sont la négation méme du phénoméne.

Pour en revenir & mes expériences, on concoit, d’aprés les raisonnements du
n°® 48, que le maximum positif du quotient 9¢:d¢ (dP = o) doive correspondre
a la fois & une valeur négative suffisante de a,, c’est-d-dire & une charge assez
grande, et & une valeur négative assez grande du quotient dC: dL, c’est-a-dire a
une charge pas trop grande. En effet les deux facteurs du produit varient en sens
conlraires.

Voiri une expérience entre 15° et 49°. La charge y vaut 6Gs.

Allongement Raccour- dl

Charge. a froid. cissement. C a froid. &’
OYeeinennannnnn. . A=1 —9 115 — 0,023
T2%eeee 1,28 29 74 -+ 0,008
N L 1,45 75 59 -+ 0,015
A eevonanenennad! 1,69 130 47 -+ 0,036
R CT N 1,90 223 39 -+ 0,050
167, L FRTTR 5,47 918 12 — 0,700

La longueur moyenne sous charge nulle est Ly= 20°®, les raccourcissemenls
produits par la variation de température, sont donnés en dixiémes de millimétre.
Les & sont exprimés en unités arbitraires; dans le quotient d¢ : ¢, le dénomina-
teur est la moyenne des valeurs  froid et & chaud. Pour expérience que j’étudie,
o, serait nul & peu prés pour une charge de 668 et un allongement A=1,12. Les
expériences sont réguliérement croisées : on allume et I'on éteint le radiateur
de 20 en 20 minutes; le cycle de charge est de 265 et effectué en 43 secondes.
L’excentrique ne cesse pas de tourner, méme pendant les refroidissements et les
échauffements. On détermine les valeurs de & quelques minutes avant d’éteindre
ou d’allumer. )

Grice a ces résultats, nous pouvons comprendre ceux du n° 21 du Mémoire



256 H. BOUASSE.

Sur la réactivité du caoutchouc vulcanisé. On y décrit des cycles a charge
moyenne constante. Les quantités ¢ représentent les inverses des paramétres .

Considérons d’abord les cycles isothermes.

Entre les charges Py= 5508 et P, = 6508, c’est-a dire pour la charge moyenne
6008, ¢ > ¢ ; le paramétre C est plus petit & chaud qu’a froid. Au contraire, pour
un cycle de méme grandeur et la charge moyenne 4008, le paramétre € est plus
grand a chaud qu’a froid. Bien que les parcours soient trop grands pour une déter-
mination correcte de C, ces résultats sont conformes & ceux des expériences qui
précédent.

L’influence du recuit et du temps passé & basse température aprés le recuit se
marque avec évidence dans les expériences que nous rappelons, bien que faites
sur des cycles trés étendus. Enfin les résultats paradoxaux sur les cycles non iso-
thermes s’expliquent tant par les variations du paramétre & avec la température
que par la diminution de la réactivité quand la température s’éléve.

ABSORPTION D’ENERGIE DANS LES OSCILLATIONS.

50. L’appareil utilisé pour la détermination de & par la méthode dynamique
(n°19 et suiv.) permet de mesurer, au moins approximativement et en valeur rela-
tive, I'absorption d’énergie pendant des oscillations entretenues avec une ampli-
tude constante. La précision n’est pas trés grande, il est difficile de maintenir
invariable la longuear de mercure suivant laquelle le circuit est fermé, et 'on n’est
jamais stir de la perfection des contacts obtenus & 'aide de I'appareil représenté
figure 6. Toutefois les renseignements obtenus sont précienx.

Je décrirai plus loin une seconde méthode théoriquement plus parfaite (n° 57),
qui permet aussi de mesurer Pabsorption d’énergie pendant les oscillations d’am-
plitude constante ; malheureusement elle n’est guére pratique.

Le probléme que je vais traiter est différent : i/ s'agit de trouver la lot
d’amortissement des oscillations d’un pendule sous Uinfluence du frottement
di auz dilatations périodiques du caoutchouc. Aprés que les oscillations ont
été entretenues pendant un temps convenable, supprimons le courant d’entretien
et toutes les causes essentiellement variables d’amortissement, comme les contacts
de mercure; déterminons la loi de décroissance des amplitudes d’une oscillation
dont la durée est voisine de 2 secondes.

L’appareil est trés analogue & celui qui sert pour la méthode dynamique. Il n’en
différe essentiellement que par la position du centre de gravité (sur laquelle nous
reviendrons au n° 52) et par le procédé employé pour étirer le caoutchouc. N'ayant
pu faire construire un second appareil tel que celui décrit au n° 21, je me suis
servi d'une disposition plus simple et suffisamment précise. Les pinces dans les-
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quelles sont prises les extrémités du caoutchouc sont montées sur des glissiéres
qui se déplacent le long d’une bande de. feuillard fixée sur une planche et qu’on
peut arréter en une position quelconque par des vis de pression. Ce systéme est
long de 2™,50 : une régle divisée permet de déterminer a4 chaque instant la dis-
tance des pinces. Pour déplacer les deux pinces simultanément, en sens inverses
et de quanlités égales, des cordes s’attachentaux glissiéres, passent sur deux poulies
fixées aux extrémités du feunillard, sur deux autres poulies placées prés du miliea
de 'appareil, au-dessus du caoutchouc et symétriquement par rapport au pendule,
et aboutissent & un écrou, mobile le long d’une tige filetée ayant 1™,20 de lon-
gueur. Celte lige pose par une de ses extrémités sur une crapaudine, est prise &
Pautre extrémité dans un collier et peut recevoir un mouvement de rotation
régulier par le moyen d’une poulie en fonte ajourée de 40°™ de diamétre, fixée au
dela-du collier.

Quand cette poulie tourne dans un sens ou dans 'autre, elle entraine les cordes;
le caoutchouc se trouve tendu oun relaché également par les deux bouts : le pro-
cédé est analogue a celui qui permet d’ouvrir ou de fermer simultanément les
rideaux d’une fenétre.

