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RECHERCHES SUR L’HYDRODYNAMIQUE,
PAR M. P. DUHEM.

DEUXIÈME PARTIE.
SUR LA PROPAGATION DES ONDES.

(SUITE ET FIN.)

CHAPITRE II.
LA MÉTHODE D’HUGONIOT.

§ 1. - DÉFINITIONS DIVERSES. LES DEUX LEMMES D’HUGONIOT.

Nous avons étudié, au Chapitre précédent, les propriétés des surfaces le long
desquelles les éléments du mouvement d’un fluide, c’est-à-dire les six quantités

p, U, T,

sont discontinus. Dorénavant, nous supposerons que, dans la région étudiée, et
pendant le laps de temps considéré, ils demeurent continus. Mais, dans cette
région et pendant ce laps de temps, chacun de ces éléments peut se composer de
plusieurs fonctions analytiques différentes. De là découlent divers problèmes qui.
seront examinés aux deux Chapitres suivants. Au présent Chapitre sera exposée
la méthode propre à traiter ces problèmes.

Considérons une certaine région de l’espace et un .certain laps de temps.
Soient u, ~x, y, z, t), ~, t) deux fonctions analytiques uniformes définies
en tous les points (x, y, z) de cette région et à tous les instants t de ce laps de
temps.
Supposons qu’à l’instant t une certaine surface S soit tracée dans la région

considérée et qu’elle partage cette région en deux parties r et 2.
Supposons que cette surface S jouisse, à l’instant t, des propriétés suivantes :
Sur la surface S, les deux fonctions tc,, ll2 sont égales entre elles; il en est de

même de deux dérivées partielles correspondantes quelconques de ces deux



I02

fonctions par rapport aux variables x, y, ~, t, jusqu’aux dérivées partielles de
l’ordre ~n - I) inclusivement; mais il existe au moins une dérivée partielle
d’ordre n de la fonction u1 qui, sur la surface S, n’est pas égale à la dérivée
partielle correspondante de la fonction u2. -

Une fonction u(x, y, z, t~, égale à u, (x, y, z, t) dans la région I, et

à y, z, t) dans la région 2, est continue, mais non analytique, dans la
région totale considérée; on dit qu’à l’instant t, cette fonction u(x, ;y, z, t)
admet la surface S pour onde ra. .

En particulier, à l’instant t, la surface S sera une onde du premier ordre pour
la fonction u(x, y, .~, t) si, en tout point de la surface S et à l’instant t, on a

tandis que l’une au moins des quatre égalités

est inexacte sur la surface S et à l’instant t.

De même, la surface S sera, à l’instant t, une onde du second ordre pour la
fonction z, t~ si l’on a, en tout point de cette surface et à tout instant,
les cinq égalités

tandis qu’il existe au moins une dérivée partielle du second ordre de la fonction
qui, à l’instant t et sur la surface S, n’est pas égale à la dérivée partielle corres-
pondante de la fonction U2.
Une surface le long de laquelle la fonction t~ serait discontinue pourrait, à ce

point de vue, être regardée comme une onde d’ordre o.
Lorsque nous mènerons à une telle surface une normale, nous la dirigerons du

côté 2 vers le côté 1 et nous désignerons par oc, ~, y les cosinus des angles que
cette direction fait avec Ox, Oy, 0 z.

Il arrivera souvent qu’aux divers instants t d’un certain laps de temps on
pourra faire correspondre une surface S variable avec t et qu’à chacun de ces

instants t la surface S sera une onde d’ordre n pour la fonction t); on
dira alors que cette surface variable avec t représente une onde persistante.

Soient S, S’ ( f g. i 2~ les positions respecLives d’une telle onde aux instants t
et (t + dt). Par un point 11M de la surface S, menons une normale à cette surface;



cette normale rencontre en M’ la surface S’ ; désignons par S la longueur 

Fig.12. "

comptée positivement si la direction MM’ va du côté 2 au côté i, et négativement
dans le cas contraire; posons enfin :

X sera la vitesse normale du déplacement de l’onde.
L’étude des ondes de divers ordres d’une fonction repose sur deux lemmes à la

fois très simples et très féconds. Ces deux lemmes ont été donnés par Hugoniot
qui en a tiré, touchant la Mécanique, de remarquables conséquences 1 ’ ).

Soit M un point d’une surface S qui est, à l’instant t, pour la fonction une

Fis. i3.

onde du premier or°dre 13). Soient a, b, c trois quantités finies assu-
jetties seulement à la relation

et e une quantité infiniment petite. Par le point M, menons un segment Mm dont

(1) HUGONIOT, Journal de Mathématiques pures et appliquées, 4e série, t. III, 1887,
P’477.



les composantes soient ea, eb, ec; ce segment sera tangent en M à la sur-

face S.

Les deux fonctions u,, u2 étant analytiques dans la partie de l’espace que l’on
considère, on peut écrire 

’

les dérivées partielles du second membre se rapportant au point NI et les quan-
tités 6,, 62 demeurant finies lorsque s tend vers o.

Retranchons ces égalités membre à membre en observant que

nous trouvons l’égalité

Projetons normalement le point M en  sur la surface S; si la courbure de la

surface S au point M’ n’est pas infiniment grande, la distance m u est un infi-
niment petit du second ordre par rapport à e. Alors les fonctions lli, U2 étant

analytiques, on peut écrire

92 demeurant finis lorsque e tend vers o.
Si l’on observe en outre que

on voit que la relation (96) devient

Le premier membre tend vers o avec e; le second ne dépend pas de ~; il doit



donc être nul. L’égalité

est donc une conséquence de l’égalité (g~ ~.
Pour cela, il faut et il suffit qu’il existe une grandeur l telle que l’on ait, quels

que soient a, b, c, l’égalité

D’Oü la proposition suivante, qui est le PREMIER LEMME D’HUGONIOT :

Soit S une surface qui est, à l’instant t, ONDE DU PREMIER ORDRE pour lCl

fonction u. A chaque point de cette surface où la courbure n’est pas infinie
correspond une grandeur l telle que

Supposons maintenant que la surface S soit, pour la fonction u, une onde du
premier ordre persistante; soient S sa position à l’instant t et S’ sa position à un
instant t’, voisin de t. Par un point M de la surface S menons une normale à cette
surface; cette normale rencontre en M’ la surface S’. Si les coordonnées du

point M sont x, y, z et si les coordonnées du point M’ sont x’, y’, z’, on a, par
définition de la vitesse ~,

. 

les quantités c~, ~, y demeurant finies lorsque (t’ - t) tend vers o.
D’autre part, la fonction ic~ étant analytique, on aura

9, ne croissant pas au delà de toute limite lorsque (t’- t) tend vers o, et les
dérivées partielles se rapportant au point M et à l’instant t.

_ _ _ _ ___ ,



Ces diverses égalités permettent d’écrire

ne croissant pas au delà de toute limite lorsque ~t’- t) tend vers o.
On a de même

r;~ ne croissant pas au delà de toute limite lorsque (t’- t) tend vers o.
Retranchons membre à membre ces deux égalités, en observant que

et en tenant compte des égalités (g~~. Nous trouvons

Le second membre de cette égalité tend vers o avec ( t’ - t~ ; le premier, qui ne

dépend pas de (t’ - t), doit être nul ; d’où le DEUXIÈME LEMME D’HUGONIOT :

Soit une fonction u qui admet une ONDE PERSISTANTE DU PREMIER ORDRE ; à

chaque instant et en tout point de l’onde relative à cet instant, pourvu 
ce point la courbure de l’onde ne soit pas infiniment grande, on a l’égalité

On observera que les deux lemmes précédents demeureraient vrais au cas où les
trois variables x, y, z seraient remplacées par un nombre quelconque de variables

, , . , , x,z.

§ 2. - EXPRESSION DE LA VITESSE DE DÉPLACEMENT c~h POUR LES ONDES

DE DIVERS ORDRES ~~ ~.

Les lemmes précédents suffisent à résoudre le problème suivant : : 
’

Une fonction u admet une onde persistante d’ordre n ; au moyen des déri-

(1) ) Sur le théorème d’Hugoniot et quelques théorèmes analogues ( Comptes rendus,

t. CXXXI, 2.4 décembre Igoo, p. 1171).



vées partielles d’ordre n des fonctions cc,, u2, former une expression de la
vitesse de déplacement X qui demeure invariable par ccn changement de
coordonnées rectangulaires.

i° Onde dcc premier ordre. - Les égalités (97) et (98) donnent les trois

relations

Élevons au carré les deux membres de chacune de ces égalités et ajoutons
membre à membre les résultats obtenus; nous trouvons la formule

qui résout, pour les ondes du premier ordre, la question posée.

2° Onde du second oj°dre. - Une telle onde est onde du premier ordre pour
la fonction d u et aussi pour la fonction à chacune de ces eux fonctions

appliquons la première des égalités (99); nous trouvons les deux égalités

Multipliées membre à membre, elles donnent la première des égalités

Les deux autres se démontrent d’une manière analogue.



En ajoutant membre à membre ces égalités, nous trouvons la rclation

qui résout pour les ondes du second ordre, le problème posé.
Cette relation est due à Hugoniot ( ~ ).

3° Onde d’ordre n = 2 q. - Désignons par Dq le résultat de l’opéra-
. tion â répétée q fois de suite. Nous allons prouver que l’on a

L’égalité (ici) nous montre que cette formule est exacte lorsqu’on fait q = i et,

partant, n = 2; pour en établir la généralité, il nous suffit de prouver que, si

elle est vraie jusqu’à une certaine valeur de q et, partant, de n, elle demeure
encore vraie lorsqu’on augmente q d’une unité et, partant, n de deux unités.
En d’autres termes, il s’agit de prouver que si la formule (102) est exacte pour

toutes les ondes d’ordre pair jusque l’ordre n = 2 q, on a, pour toute onde

d’ordre (n + 2 ),

Une onde d’ordre ~n -~- 2~ pour la fonction tc est une onde d’ordre 2 pour la

fonction on a donc, selon la formule (101),

Une onde d’ordre (n + 2) pour la fonction tt est une onde d’ordre n pour la

fonction on a donc, selon la formule (I02),

Enfin

Ces trois égalités justifient l’égalité (I02 bis).

( i ) HUGONIOT, Journal de Mathématiques pures et appliquées, 4e série, t. III, 1887,
n. 477.



4° Onde d’ordr°e impair : n = 2 q -~- ~ . - Une onde d’ordre ( ~ q -f- y pour lâ
fonction tc est du premier ordre pour la fonction on a donc, selon la for-
mule yoo), .