Le sysléme d’entretien est semblable a celui du pendule dun® 19 ; les ponts qui
¢tablissent les contacts et les courts-circuils sont supportés par une piéce de laiton
transversale, fixée a la hauteur du couteau, ct par 'extrémité inféricure du pen-
dule. Mais les godets de mercure (qui correspondent & la tige transversale) et les
nacelles (qui sont dans la verticale du pendule) sont placés sur des piéces de bois
mobiles autour d’axes horizontaux ; en appuyant surun levier, on les éloigne des
ponts. Les oscillations du pendule ne sont plus alors amorties que par le frotle-
ment intérieur des caoutchoucs et par des frottements (air, couleaux) qui restent
conslants d’une expérience a I'autre et dont il est possible d’éliminer I’effet. Pour
diminuer ces frottements, les solénoides qui aspirent Vaimant (¢, f, fig. 5) ont
une carcasse en carton et un grand diamétre intérieur (6°™) : on supprime ainsi les
courants d’'induction et 'amortissement par I'air qui est relativement trés grand
quand un cylindre se déplace dans un cylindre paralléle de diamétre peu diflé-
rent. »

Le couteau employé était loin de la perfection ; malgré cela le pendule avait un
amorlissement relativement faible, comme nous le verrous plus loin.

51. Voici maintenant comment on étudie la loi de décroissance des oscillations
du pendule.

Il porte & sa base une lentille achromatique dont le plan coincide avec le plan
d’oscillation et qui donne I'image d’une fente lumineuse verlicale fixe, soit sur une
échelle transparente, soit sur la fente horizontale d’une caisse plate contenant une
plaque photographique. ’

Fac. de T., » S., VL. 34
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Observation & ’eeil. — L’échelle transparente horizontale est faile d’une lame
de verre sur laquelle on a collé du papier calque. On a tracé des traits verticaux
qui se trouvent, de part et d’autre d’un trait origine, a des distances (en dixiémes
de millimétre) égales a

1250 1000 800 640 312 410 328 262 210

formant une progression géométrique de raison o0,8. L’échelle est portée par une
vis micrométrique qui permet de la déplacer horizontalement dans son propre plan
et de la régler de maniére que le trait lumineux oscille symétriquement par rap-
port au trait origine.

L'expérience consiste, aprés avoir libéré le pendule, & compter le nombre des
oscillations nécessaires pour que I'extrémité des oscillations passe d’un trait noir
de ’échelle au suivant, c¢’est-a-dire pour que 'amplitude diminue dans le rapport
de 10 4 8. Si Pamplitude o satisfait a chaque instant a la relation o= a,e™, il
en faut compter le méme nombre pour que le trait lumineux s’arréte successl-
vement sur les différents traits. L’expérience permet donc la comparaison immé-
diate de cette loi a la loi réelle de décroissance. Elle ne présente aucune difficulté
particuliére et la détermination du numéro d’ordre de 'oscillation correspondant
a chaque trait se fait sans ambiguité, a une demi-unité prés naturellement.

Enregistrement photographique. — Le cliché se meut verticalement derriére
la fente horizontale. Il est supporté, comme le montre schématiquement la figure 4
du Chapitre 1X de mon Mémoire Sur les courbes de déformation des fils. La
corde DE est enroulée sur une poulie qui est liée a une roue d’échappement; en
agissant sur ce qu’on peut appeler 'ancre d’échappement, on fait passer une
dent et descendre le cliché de 3™™ environ. On emploie des plaques 13>< 18 le
grand coté est placé horizontalement. C’est donc une quarantaine d’épreuves qu’on
peut obtenir sur la méme plaque: Un volet permet de découvrir ou de cacher la
plaque.

On ouvre le volet quand le pendule passe par la verticale (temps o), et on le
referme quand il repasse par la verticale une oscillation aprés (temps 1). On compte
alors généralement jusqu'a 10 (temps o) et 'on recommence la méme opération
jusqu’a ce que les quarante clichés soient obtenus, ou jusqu’a ce que Poscillation
ait une amplitude trop petite. Si 'amortissement est trés faible, on ne fait un
cliché que toutes les 20 oscillations. Je me suis servi principalement de 'obser-
vation a P'eil d’une précision suflisante et d’une commodité infiniment plus

grande.

52. Pour nous rendre compte des conditions différentes d’emploi du pendule
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actuel et du pendule du n° 19, reprenons les équations du n° 12:

I I
L=/ T =y
o 2 [ 1 1 _ . G -
=" (mm) V=rGar o)

Sil'on veut que & et ses variations soient connues avec quelque précision, il
faut faire T, et T, aussi différents que possible, c’est-i-dire, pour un pendule de
moment I donné, faire T, =, C=o0; le pendule est & peu prés a état d’équi-
libre indifférent sous I'action de la pesanteur seule. Mais alors W est minimum et
Pamortissement trés rapide. Il est au contraire avantageux, pour mesurer le décré-
ment, de donner au couple C une valeur assez grande pour que la durée d’oscil-
lation soit & peine modifiée par la présence des caoutchoucs. Assurément le décré-
ment esl petit, mais, comme rien n’empéche de le déterminer sur un plus grand
nombre d’oscillations, en définitive, la précision reste la méme et le phénoméne
est théoriquement mieux défini.

On trouve a celte pratique un autre avantage; la durée d’oscillation restant &
peu prés la méme avec ou sans les caoutchoucs, on peut, dans une expérience
préliminaire, déterminer le décrément di a lair et au frottement du couteau.

Voici le calcul complet. Jappellerai w 1'énergie perdue par le pendule quand
son amplitude passe d’une valeur j, a une valeur j,, pour une durée d’oscillation
égale a 1 seconde. Si la durée devient T, I'énergie perdue par le pendule pour Ia
méme varialion d’amplitude est v ;T2 (n° 12).

Soient maintenant T, et n, la durée d’oscillation sans caoutchouc et le nombre
d’oscillations qui, dans ces conditions, fait passer I'amplitade de j, a j,. L’ab-
sorption d’énergie pour une oscillation est «w:n,T;. Soient T, el n, les mémes
quantités quand le caoutchouc est en place, et soit z I'absorption d’énergic pour
une oscillation. On a la relation

W ) w x I T T
n — X e ) — == =y T T3
2\ n, T2 K w N7 o, T2

N est le nombre d’oscillations qu’il faudrait pour amortir le pendule de 'ampli-
tude 7, a amplitude j,, & supposer que I'amortissement provienne du caoutchouc
seul et que la durée d’oscillation soit 1 seconde.

Le calcul précédent suppose que T, et T, sont trés voisins, et par conséquent
que, pour les deux périodes, 'amortissement, qui n’est pas d au caoutchouc,
reste le méme. Effectivement T, et T, ne different que de quelques centié¢mes.
On peut faire une petite correction, le plus souvent négligeable, en admettant
que I'absorption par I'air et le couleau est en raison inverse de la période (n° 22).
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Au lieu de l'absorption w:r,T?, on aurait I'absorption un peu plus grande,

win, T\T,; la formule devient

T T 1

N7 nT: nTT,

Elle nous servira a réduire les résultats des expériences.