Cette onde est en même temps d’ordre 2q par rapport à la fonction en sorte

que la formule (102) donne

Enfin

Ces trois égalités nous donnent la formule

qui achève de résoudre le problème posé.
On voit de suite que ces formules conduiraient presque immédiatement à la

solution du problème suivant, que nous nous bornerons à énoncer : :

Donner de la vitesse pour les ondes de divers ordres, une expression qui
ne varie pas par un changement quelconque de coordonnées curvilignes
orthogonales.

§ 3. - APPLICATIONS DIVERSES DE LA MÉTHODE D’HUGONIOT.

Avant d’appliquer la méthode d’Hugoniot aux questions d’Hydrodynamique
faisons usage des formules précédentes pour étudier diverses équations aux déri-
vées partielles que l’on rencontré en Physique mathématique.
La première que nous considérerons, avec Hugoniot ~’ ), est l’équation

( i ~ Hl’GONIOT, Journal de Mathématiques pures et appliquées, be série, t. III, 1887,
p. 4~~.



où a est une constante réelle, que l’on rencontre dans l’étude des petits mouve-
ments des fluides ; la comparaison des égalités et (104) montre de suite que
si une intégrale de cette équation offre une onde du second ordre, cette onde se
déplace avec une vi tesse

Ce résultat s’étend d’ailleurs à toutes les ondes d’ordre supérieur à 2 que pour-
rait présenter une intégrale de l’équation (io4). En effet, une onde d’ordre n

(n>2) pour la fonction u est du deuxième ordre pour la fonction ~n-2u ~n-2; et,

d’autre part, cette fonction vérine encore une équation de la forme (I04), comme
on le voit en différentiant (/x 2014 2) fois par rapport à ~ les deux membres de
l’équation (ioz{).
Des considérations semblables (1) s’appliquent à l’équation des 

où a et pv sont deux constantes réelles. En tout point d’une onde du second ordre
pour la fonction u, on a

en sorte que l’équation (106) exige que l’on ait, en un tel point,

La comparaison de cette égalité avec l’égalité ( ~ o ~ ) montre que la vitesse de dé-
placement d’une onde du second ordre pour une intégrale de l’équation (106) est
encore donnée par l’égalité (105 ).
Comme dans le cas précédent, ce résultat s’étend aux ondes d’ordre supérieur

à 2.

Il peut arriver que les formules du § 2 conduisent à attribuer à ~2, pour les
ondes d’un certain ordre, une valeur infinie ou négative; dans ce cas, nous
sommes certains qu’une intégrale de l’équation considérée n’admet pas d’onde
persistante de l’ordre considéré.

(1) Sur l’interprétation théorique des expériences hertziennes (L’Éclairage élec-
trique, t. IV, 1895, p. 494).



Ainsi, en tout point d’une onde du second ordre pour la fonction Il, on a

une intégrale de l’équation

que l’on rencontre dans la théorie de la conductibilité, ne pourrait donc admettre
une onde du second ordre sans que l’on eût, en tous les points de cette onde,

partant, selon l’égalité (101),

Une intégrale de l’équation

ne pourrait admettre une onde du second ordre sans que l’on eût, en vertu de

l’égalité (101),

Les intégrales des deux équations (io~), (IO8) ne sauraient donc admettre
d’onde persistante du second ordre ; cette proposition s’étend sans peine aux
ondes d’ordre supérieur à 2 et fournit le théorème suivant: : 

’

Si, de part et d’une surface S qui peut varier avec t, deux fonc-
tions analytiques u, u? vérifient soit l’équation (I07), soit l’équation (ro8),
et si l’on a, en tout point de la surface S et à tout instant,

les deux fonctions u, , uh se prolongent analytiquement l’une l’autre.

L’équation

se rencontre dans l’étude de la propagation de l’électricité au sein des corps con-



ducteurs (1) et dans l’étude des petits mouvements des fluides compressibles vis-
queux (2). Imaginons qu’une intégrale de cette équation admette une onde du
troisième ordre. Nous aurons, en tout point de cette onde,

partant

D’autre part, cette onde du troisième ordre pour la fonction u serait du premier
ordre pour la fonction si elle était persistante, on aurait, en vertu des éga-
lités (g~~ et (98),

et, partant,

Une intégrale de l’équation (I09) ne peut donc admettre d’onde persistante du
troisième ordre (3), ni, comme on le prouverait sans peine, d’onde persistante
d’ordre plus élevé, à moins que cette onde ne soit immobile.
Une intégrale de l’équation de Laplace

où u est une fonction des seules variables x, y, z, à l’exclusion de t, peut-elle
admettre une onde du second ordre? Appliquée immédiatement, Inégalité (101)
devient une identité ; mais on peut remarquer que les théorèmes précédents sont
encore vrais si, au lieu des trois variables x, y, z, la fonction étudiée ne dépend
que de deux variables x, y; qu’en remplaçant dans l’équation précédente la lettre
par la lettre t, elle devient

- ~( 1 ) Sur l’interprétation théorique des expériences hertziennes (L’Éclairage élec-
trique, t. IV, 1895, p. 4g4).

(2) Sur la généralisation d’un théorème de Clebsch (Journal de Mathématiques
pures et appliquées, 5e série, t. VI, I900, p. 213 ).

(3) Sur la théorie électrodynamique de Helmholtz et la théorie électromagn.étique
de la lumière (Archives néerlandaises des Sciences exactes et naturelles, 2e série, t. V,
I90I, p. 227).



et que, si. une intégrale de cette équation admettait une onde persistante du
second ordre, la formule donnerait, pour cette onde,

ce qui est impossible.
Le même procédé conduit, sans aucune difficulté, à la démonstration de la pro-

position suivante : :

Une intégrale de l’équation aux dérivées partielles d’ordre 2 n

oic A,13, ..., L sont des fonctions des seules variables x, y, z, analytiques
dans tout l’espace, et oic il est une fonction des seules variables x, z,

n’admet ni onde d’ordre n, ni onde d’ordre supérieur à n. .

Ce théorème entraîne l’impossibilité d’ondes dont l’ordre serait égal ou supé-
rieur à 2 non seulement pour les intégrales de l’équation de Laplace, mais encoré

pour les intégrales de l’équation .

que l’on rencontre dans l’étude des mouvements vibratoires des fluides et dans

une foule de questions d’Acoustique, d’Optique ou d’Électrodynamique.
Il démontre l’impossibilité (rondes d’ordre égal ou supérieur à 4 pour les 

grales de l’équation

que l’on rencontre dans l’étude des corps élastiques isotropes en équilibre.

§ 4. 2014 LES PARAMÈTRES DE M. HADAMARD.

Les deux lenmes d’Hugoniot, énoncés et démontrés au § 1, peuvent être éten-
dus aux ondes d’ordre n sous une forme très remarquable qui a été indiquée par
ll’I. Hadamard (’ ).

Supposons que la surface S soit, à l’instant t, onde d’ordre n pour la fonc-

tion ll; elle est évidemment onde d’ordre 1 pour la fonction oû

(1) J. HADAMARD, Bulletin de la Société mathématique de France, t. XXX, p. 50,
rg décembre I900.



A cette fonction appliquons le premier terme d’Hugoniot, qu’expriment les

égalités (9~7) ! nous aurons les égalités ,

que l’on peut encore écrire

Le rapport

prend donc, en un point donné de l’onde, une valeur qui ne change pas lorsqu’au
numérateur on remplace une dérivation par rapport à x par une dérivation par
rapport à y ou par une dérivation par rapport à z, pourvu qu’en même
temps, au dénominateur, on remplace un facteur x par un facteur ~ ou par un
facteur y.

Cela posé, considérons la fonction

où 1, j, k ont des valeurs entières et non négatives qui vérifient la relation

Cette fonction peut se déduire de la fonction

en remplaçant j fois de suite une différentiation par rapport à x par une différen-
tiation par rapport à y et l~ fois de suite une différentiation par rapport à x par
une différentiation par rapport à z.
Nous arrivons ainsi,’ au théorème suivant : 

PREMIER LEMME DE M. HADAMARD. - Si la fonction u admet à l’instant t la
surface S pour onde d’ondne n, en chaque point de cette onde .le rapport



occ les indices i, j, k peuvent prendre toutes les valeurs entières et non néga-
tives qui vérifient l’égalité

a une valeur lp qui dépend de p, mais point de i, j, h.
Ce lemme peut donc encore s’énoncer de la manière suivante :

A chaque point de la surface S correspondent (n + I) param.ètres

arc moyen desquels toutes les dérivées partielles d’ordre de la différence
(u2 - rc, ) s’expriment, en ce point, par les formules

Supposons maintenant que la surface S soit, pour la fonction u, une onde

persistante d’ordre n. Prenons un point sur cette surface ; en ’ce point, les trois
quantités a, ~, y, ne peuvent être nulles à la fois; pour fixer les idées, suppo-
sons a différent de o.

L’onde considérée est une onde persistante du premier ordre pour la fonction

A cette fonction appliquons la seconde égalité (99), qui découle du second
lemme d’Hugoniot ; nous trouvons

Mais les égalités ~l 15) donnent



Moyennant ces égalités, et après suppression du facteur qui n’est pas nul,
l’égalité (116) prend la forme

qui entraîne la proposition suivante :

SECOND LEMME DE M. HADAMARD. 2014 Si la surface S est, pour la fonc-
. tion ic, une onde persistante d’ordre n, les (n + I) paramètres

forment, en chaque point de cette onde et à chaque instant, une progression
géométrique de raison - ~.

On peut donner ( ’ ) des paramètres

des expressions, formées au moyen des dérivées partielles d’ordre n de la diffé-
rence (u2 ), expressions qui ne changent pas par un changement quelconque
de coordonnées rectangulaires.
Deux cas sont à distinguer : :

PREMIER CAS : ( n - p) est pair,

Visiblement, nous avons, pour une fonction f quelconque,

la puissance qui figure au second membre étant une puissance symbolique. Il en
résulte que

Les égalités ~I I5~ transforment sans peine cette égalité en

( 1 ) Sur les théorèmes d’Hugoniot, les lemmes de Hadamard et la propagation
des ondes dans les fluides visqueux (Comptes rendus, t. CXXXII, 13 ma I90I, p. II63).



ou bien, comme a2 + (3~ + ~~~ == 1, en

formule qui résout la question proposée.
DEUXIÈME CÀS - p) est impair,

Dans ce cas, on a

Selon les égalités ( i 5 ~, cette égalité devient

et donne la première des égalités

Les deux autres se démontrent d’une manière analogue.
Si l’on élève au carré ces trois égalités et qu’on ajoute membre à membre les

résultats obtenus, un trouve la formule

qui résout la question posée.
L’égalité (117) nous permet d’écrire, en vertu de la dernière égalité (i 15~,



les égalités (J 19) et (1 22) donnent la relation

Si ( n - p) est in2pain,

les égalités ( 1 2 1) et (122) donnent

Ces égalités ( i ~3~ et (~ z4) redonnent immédiatement les formules démontrées

au § 2. En eiet, si n est pair, l’égalité (i ~ 8~ est vérifiée lorsqu’on y fait j~ = o, et

l’égalité (i~S) reproduit l’égalité (102); si n est impair, l’égalité (120) est vérifiée

lorsqu’on y faitp = 0, et l’égalité (124) reproduit l’égalité (IO3~.