53. Amortissement en fonction de U'amplitude. — La quantité d’énergie
contenue dans le pendule, quand il passe par la verticale, est proportionnelle au
carré de 'amplitude, car la loi de 'oscillation ne différe jamais que fort peu de la
loi sinusoidale. Si nous admettons que le caoutchouc absorbe une quantité
d’énergie elle-méme proportionnelle au carré de I'amplitude, pour chaque oscil-
lation, il y aura une perte d’énergie proportionnelle a 'énergie totale, et par con-
séquent une diminution d’amplitude proportionnelle & 'amplitude. Les oscilla-
tions diminuent en progression géomélrique. _

Par conséquent, si (comme il est indiqué au n° 51) nous observons avec une
échelle transparente dont les traits sont placés a des distances d’un trait origine
formant une progression géométrique, a supposer d’ailleurs que le caoutchouc
soit 'unique causc du frottement, nous devons trouver que, pour passer d'un trait
au suivant, il faut le méme nombre d’oscillations.

Comme le caoutchouc n’est pas seul a amortir les oscillations, nous devons
corriger les résultats de l'influence des autres froltements : c’est ce que nous
apprend a faire le n° 32. En définilive, en observant avec I'échelle du n° 51, nous
devons trouver des nombres N constants, si le caoutchouc absorbe I'énergie pro-
portionnellement au carré de Pamplitude ; en d’autres termes si I'aire comprise
dans le cycle est proportionnelle au carré de 'amplitude.

Il ne résulterait pas de ce fait existence d’un frolttement proportionnel a la
vitesse (n®22); bien d’autres hypothéses conduisent a la méme loi, comme je I'ai
prouvé dans un travail Sur les petites oscillations de torsion (J. P., 1, 1902).

La méthode du pendule entretenu (n° 23) fournit des résultals conformes a la
loi précédente; mais, comme on peut craindre qu’elle n’ait pas une grande préci-
sion, en ce qui concerne la mesure des absorptions d’énergie (n° 50), je vais
reprendre la question par la méthode actuelle.

Le pendule a une longueur de 158°™ entre le plan du couteau etlecentre oplique
de la lentille de projection; quand lc pendule s’incline de 1° sur la verticale, le
centre optique se déplace de 2,76 environ. La fente et ’échelle transparente
sont a des distances telles de la lentille, que le déplacement de I'image est alors
de 7™,55. V’étudiais généralement les oscillations entre les amplitudes qui corres-
pondaient, de part et d’autre du trait origine, & des distances de I'image égales
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a 12°m5 et a 2°™,1, L’angle que fait le pendule avec la verticale est donc toujours
inférieur & 12,5:7,55 = 1°,66.

La pince qui serrele caoutchouc est & 17°™ environ au-dessus du plan du couteau.
I1 est facile de voir, d’aprés les données précédentes, qu’elle se déplace de 1°™
environ quand l'image de la fente se déplace de 25°™. L’amplitude de I'oscil-
lation du caoutchouc est donc toujours inférieure & 0°™,5 : sil’on veut, le parcours
total est toujours inférieur a 1°™.

La premiére question a résoudre est de savoir suivant quelle loi 'oscillation du
pendule s’amortit quand le caoutchouc n’est pas en place. Jai trouvé que 'image
met les nombres d’oscillations, pour passer d’un trait de I’échelle au trait suivant:

95 106 127 155 188 227 256 265

En tout 1419 oscillations pour un temps total de 48™18¢: la durée d’une oscil-
lation est 2%,042. Ainsi I'énergie absorbée est trés loin d’étre proportionnelle au
carré de Pamplitude; elle croit beaucoup plus vite: en d’autres termes, 'amor-
tissement est trés loin d’étre produit par une force proportionnelle a la vitesse ;
la force contient certainement la vitesse a la premiére puissance et au carré.

Ce résultat est conforme a ce qu’on sait déja. Les expériences de Bessel ont
prouvé depuis longtemps que, pour les oscillations des pendules et pour des
angles initiaux de 50" environ avec la verticale, ’hypothése d’un (rottement pro-
portionnel & la vitesse n’est déja plus vérifiée. (Voir Mémoires publiés par la
Société de Physique, t. IV et 'V et spécia]emcnl t. V, p. 395.)

Ceci posé, nous pouvons déterminer la loi de décroissance, le caoulchouc
étant en place, et faire la correction de la perte d’énergie due a I'air et au frotte-
ment des couteaux. On trouve que, dans les limites d’amplitude ci-dessus indi-
quées, l’absorption d’énergie par les oscillations du caoutchouc est trés sen-
siblement proportionnelle au carré de ’amplitude. Les nombres N, calculés
comme il est ditau n° 22, sont sensiblement constants. Pourtant, lorsque le caout-
chouc est peu tendu, ces nombres ont une tendance a décroitre quand 'amplitude
décroit; ce qui veut dire que 'absorption d’énergie croit un peu moins vite que
proportionnellement au carré de 'amplitude, a I'inverse de ce qu’on observe pour
I’air. La différence est toujours faible, inférieure & 0,1 en valeur relative dans les
cas ou elle est maxima. Comme I'absorption due au caoutchouc est notablement
plus grande que celle absorbée par I'air et le couteau, on s’explique pourquoi la
méthode moins précise du pendule entretenu fournit la loi de proportionnalité au
carré de I'amplitude.

54. Amortissement pour des longueurs variables de caoutchouc sous une
tension invariable. — On suppose qu’un caoutchouc est attaché invariablement
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a scs deux extrémités : deux pinces supplémentaires permettent d’en limiter une
portion plus ou moins grande, de maniére que le pendule oscille sous U'influence
d’une longueur variable, la lension restant invariable. On peut admettre que
P'absorption d’énergie, pour une méme amplitude de la déformation, est pro-
portionnelle a la longueur, c’est-a-dire a la quantité de matiére déformée. Bien
entendu il s’agit ici de Pamplitude de la déformation de chaque élément du fil
et non de 'amplitude de l'oscillation du pendule.

En particulier, si I'énergie absorbée dans une oscillation par le frottement inté-
vieur da caoutchouc est rigoureusement proportionnelle au carré de 'amplitude,
on doit obtenir (en appliquant la méthode de calcul exposée au n° 52 qui élimine
les frottements dus a I'air et aux couteanx), des nombres Nindépendants de I'am-
plitude et proportiounnels aux longueurs utilisées. Il faut que la longueur ne soit
pas trop courte pour que le déplacement de la pince du pendule se fasse a peu
prés rigoureusement dans la direction méme du caoutchouc. '

Il est bon de faire remarquer pourquoi I’on trouve, avec les mémes lois, un ré-
sultat tout différent pour 'amortissement dt a un fil tordu (J. P., 1, 1go2, p. 27).
Dans Pexpérience de torsion, c’est 'élasticité du fil qui régle la durée d’oscillation;
le carré de celte durée, et par conséquent la quantité d’énergie contenue dans
Poscillation, est en raison inverse de la longueur. D’ailleurs la perte d’énergie
est, pour une amplitude déterminée du disque: d’une part, proportionnelle au
carré de 'amplitude de la déformaltion et, par conséquent, en raison inverse du
carré de la longueur ; de l'autre, proportionnelle a la longueur (c’est-a-dire a la
quantité de métal déformé). En définitive, elle est en raison inverse de la lon-
gueur. Donc I'amortissement (c’est-d-dire la diminution relative de l'amplitude)
est indépendant de la longueur.

Dans le cas présent, au contraire, la durée d’oscillation, et par conséquent
I’énergie contenue dans le pendule, est a peu prés indépendante de la longueur dua
caoutchouc. La perte d’énergie due au caoutchouc est, d'une part, en raison
inverse du carré de la longueur, de I'autre, proportionnelle & la longueur; en défi-
nilive, elle est en raison inverse de la longueur. Le nombre d’oscillations pour
faire passer 'amplitude d’une valeur & une autre cst donc proportionnel a la lon-
gueur, en supposant légitimes les hypotheéses que nous avons faites.

L’expérience vérifie ces conclusions dans les limites mémes ot I'énergie observée
est proportionnelle au carré de 'amplitude et surtout ou il est possible de consi-
dérer le caoutchouc comme homogeéne et de section constante d’un bout a lautre.
Voici un exemple.

Caoutchouc de 16°™ de longueur initiale de chaque c6té de la pince (soit 32°™
en tout). Aprés plusicurs cycles entre A=1 et A=4°",75, on maintient le
caoutchouc pendant 48 heures a cet allongement qui correspond a une longueur
totale de 2 > 76™, 4. On fait alors I'expérience pour une tension constante et des
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longueurs variables délimitées par deux autres pinces : on trouve pour les
nombres N rapportés a une durée d’oscillation de 2 secondes, ramenés a la méme
longueur par la loi précédente et corrigés du frottement de I'air et des couteaux :

Longueur. 76°",4. 56, 4. 46°", 4. 36°,4. 20°™,6.

N... 369 356 377 379 373 Moyenne... 375

Les écarts & la moyenne sont de 'ordre de <.

Maintenant que nous savons comment ’absorption d’énergie varie avec I'ampli-
tude et avec la longueur, nous pouvons nous proposer de déterminer la loi de
variation aux divers points d’un cycle de traction. Nous ferons toujours osciller
le fil entier, c’est-a-dire que nous déformerons une masse invariable de matiére :

. pour rapporter les résultats a une longueur constante, il suffirait de diviser les
nombres N obtenus par la longueur actuelle. Ces nombres N représentent les
nombres d’oscillation qu’il faudrait pour produire amortissement d’un pendule
de méme moment d'inertie, dont la période serait 2° (qui par conséquent
battrait exactement la seconde), et qui ne serait géné que par le frottement
intérieur du caoutchouc.

55. Amortissement le long d’une courbe de premiére traction et les courbes
suivantes. — Voici une expérience effectuée avec un fil de 16°™ de longueur
initiale de part et d’autre de la pince.

On trouve pour N les nombres suivants, pour un intervalle invariable de

I’échelle.

Allongements A. 1,31. 1,94. 2,87. 3,81. 4,75.
Courbe d'aller........... 32 65 111 121 103

N ( Courbe de retour........ 33 71 142 178
Deuxiéme courbe d’aller... 75 151 187 139

Nous constatons donc : 7

1° L’énergie absorbée par une masse constante de caoutchouc décroit d’abord
quand la longueur augmente, passe par un minimum et croit 4 nouveau. Ce
résultat est de tout point conforme a celui que nous avons obtenu avec la méthode
du pendule entretenu (n° 24, 4°). On obtient une régle analogue en calculant la
perte d’énergie, non plus pour une masse constante et par conséquent pour des
amplitudes qui diminuent a mesure que la longueur augmente (celles du pendule
variant entre les mémes limites), mais pour une masse variable, une longueur
constante el par conséquent des amplitudes variant entre des limites constantes;

2° L'énergie absorbée est notablement inférieure pour la courbe de décharge..
Nous aurions obtenu des différences incomparablement plus grandes en utili-
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sant, au liea de caoutchouc pure gomme et soufre, du caoutchouc contenant en
quantités notables des matiéres étrangéres;

3* La seconde courbe de charge est au-dessous des deux précédentes. En reve-
nant plusieurs fois a I'allongement extréme A = 4,55, on trouve des N régulié-
rement croissants. La variation constatée quand on passe de I'un d’entre eux
au suivant, diminue a mesure qu’augmente le numéro d’ordre des cycles.

4° On obtient des résullats analogues dans le parcours plusieurs fois répété
d’un cycle qui finit par se fixer; les amortissements sur les courbes de retour sont,
au moins au voisinage de 'extrémité supérieure du cycle, nettement inférieurs
aux amortissements sur les courbes d’aller. Le phénoméne est compliqué pour
les trés petits A par allongement permanent du caoutchouc.

56. Influence d’une station sous un allongement donné avec ou sans
oscillations. — lorsqu’un fil est amené & un certain allongement et maintenu
indétiniment sous cet allongement, le frottement intérieur décroit; les nombres N
d’oscillations que met le pendule a passer d’'une amplitude & une autre amplitude
données, augmentent.

Par exemple un fil neuf est amené a 'allongement A = 5,24. Aprés 5 minutes
sous cet allongement, on trouve N =174 ; aprés 4 heures, N =183.

Inversement, quand, aprés avoir longtemps maintenu le fil sous un grand
allongement A,, on I'améne a un allongement plus petit A, et qu'on I'y aban-
donne, N diminue; le frottement intérieur croit. Ainsi aprés I’expérience pré-
cédente, on raméne le fil a I'allongement 3, 12; aussitdt Popération effectuée on
trouve N = 253 ; 18 heures aprés, N = 241.