K Ô. - ONDE QUI PROPAGE UN VECTEUR. - VECTEURS DE M. HADAMARD.

Supposons que les trois fonctions

soient les trois composantes d’un vecteur V. Si la surface S est, à l’instant t, onde

d’ordre n pour l’une au moins des trois fonctions et si, pour les deux

autres, elle est onde d’ordre n ou d’ordre supérieur à ct, ou enfin d’ordre infini,
cas auquel elle n’interrompt pas le caractère analytique de ces deux fonctions, on
dit que la surface S est, à l’instant t, onde d’ordre n pour le vecteur V.

La notion de permanence de l’onde s’étend sans peine à ce cas.
Si la surface S est onde d’ordre n pour le vecteur V, les dérivées partielles

d’ordr e n de la fonction - s’expriment toutes par les égalités (I 1 5), au

moyen des (n + i) paramètres la, l,, ..., l"; les dérivées partielles d’ordre n de
la fonction (V2 - rt) s’expriment de même au moyen de (n + 1) paramètres mo,

... , m,t ; enfin les dérivées partielles d’ordre n de la fonction ( cw~ - 
s’expriment de même au moyen de (n + y paramètres no, n,, ... nn.

Mais les paramètres lp, mp, np peuvent être regardés comme les trois com-

posantes d’un vecteur Wp. On peut donc énoncer le théorème suivant’1

Si, el l’inslant t, la surface S est onde d’ordre n pour le vecteur V, il



existe, en chaque point de cette surface, ( n + I) vecteurs

au moyen desquels s’expriment, en ce point et à cet instant, les dérivées par-
tielles d’ordre n des composantes de la différence géométrique V2 2014 V, .

Supposons maintenant que l’onde soit persistante. Les égalités ~I I; ~ nous don-
neront les relations

qui entraînent la proposition suivante : : ,

Si la surface S est une onde permanente d’ordre rz pour le vecteur V,
à chaque instant et en chaque point fie cette onde, les (n + r) vecteurs W0,
Wr, , ..., , W/Z sont dirigés suivant une même droite; si on les compte positi-
vement suivant une direction D choisie sur cette droite, ils forment une 
gression géométrique de raison ( - 

La direction D se nomme alors direction de la perturbation propagée pan
l’onde S ; lorsqu’elle est sans cesse normale à l’onde S, on dit que celle-ci pro-
page une perturbation longitudinale; lorsqu’elle est sans cesse tangente à

l’onde S, on dit que celle-ci propage une perturbation transversale. "

Les considérations contenues en ce dernier paragraphe sont dues en entier à
Hadamard.

CHAPITRE III.
DES ONDES DANS LES FLUIDES VISQUEUX.

§ 1. - DES ONDES DU PREMIER ORDRE PAR RAPPORT A CERTAINS ÉLÉMENTS

DU MOUVEMENT (~).

Imaginons qu’en un fluide visqueux une surface a soit, à l’instant t, onde au
moins du premier ordre pour les trois composantes u, v, w de la vitesse, pour la
température T et, en outre, si le fluide est compressible, pour la densité.

(i) Sur les théorèmes d’Hugoniot, les lemmes de M. Hadamard et la propagation
des ondes dans les fluides visqueux (Comptes rendus, t. CXXXIJ, 13 mai p. lIf3).
Des ondes qui peuvent persister en un fluide visqueux t. CXXXIII, r!r octobre I90I,
p. ‘~î9)~



Quant à la pression I~, nous ne la contraindrons pas à varier d’une manière
continue au travers de la surface considérée.

Cette onde pourra-t-elle être persistante?
Pour discuter cette question, nous n’avons pas le droit de faire usage des équa-

tions du mouvement des fluides visqueux, telles qu’elles sont données par les .

équations ~;4) de la première Partie; celles-ci, en effet, reposent sur une trans-
formation qui a été exposée en cette première Partie, au § 3 du Chapitre I, et la
légitimité de cette transformation, comme nous l’avons formellement observé en
cet endroit, est subordonnée à une condition : c’est que les six quantités vx, vy, vL,

soient continues dans tout le fluide et admettent, en tous les points de
ce fluide, des dérivées partielles finies.

Or, si nous admettons pour vx, ’Yy, ix, les expressions données par les
égalités ( ~ 1) de la première Partie ou (43) de la seconde Partie, nous voyons que
ces six quantités sont précisément discontinues le long de l’onde r.
Nous devons donc renoncer à imposer à.la quantité d~~,, donnée par l’égalité (46)

~ 

de la première Partie, la transformation que nous lui avions fait subir et chercher
à la transformer d’une autre manière.

Traçons dans le fluide, à l’instant t, une surface fermée 1 contenant la surface ?
à son intérieur; soit a la masse fluide que renferme la surface T~ et soit b la masse
fluide qui lui est extérieure.
La quantité d~~ peut toujours s’exprimer ainsi

étant définis par les égalités

Au sein de la partie b, les six quantités vx, vy, vz, T.y, ~y, zz sont continues et
admettent des dérivées partielles qui sont finies; on peut donc appliquer à la

transformation que, dans la première Partie, nous avons fait subir à la quan-
tité d~~ tout entière.

Conservons à px, pr, pz, qx, ~z la signification que donnent les égalités (48)
et (49) de la première Partie; en chaque point de la surface S désignons par tlb
la normale vers l’intérieur de la partie b ; posons



et les égalités (1 25) et (1 27 ) nous permettront d’écrire

Choisissons la surface 1 d’une manière particulière.
De part et d’autre de la surface a~ menons deux surfaces dont la distance h

à la surface ~ soit infiniment petite; l’une de ces surfaces, ~~, se trouvera du

côté i de la surface r; l’autre, E~, se trouvera du côté 2. Nous composerons la

surface S de l’ensemble des deux surfaces et ~~; nous écrirons l’égalité (1 29) et
nous y ferons tendre h vers o.

Le volume occupé par la masse a du fluide tend vers o avec h ; dès lors, il

résulte de l’égalité (126) que tend vers o ; de plus, au second membre de
l’égalité (129), le second terme tend vers l’intégrale

étendue au volume entier occupé par le fluide; à ce même second membre le

troisième terme ne varie pas avec h ; il nous reste donc à chercher la forme limite

du terme ’

Cette intégrale se partage en deux autres intégrales analogues, l’une relative à
la surface ~~, l’autre relative à la surface ~2.

Chaque élément de la surface 1, a pour limite un élément d~ de la surface r;
les quantités cos(nb, x), cos(nb, y), cos(nb, z) relatives an premier ont pour
limites respectives les quantités a, relatives au second; les quantités vx, ’Iy, vz,

7y, ~z ont pour limites respectives ~z,. Si donc on pose

la partie de l’intégrale (130) qui se rapporte à la surface 03A31 aura pour limite



Si l’on pose de même

la partie de l’intégrale ~E3o~ qui provient de la surface ~2 aura pour limite

On pourra donc écrire, en observant que les quantités ôx, ây, ô~ doivent t être
continues même au travers de la surface ~~

Telle est Inégalité que l’on doit substituer à l’égalité (47) de la première Partie.
C’est cette expression (1 32 ) de dv que nous devons introduire dans l’équation

fondamentale (2) de la première Partie, en sorte que l’on devra avoir, en toute
modification virtuelle,

Nous pouvons appliquer tout d’abord cette égalité à une modification virtuelle

pour laquelle on ait, en tout point de la surface CI,

Nous serons alors conduits à la proposition suivante :
Il existe une grandeur finie II, continue dans tout le fluide, sauf peut-être en la

surface o-, telle que l’on ait :

10 En tous les points de la surface S qui limite le fluide, les égalités [Ire Partie,



égalités (76)]

2° En tout point de la masse fluide hors la surface ~, les Partie,
égalités ( ~4~ et (~5 ~~

et, si le fluide est compressible, l’égalité

Donnons maintenant à la masse fluide un déplacement virtuel quelconque. Au
moyen des égalités (134), (i35), (136), et par un calcul très semblable à celui

qui occupe le début du Chapitre 1, § 8, nous trouverons que l’on a

.Si l’on conserve alors à ~x,, ~’~2? ~~’r2, le sens que donnent les

égalités (35) et (35 bis), l’égalité (133) devient

Cette égalité doit avoir lieu quelle que soit la modification virtuelle imposée au
fluide, par conséquent quelle que soit, le long de la surface a’, la loi de variation
des quantités ~x, ôy, la condition nécessaire et suffisante pour qu’il en soit
ainsi est la suivante :



On a, en tout point de l’onde 5, les trois égalités

qui peuvent plus explicitement, en vertu des égalités (35) et (35 bis),

.Les quantités vx, vy, iz sont supposées données par les égalités (43).
Or, selon ce que nous avons vu au Chapitre II, § 5, il doit exister, en chaque

point de la surface T, un vecteur (lo, mo, no~ tel que l’on ait

Ces égalités donnent

En vertu de ces égalités (1 39 ), ( 140 ), ( i 4 i ~, les égalités (43) donnent



En vertu de ces égalités (I42~, les égalités (138) deviennent

Ajoutons ces égalités membre à membre après les avoir multipliées respectivement
par a, ~3, y ; nous trouvons

Pour tirer les conséquences de cette égalité, nous distinguerons deux cas,
selon que le fluide est ou non compressible.

Supposons d’abord que le fluide soit incompressible. Dans ce cas, l’on a

et, par conséquent, en vertu de l’égalité 

Cette égalité (145), jointe à l’égalité (i44)? donne

Il n’est donc pas possible, en un fluide incompressible, d’observer une sur-
face au passage de laquelle les composantes de la vitesse et la température
varieraient d’une manière continue, tandis que la pression varierait d’une
manière discontinue.

Par anticipation, nous avions énoncé ce théorème au Chapitre I, ~ ~ 1.
Moyennant l’égalité (I44), les égalités (I43) peuvent s’écrire :

ou bien, en observant que l’on a [Ire Partie, condition (62 bis)],

et en tenant compte de l’égalité (i45)?



Les égali tés y 3g) deviennent alors

Supposons maintenant que l’onde 03C3 soit persistante. Selon ce que nous avons
vu au Chapitre T, ~ 5, nous aurons

Moyennant les égalités (147), ces égalités deviennent

Voyons maintenant ce que donne l’égalité (i44) lorsque le fluide est supposé
compressible. 