Supposons que le fil ait été maintenu sous un allongement A,, sans lui imposer
des oscillations, pendant un temps assez long pour que N ne varie plus sensible-
ment; si alors on entretient les oscillations pendant un temps notable (une ou
plusieurs heures), le frottement intérieur diminue légérement, N augmente un
peu. L’amplitude des oscillations entretenues doit loujours rester pelite, & peine
supérieure a "amplitude pour laquelle commence la détermination des nombres N.

Je ne rapporte ici que les résultats les plus généraux, sans entrer dans un
détail qui ne présenterait pas d’intérét vu I'état actuel de la question.

OSCILLATIONS PAR INFLUENCE.

57. Un caoutchouc vertical est suspendu a un point qui oscille verticalement
suivant 'équation y = Asinw¢. A son extrémité inférieure il supporte une
masse M dont le mouvement est représenté par x = asin(wt—¢).

Nous admelttons qu'un ébranlement se transmet d’un bout a lautre du fil
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dans un temps trés petit vis-a-vis de la période T du mouvement imposé a
Uextrémité supérieure. Les frottements seront supposés proportionnels a la
vitesse des déformations. Soit € la constante de traction pour létat actuel de
tension et d’allongement du fil. L' équation du mouvement de 1'extrémité infé-
rieure ou de la masse M est alors
d'z dz dy
M— +&(x— — — f1 =~ =o.
Les z et les  sont comptés positivement vers le bas.
Les conditions que doivent satisfaire a et ¢ sont

a(€ —Mw?)cose + fawsine = €A,

—a(l —Mw?)sine + faw cose = fAw.

Posons
Mow?=¢;

on peut écrire ces conditions sous la forme

) aM(w'?— w?) cose + faw sine = EA,
1

—aM(w'?— w®)sine + faw cose = f;Aw.

Avant d’aller plus loin cherchons une définition expérimentale de f. Faisons
osciller le fil seul, en maintenant immobile 'extrémité supérieure. L’équation du

mouvement est
d*x

dx
MTiﬁ +Cw+fm~_o.

L’intégrale est l'oscillation amortie : 2 = z,e M sinw"¢, avec les conditions

_2m__ 47M

2M’ Y ey

sif=o0, T"="T'. Donc T'= 27 : v’ est la période d’oscillation du fil chargé de

la masse M, quand f= o et que I'extrémité supérieure est immobile. Cest la
période de plus forte résonance. Si 'amortissement est assez petit, on a

Az:x=AT"=4;

c’est la diminution relative d’amplitude pour une oscillation compléte; elle est
immédiatement donnée par 'expérience. On peut alors poser

T =T, o= w, d=nf:Mo'=nfo':C.
Fac. de T., > S., VL. 35
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Cas particulier. — Arrangeons-nous expérimentalement pour que ¢ =m:2;

on obtient immédiatement

Q

& m’.n. w2 f15

AT o 0 ®  w

Or 'amortissement di au frotiemeot contre 'air de la masse M est petit par
rapport a I'absorption d’énergie due a la déformation du caoutchouc. Donc f; est

voisin de f. On a alors trés sensiblement

o =w;

{l

]
oA

On obtient encore la méme condition v = ' en cherchant & rendre le rapport
a:A maximum. Additionnons les équations (1) aprés les avoir élevées au carré;

il vient
@ Safiet
Az Mz(w/2_®2)2+fzw2

Remplacons M2 par sa valeur €2 w'*; tout est constaat dans le second membre
sauf le premier terme da dénominateur. Pour que @ : A soit un maximum, il faut
que ce terme loujours positif soit nul, d’ot la condition w = w'. On a dés lors

a_ /& /1
A - f‘Zw‘.‘ fl

Si fest petit, &2: f2w? est grand devant f7: f2 qui est infériear a Uunité; on

retombe donc sur les formules données plus haut. '

Variations de la phase. — Résolvons les formales (1) par rapport & sine et

cose, puis divisons membre & membre les équations obtenues; il vient

ot (-3)

& &
Par hypothése, w est voisin de o'; d’ailleurs

i <<yt el  fw:&=0d:m trésapproximativement.

En définitive, on peut écrire

: p
tange = —
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Discutons cette formule : supposons, par exemple,
d=o,I1, 0.7 =0,032.

On a bien

tange — 0 pour 0]

[l
S

mais, & cause de la pelitesse du coefficient ¢ : =, on aura déja
tange =1 pour o n'=o0,984.

Ainsi pour de trés faibles variations de la période T' au voisinage de T'=T, la
variation de phase est énorme. Il est donc expérimentalement trés facile d’obtenir
la condition w =o' par la considération de la phase; le rapport a:A reste

, . . bl inace de e — ., . d
d’ailleurs 1nvariable au voisinage de ¢=—, puisqu’on est au maximum de ce

rapport.

Ces remarquables propriétés m’ont conduit a réaliser 'expérience, dans I'espoir
de trouver une méthode pratique pour la détermination de &. Malheureusement,
si cette méthode est théoriquement parlaite, elle présente de telles difficultés, non
de réalisation pour un cas particulier, mais d’emploi général que j’ai da J’aban-
donner. Elle n’en est pas moins curieuse et je vais décrire le dispositif expéri-
mental.

58. Dispositif expérimental. — La partie essentielle de I'appareil est le pen-
dule ABCD (fig. 17). La lame d’acier horizontale AB oscille sur deux pointes
s’appuyant dans deux crapaudines fixées a une picce rigide XX. Elle porte, d’une
part, le pendule AD (dont on voit la lourde lentille en D et qui est entretenu élec-
triquement par le procédé du n® 19) ; d’autre part, une barre horizontale CC’ &
laquelle est attaché le caoutchouc vertical CF. Quand le pendule oscille, le point C
décrit une oscillation sensiblement verticale

y=Asinwt.

L’extrémité inférieure du caoutchouc s’altache en F au pendule horizon-
tal 1J, EF, GH. L’axe de suspension est formé par les pointes fixées sur la pidce
d’acier 1J. La barre de bois EF est invariablement liée a la piéce 1J. Enfin une
barre de bois GH, portant deux masses de plomb m, peut tourner autour d’un axe
vertical O fixé sur le milieu de 1J, et peut étre arrétée dans une position azimutale
quelconque définie par I'angle o. La barre EF porte en plus une lentille achro-
matique L et des surcharges de plomb M. On s’arrange de maniére que le pen-
dule 1J, EF, GH étant abandonné a lui-méme, son centre de gravité passe par lcs
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pointes autour desquelles se fait I'oscillation, quel que soit d’ailleurs I'azimut o.
Il n’est donc soumis & aucune force pouvant le faire osciller.