’

pans ce cas, nous devons écrire, de part et d’autre de la surface ~,

p et T variant d’une manière continue lorsqu’on traverse la surface ~; il en est de

d’après ce que nous avons vu Partie, Chap. 4). de

et, partant, de II. On a donc

L’égalité (I44~ devient alors



Mais on a Partie, condition (65)]

L’égalité précédente devient donc

Les égalités (148) et y4g) s’établissent alors comme dans le cas précédent ; l’onde
considérée ne peut persister que si elle est, par rapport aux composantes de la

vitesse, d’ordre supérieur au premier.
Dans le cas où le fluide est compressible, la densité variant d’une manière con-

tinue sur la surface r, il doit exister une grandeur Ro telle que l’on ait, en tout

point de la surface T,

En vertu des égalités (i48) et (100), l’équation de continuité

donne, en Lout point de la surface ~,

La température étant également continue sur la surface r~ il existe une gran-
deur 80 telle que, sur cette surface,

Supposons, d’abord, le fluide bon conducteur.
De part et d’autre de la surface a~, traçons (~ fig. y~ deux surfaces ~,, a~2,

parallèles à 03C3 et situées à une distance Il de (j. Sur la surface ce prenons une

aire par le contour de cette aire, élevons des normales à la surface a~;
ces normales découpent sur la surface (jf une aire N, et sur la surface 0-2 une
aire M2N2. Pendant le temps dt, le fluide qui se trouve à l’instant t dans le

volume (ou a) dégage une quantité de chaleur À dt, qui s’obtiendrait



en faisant la somme, pour tous les éléments de ce volume, de la quantité dQ
donnée par l’égaliLé (90).

I4.

D’autre part, en désignant par k le coefficient de conductibilité calorifique du
fluide, cette quantité de chaleur est donnée par l’expression

dS étant un élément de la surface qui entoure le volume a et na la

normale de l’élément dS vers l’intérieur du volume a. Nous avons donc

Cette égalité est générale.
Faisons maintenant tendre h vers o et cherchons la forme limite de l’éga-

lité ( I 53 ~.
L’égalité (go) de la première Partie permet d’établir immédiatement que ), est

de l’ordre du volume a et tend vers o avec A.

L’intégrale qui figure au second membre se compose de trois parties :
Une première partie, relative à l’aire latérale tend vers o avec lt,

Une seconde partie, relative à l’aire N,, a pour limite

Une troisième partie, relative à l’aire a pour limite



SI nous tenons compte des égalités (ica), nous voyons que l’intégrale

k ~T ~na dS a pour limite k03980 d03C3 eL que !a forme limite de l’égalité (t53) est
,7 ~~ ~~ ,

L’aire A étant une aire quelconque prise sur la surface rj, il revient au même de

dire que l’on a, en tous les points de la surface rj,

Supposons maintenant que le fluide soit mauvais conducteur. La quantité de
chaleur dQ dégagée dans le temps dt par chaque élément dm du tluide est égale
à o. Selon l’égalité (go) de la première Partie, cette condition s’exprime par
l’égalité

En vertu des égalités (i 48) et (152), cette quantité se réduit à

La démonstration des égalités (15~) et ~n5~ est évidemment valable pour tous
les fluides, compressibles ou non, visqueux ou non ; l’égalité y54) suppose seu-
lement que l’onde soit au moins du premier ordre par rapport à u, v, tw et p.
En réunissant les résultats obtenus, nous allons être en mesure de répondre a

cette question :

Au sein d’un fluide visqueux en mouvement, peut-on observer une surface
qui soit onde persistante du pour l’une au moins des six

quantités u, v, cw, p, II, T et onde d’ordre égal ou supérieur à I pour les cinq
autres?



PREMIÈRE SECTION. - Fluides incompressibles bons conducteurs.

Les égalités (i48) et mont.rent que la surface a~ est d’ordre supérieur au
premier pour les composantes u, v, cw de la vitesse; les égalités y52) et y54~
montrent qu’il en est de même pour la température. Si la surface ~ était onde du
premier ordre pour l’un des éléments du mouvement, ce ne pourrait être que
pour la pression II. Mais nons démontrerons au paragraphe suivant la proposition
que voici: Si, en un fluide incompressible, une surface 03C3 est onde au moins du
second ordre pour u, v, c~~, T, elle est au moins du second ordre pour la pression H.
Admettant d’avance cette proposition, nous pouvons énoncer ce théorème : :

Au sein d’un fluide visqueux, incompnessible, bon conducteur, aucune
surface ne peut être onde persistante du premier ordre pour l’un au moins
des éléments du mouvement et d’ordne égal occ supérieur à 1 pour les atctnes.

DEUXIÈME SECTION. - Autres fluides.

PREMIER CAS. - On pCCS

Dans ce cas, si le fluide est compressible, on a, en vertu de l’égalité (tS’)?

Si le fluide est mauvais conducteur, on a, en vertu de l’égalité (i55),

Dès lors, en vertu des égalités (i48) et surface considérée est onde au

moins du second ordre par rapport, aux composantes il, v, w de la vitesse; en
vertu des égalités (I 5~ ) et (1 5 2 ) il en est de même par rapport à la température T ;
enfin, si le fluide est compressible, en vertu des égalités (i5~) et (150) il en est

de même de la densité p.
Reste à savoir si l’onde considérée ne pourrait pas être du premier ordre par

rapport à la pression II.
Si le fluide considéré est incompressible, cela sera impossible en vertu de la

proposition que nous avons déjà invoquée et qui sera démontrée au paragraphe
suivant.