On peut modifier son moment d’inertie en modifiant «.. Ge moment est minimum

Fig. 17.
Ch.
/. .

y —

B/
o/ “ | |
[¢ X K

quand o= go°, maximum quand les masses m viennent s'appuyer contre les
masses M. Les masses m sont assez légéres pour que la différence entre les valeurs
minima et maxima soit petite.

Le caoutchouc fixé en F est tendu par un poids Q. Tout se passe comme st le
caoutchouc avait, sous la tension Q, a faire osciller verticalement une masse M
égale a la somme de la masse du poids Q et d’une masse qu’on obtiendra en divi-
sant le moment d’inertie total du pendule IJEFHG par le carré de la distance
du point I a l'axe de rotation de ce pendule. Le point F décrit une oscillation

verticale, (
xz—=asin(wt—E¢).

Les frottements proviennent, d’une part, du déplacement du pendule horizontal ;

dx

dt

. . . d . .
points F et C; nous les admettons proportionnels & — (z — y). 1ls s’introduisent

nous les admettons proportionnels a —; de 'autre, du déplacement relatif des

dans Uéquation sous la forme f‘% — N ii—z'}t_/’ avec la condition f, << f. Reste a

déterminer le rapport @ : A et la phase e.
Le pendule AD porte un écran en carton percé d’un trou d’aiguille T. Une
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lampe de Nernst est placée en S ; une lentille L’ en donne I'image sur la lentille L.
Celle-ci donne a son tour une image du trouT en P sur un écran ou sur une plaque
photographique. Lorsque I’écran T oscille, le trou T reste constamment éclairé,
gréace a la disposition précédente ; la lumiére, concentrée dans la position moyenne
de la lentille L, donne une image du trou a travers cette lentille, malgré les oscil-
lations des deux pendules.

On commence par tracer sur I’écran deux traits paralleles aux traces lumineuses
obtenues, quand 'un ou l'autre pendule est maintenu immobile ; quand les deux
pendules oscillent simultanément, on voit sur I’écran une ellipse dont les axes ne
coincident pas avec ces traits. Sans arréter 'appareil, on modifie lentement le
moment d’inertie du pendule horizontal, jusqu’a ce que les axes de I'ellipse coin-
cident avec les traits. Conformément & ce que nous a montré la théorie, on obtient

ce réglage avec une extréme précision, les plus petites variations de I'angle « mo-
. . . . .. . T
difiant beaucoup I'ellipse au voisinage de la position qui donne ¢ = >

Cette condition réalisée, on photographie l’ellipse, et I'on a tout ce qu'il faut
pour mesurer le rapport @ : A et par conséquent 'amortissement o, dans les con-
ditions imposées de tension et d’allongement du caoutchouc.

Pour fixer les idées, supposons que le rapport invariable des déplacements des
points T et C soil 20; que la lentille L soit tout prés du point F et que 1'on
ait LP = LT. Les déplacements verticaux p du point C se traduisent par des
déplacements horizontaux »' du point P, tels que 3’ =20y ; les déplacements
verticaux z du point F se traduisent par des déplacements verticaux z' du point P,
tels que 2'=2x. On a donc z':y'=o0,1 z:y. Faisons par exemple 8 =o,1:
nous avons a:A =m:6=231,4: le rapport des axes de ’ellipse enregistrée

est 3,14.

59. Avantages et inconvénients de la méthode précédente. — La méthode
que je viens d’exposer permet de déterminer 'amortissement dans un cycle, que
nous sommes libres de répéter, identique & lui-méme, autant de fois que nous le
voulons. Elle permet donc de mesurer ’aire embrassée par la courbe d’aller et de
retour d’un parcours fixé et trés exactement fermé. Théoriquement, elle est donc
excellente et sa réalisation étant relativement aisée, il semble que nous ayons du
’employer exclusivement aux deux autres qui nous ont servi.

Toutefois, on remarquera qu’elle donne exactement les mémes renseignements
que la méthode du pendule entretenu (n° 19 et suiv.); celle-ci fournit en outre la
valeur du paramétre C. En second lieu, si la méthode du pendule non entretenu
(n° 50 et suiv.) semble théoriquement moins parfaite, parce que les oscillations
varient d’amplitude et que, par conséquent, les cycles ne sont pas strictement
fermés, 'inconvénient est minime pour les pelits cycles utilisés. Enfin il ne faut
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pas se faire illusion sur la commodité de la méthode de détermination de Pamor-
tissement au moyen des phénoménes de résonance, du moins avec 'appareil décrit
et que je ne suis pas arrivé a améliorer.

Assurément, si nous prenons une longueur convenable de caoutchouc, choisie
pour une charge Q particaliére et pour la longueur moyenne CF déterminée une
fois pour toutes par construction, 'expérience pourra se faive, & condition tou-
tefois de faire varier la charge Q pour compenser les effets de la réactivité.

Nous obtiendrons ainsi un certain nombre de valeurs de ’amortissement & cor-
respondant & des charges voisines de la charge Q.

Mais si nous voulons passer a une autre charge, il faut prendre un autre caout-
chouc, lalongueur CF nous étant imposée par I'appareil qu’on ne peut naturelle-
ment pas songer a déplacer en bloc. Or il n’est guére inléressant de déterminer
une valeur numérique particuliére de & ; seules importent les lois de variation de
I'amortissement le long de cycles imposés & un méme caoutchouc. Voila comment
cette méthode particuliérement attrayante se réduit 2 une intéressante vérification
de la théorie de la résonance. Depuis longtemps on avait songé & montrer les
phénoménes de résonance avec du caoutchouc ; mais on s’était toujours borné a
prouver que, suivant les périodes, 'amplitude de Poscillation de la masse sus-
pendue varie. L’appareil que j’ai décrit permet d’aller plus loin et de vérifier dans
le détail les conséquences de la théorie.

Supposons la période d’entrainement T trés grande par rapport a la période T';
nous devons écrire que w est Lrés petit vis-a-vis de o' Il vient tange =o, la
différence de phase est nulle ; on trouve aussi @ = A. L’ellipse est alors infiniment
aplatie suivant une droite a0 a peu prés confondue avec la droite Py'. 1l suffit
d’ailleurs pratiquement que T soit lant soit peu plus grand que T’ pour qu’il en
soit ainsi.

Quand o croit par rapport a o', I'ellipse s’ouvre de plus en plus et se redresse;
nous savons que ses axes coincident avec Pz’ et Py’ au voisinage de w=uv:
tange = 0. Quand w devient plus grand que o', l'ellipse passe dans les deux
autres quadrants et va s’aplatissant el s’inclinant; tange devient négatif. Nous
savons que la variation de forme de Pellipse est trés rapide au voisinage de w=10'.
Enfin quand o est trés grand vis-d-vis de o' (c’est-a-dire que la période d’entrai-
nement est trés courle vis-a-vis de la période du pendule horizontal oscillant sous
I'influence du caoutchouc), le rapport @ : A tend vers o. On a voulu baser sur ce
cas particulier la théorie de I'amortissement des trépidations du sol par des sus-
pensions en caoutchouc : j’al discuté complétement le probléme dans un article
qu’on trouvera dans le Journal de Physique pour 19o4.
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NOTE SUR L’EMPLOI D'UNE CORDE DE CAOUTCHOUC
DANS L’EXPERIENCE DE MELDE.

Lorsqu’une corde n’a pas de raideur appréciable, on sait que la vitesse de pro-
pagation d’un ébranlement transversal est donnée en métres par la formule

V= gE
ou

g£=09,81.

P est la tension en unités quelconques, p est le poids (exprimé avec les mémes
unités) da métre de corde dans les conditions de ’expérience.

On peut séparer la covde en faseaux en excitant les vibrations transversales a
I'aide d’un diapason : c’est 'expérience classique de Melde. Avec le dispositif le
plus employé, le nombre N de vibrations de la corde est moitié¢ de celui du
diapason. Calculons la longueur du fuseau (demi-longuear d’onde) pour une
corde de caoutchouc dont on fait varier la tension. On a

l:z\——Y—;—L gii.
2 2N~ 2N p

Nous supposons que sous tension nulle (A = 1) le poids du métre de corde est

108. Si la densité ne varie pas quand le caoutchouc est tendu, on a généra-
lement p = 10: A. Nous prendrons pour P les nombres qui correspondent a la
courbe de premiére charge et de premiére décharge représentée au n° 3, figure 3 -
du Mémoire Sur les courbes de traction du caoutchouc vulcanisé. La couarbe
tABCDEF (fig. 18) représente en centimétres les longueurs / en fonction de A
pour la charge et la décharge, le diapason effectuant 1oo vibrations a la seconde,
ce qui donne 2N = 100.

Voici comment il faut se servir de ce graphique.

Supposons que le fil employé ait la longuear 10°™ sous tension nulle. Pour les
différents A, sa longueur est représentée par la droite Oa, qui passe a 'origine et
au point du plan dont les coordonnées sont A = 1, /= 10°™. Cette droite coupe la
courbe aux points « et /. D’oti la conclusion suivante : pour que le fil qui, au
début de expérience,a 10°™ sous charge nulle se divise en un seul fuseau, il faut
que pendant la charge on atteigne I'allongement correspondant & a, A = 1,26, et
que pendant la décharge on revienne a I’allongement correspondant a o/, A =1,74.
Ceci posé, il résulte du graphique que la corde de caoutchouc qui a servi a le con-
struire ne pourra (dans les conditions de I'expérience, N = 50) se diviser en un
seul fuseau, si sa longueur initiale L, est telle que la droite qui lui correspond ne
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coupe ni I'une ni autre des courbes 1ABC, CDEF. Par exemple, si L, = 20,

quelle que soit la tension, on n’obtiendra jamais la division en un seul fuseau.
Pour savoir si la corde L, peut se diviser en n fuseaux, il suffit de chercher si

la corde L, : n peut se diviser en un seul fuseau. Ainsi la corde qui a 20°™ de lon-

Fig. 18.
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gueur initiale peut se diviser en deux fuseaux pour des allongements convenables.
la corde qui a 30 de longueur initiale peut se diviser en trois fuseaux pour les
mémes allongements qui correspondent, sur les courbes de charge et de décharge,
aux points d’intersection a et o' de la droite O« appartenanta la corde Ly = 10°™.

Bien entendu, I'hypothése que la corde n’a pas de raideur propre est tout a fait
inexacte quand la tension est faible. Pour P =o0 ou A =1, la longueur / n’est
donc pas nulle. Mais dés que I'allongement A est de T'ordre de 1,5, la raideur
devient négligeable comme premiére approximation, tant & cause de la diminution
du diamétre qu’a cause de I'augmentation de la tension. Ce que nous avons dit
n’est pas qualitativement modifié par Pexistence de la raideur; seulement les por-
tions 10 et Fo des courbes correspondant & la charge et a la décharge doivent
étre relevées.

L’hystérésis du caoutchouc se montre dans le phénomene que nous étudions,
en ce que, pendant la charge et pendant la décharge, le sectionnement en un,
nombre déterminé de fuseaux se fait pour des A différents : A est plus grand pen-
dant la décharge.

Voici un phénoméne intéressant, observable trés aisément avec le caoutchouc
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que nous avons étudié. La tangente d’inflexion a la courbe 2ABC passe prés du
point O. Prenons une longueur initiale L, (14°™) telle que la droite Ob corres-
pondante coincide au mieux avec la tangente d’inflexion. Elle se confond donc
avec la courbe «ABC sur une longueur considérable AB. Le sectionnement en un
seul fuseau a lieu pour toute une série d’allongements variables de A a B. Pour la
courbe de décharge au contraire et la méme longueur initiale, le sectionnement
en un fuseau ne se produit que pour un allongement unique. Le phénoméne est
observable, mais avec moins d’intensité, sur presque tous les caoutchoucs : il I'est
aussi, mais moins marqué, pour la courbe de décharge en prenant une longueur L,
convenable.

L’expérience suivante prouve la diminution de tension quand, sur uné courbe
de charge, on maintient A constant. Allongeons doucement une corde jusqu’a ce
qu’elle se sectionne en n fuseaux. Arrétons alors brusquement I'allongement : peu
a peu les fuseaux disparaissent. Pour qu’ils se relorment, il faut allonger la corde
un peu davantage : donc a longueur constante, la tension avait diminué.

On montre de méme 'augmentation de tension a longueur constante et & tem-
pérature croissante, etc., etc. S’il n’y a rien a tirer de I'étude de ces phénomenes
que ne puisse fournir la considération des courbes de traction (d’autant que la
raideur complique les conclusions quantilatives), ils méritaient d’étre signalés
comme méthode indirecte de mesure d’une tension.

NOTE SUR LE COEFFICIENT DE POISSON DANS LE CAOUTCHOUC.

A propos d’une réclamation de priorité de M. Cantone (/Nuovo Cim., aolt 1903 ).

M. Cantone se plaint que, dans mon article Sur le coefficient de Poisson dans
le caoutchouc vulcanisé (J. de Ph., 19o3), J’attribue a Rontgen les formules

dA
g=— TdXA, logA=—glogA, log® = (1—20)logA

qu’il dit lui appartenir.

A=D:D, ®=V:V,y;

D,D,,V,V, sont les diamétres et volumes actuels et initiaux. On n’a qu’a ouvrir

le Mémoire de Rontgen pour y trouver la premiére sous forme de différences

infinies; les autres s’en déduisent par intégration, en supposant ¢ constant, résultat

que fournissent les expériences mémes de cet auteur. Le mérite de Rontgen est

d’avoir montré que seule cette définition donne un s a peu prés constant et d’une
Fac. de T., 2¢ S., VI. 36
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définition acceptable. Les expériences de M. Cantone n’apprennent rien de neuf
sur le sujet. Elles sont d’ailleurs d’une technique douteuse et beaucoup trop
restreintes comme variation de A. On savait avant elles que o est légérement infé-
rieur & 0,50 et il est trop facile de dire que les expériences de ses devanciers sont
mal faites, pour donner de I'intérét a ce qu’on trouve, guand on retrouve exac-
tement les mémes résultats qu’euz. Tout ceci n’a qu’une importance historique
et par conséquent minime.
M. Cantone formule encore deux critiques. Il me blame de poser

dL _ dp
L — sE’

parce qu’il affirme que seule I'expression

kY

est exacte. Il n’a qu’a lire le Mémoire qui précéde pour revenir & une vue plus
juste sur la valeur comparée de ces formules. 4 priori, elles ne valent pas plus
'une que l'autre, et nous savons que I'expérience les condamne toutes deux, en
ce sens que ni I'une ni l'autre ne peut représenter les ‘phénoménes, si 'on veut
que L soit constant.

Toutefois, M. Cantone ne m'a pas bien lu. Je dis (p. 476, n°9): « Ne consi-
dérons donc que des déformations infiniment petites » : ce qui signifie que je
prends le caoutchouc non déformé et que je lui applique de petits efforts; P est
presque nal.

Or développons la formule

de M. Cantone. Il vient

dL dp P _dP L P ds
ET =5 % E=gs—sal
qui se confond avec la formule incriminée pour P = o. L’objection tombe
d’clle-méme.
Enfin, M. Cantone trouve que la formule
OR? dP
C=%aL

est erronée : c’est justement ce que je dis. Il est vrai qu’elle ne U'est pas pour les
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raisons qu'il donne, mais tout simplement parce que ce qu'on est convenu d’ap-
peler la théorie classique de !’Elasticité ne s’applique pas au caoutchouc.
M. Cantone se berce d’un vain espoir s’il pense que la théorie de I'élasticité ou
I’on prendra, non plus les efforts rapportés aux surfaces initiales, mais les efforts
rapportés aux surfaces actuelles, représente micux les phénoménes. Quand on
creuse ces nouvelles hypothéses, qui, je le veux bien, lui appartiennent en propre
(elles n’ont rien de commun avec la formule de Rontgen pour la définition du
coefficient o), on s’apercoit qu’elles n’expliquent rien des phénoménes si nombreux

et si complexes que nous venons d’étudier.

NOTE SUR LA THEORIE DE L’EXPERIENCE DE KUNDT
ET DE L’UN DES DISPOSITIFS DE L’EXPERIENCE DE MELDE.

Il existe la plus grande analogie entre la théorie, développée au n° 35, des vibra-
tions longitudinales d’une corde de caoutchouc sous I'influence d’un diapason, et
la théorie de 'expérience de Kundt. Une verge métallique, saisie en son milieu
dans un étau et vibrant longitudinalement, entretient les vibrations d’une colonnc
d’air limitée par un tube cylindrique de verre. Dans les deux cas, un appareil
indépendant (diapason ou verge vibrante) /mpose un mouvement oscillatoire
d’amplitude donnée a 'une des extrémités d’un cylindre vibrant longitudinalement
(caoutchouc ou colonne d’air).

On donne a la colonne d’air une longueur convenable a I'aide d’un piston
entrant a frottement doux dans le tube de verre. On est averu du fractionnement
régulier de la colonne par la disposition que prend une poussiére légeére; elle se
rassemble vers les nceuds et y forme de petits tas isolés. Quand les tas sont le plus
nets possible, il en existe un tout contre le piston (preuve qu'ils dessinent les
nceuds) et, fait paradoxal expliqué par la théorie du n° 35, il en existe un
autre au niveau de l’extrémité de la verge, la ou la théorie incompléte que I'on
trouve dans les Traités classiques ferait admettre un ventre. La colonne d’air
comprise entre cette extrémité et le piston se divise donc en un nombre entier
de demi-longueurs d’ondes (dans I'air ou tout autre gaz remplissant le tube) du
son émis par la verge.

On peut expliquer de méme la réussite de 'expérience de Melde quand le plan
du diapason, au liea de contenir le fil, lui est normal (le fil étant dans les deux
dispositifs sensiblement normal & la tige du diapason a laquelle il est attaché). La
encore le point d’attache se trouve en un ncud ou, si I'on veut, trés prés d’un

nceud.
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Comme je l'ai dit au n° 35, cette théorie n’est pas neuve, puisqu’elle est due
a Poisson et a été reprise depuis par Duhamel et Bourget. Si J’insiste sur ces expé-
riences, c’est qu'on a donné une importance telle a la solution infinie qui résulte
de Péquation (1), que ’on conclut ordinairement que tout mouvement cesse quand
un nceud doit se former au point d’attache, ou plus généralement au point ou
Pamplitude de la vibration est imposée. On consultera, par exemple, un intéres-
sant article de Gripon (J. P, t. I, 1874, p. 84). Les expériences que je rappelle
montrent que celte conclusion est trop absolue. Tout ce qu’on peut dire, c’est
qu’il faut alors fournir assez d'énergie a 'appareil qui entretient le mouvement
vibratoire (diapason, verge, etc.) pour suffire aux déperditions qui résultent de
Vamplitude relativement considérable que prennent alorsles oscillations du corps
entrainé. Ce qui revient a dire qu'il faut se conformer aux hypothéses et imposer
effectivement amplitude. D’ailleurs, la solution infinie ne peut étre prise au pied
de la lettre, les équations qui la donnent s’appliquant toujours comme premiére
et seulement assez grossiére approximation.

On trouvera, dans un Article paru dans le Journal de Physique pour 1go4 : Sur
les suspensions en caoutchouc, une application des remarques précédentes.