Dans le cas où le fluide est compressible et où les actions qu’il subit ne sont pas
newtoniennes, la démonstration de cette proposition nécessite quelques remarques
préliminaires.

Si, dans un certain domaine, la densité p admet, par rapport à x, y, z, t, des



dérivées partielles jusqu’à l’ordre n inclusivenient et si ces dérivées sont continues,
il en est certainement de même, en général, de la fonction Ae; mais il n’est nulle-
ment certain qu’il en soit de même de la grandeur Ai; l’existence ou la non-exis-
tence de ces dérivées dépend évidemment de la manière dont la fonction ~.~~P, p’, 1.),
qui est infinie pour n = o, se comporte pour les valeurs de r voisines de o. Aussi
avons-nous été amenés (Ire Partie, Chap. 4) à faire l’HYPOTHÈSE suivante : :

La fonction 03C8(03C1, p’, r) est d’une nature telle que la grandeur Ai admette
par rapport à x, y, a, t des dérivées partielles continues jusqu’à l’ordre n
dans tout domaine oû la densité p admet des dérivées partielles continues
jusqu’à l’ordne n.

Dans tous les cas où cette hypothèse est justifiée l’égalité

nous montre que, si, dans un certain domaine, en un fluide compressible, la
densité 03C1 et la température T admettent des dérivées partielles continues

jusqu’à l’ordre n il en est de même de la pression II.
Dès lors, les égalités (1 50 ), (152~, (154~ et (15~~ nous montrent que la surface ~

est, pour la pression II, en un fluide compressible, me onde d’ordre supérieur au
premier.
Nous pouvons désormais énoncer la proposition suivante: i

En un fluide visqueux, il est impossible d’observer une onde qui soit dcc
premier ordre pour certains éléments du mouvement et au moins

égal à I pour les autres, à moins que l’onde ne soit la sur face de séparation
de deux masses fluides qui restent les mêmes pendant toute la dcc

mouvement.

DEUXIÈME CAS. - On a

Dans ce cas, si le fluide est compressible, l’égalité (i 5 y est compatible avec
l’hypothèse que Ro est différent de o; si le fluide est mauvais conducteur, l’éga-
lité (i 55) est compatible avec l’hypothèse que 80 est différent de o ; nous pouvons
donc énoncer le théorème suivant : :

En un fluide visqueux, qui est ou mauvais conducteur, ou compnessible,
ou à la fois compressible et mauvais conducteur, on peut observer des ondes
qui sont du premier oc°dre par rapport à certains éléments du mouvement et
d’ordre supérieur au premier pour les autres. Les deux masses fluides que
sépare une telle onde restent les mêmes pendant toute la durée du mouvement. .



Une telle oncle présente, pour les diverses espèces cle fluides, les 

:

I° FLUIDES INCOMPRESSIBLES FIT CONDUCTEURS. - 

ordre pour T et II, est plus élevé pour cc, v, w.

2° FLUIDES COMPRESSIBLES ET BONS CONDUCTEURS. - du premier ordre
pour p et II, est cl’ot’clne plus élevé pour u, v, cw et T.

ÙÀ" FLUIDES COMPRESSIBLES ET MAUVAIS CONDUCTEURS. - du premier
ordre pour 03C1, I1 et T, est cl’ol’dre plus élevé pour lc, v, w.

§ 2. - DES ONDES DU SECOND ORDRE PAR RAPPORT A CERTAINS 
DU MOUVEMENT.

Supposons qu’à l’instant t, au sein d’un fluide une surface 03C3 soit t

onde au moins du second ordre pour les composantes u, v, cw dé la vitesse, pour
la température T et, en outre, si le fluide est compressible, pour la densité o.
Quant à la pression H, nous supposerons seulement, au début, que, pour elle,
l’onde est au moins du premier ordre. Nous serons amené ainsi à démontrer un

théorème invoqué au paragraphe précédent.
La condition restrictive indiquée en la Partie, au Chapitre I, § 3, est remplie

dans l’hypothèse oÙ nous nous plaçons. Nous pouvons donc faire usage des équa-
tions du mouvement des fluides visqueux sous la forme qui a été donnée en cet
endroit par les égalités ~;/). Cette forme n’est autre que celle qui est donnée en
la présente Partie par les égalités ~>! 3~), avec les expressions suivantes de qx, cl,., ~z
(_ (rt’ Partie, égalités (58)] :



fronde ? étant supposée au moins du deuxième ordre pour il, v, il existe
en chaque point de cette surface un vecteur lo, mo, no tel que l’on ait

p et T étant continus, ainsi que leurs dérivées partielles du premier ordre, sur]a
surface a, j il en est de même de ~,(o, T) et de p(p, T), de sorte que les éga-
lités (1 58) permettent décrire

Les hypothèses faites sur nous assurent que ~x, yy, ~z varient d’une ,
manière continue au travers de la surface o-; les hypothèses faites sur p, jointes à
ce qui a été supposé en la Ire Partie, Chapitre I, § ~, nous assurent qu’il en est
de même pour Xi, Xe, Yi, Ye, Zi, Ze; enfin, la surface 03C3 étant onde au moins du

premier ordre pour la pression fl, il existe assurément un vecteur P, tel que

Dès lors, les équations (i35) permettent d’écrire, en chaque point de la surface ~

Ajoutons membre à membre ces égalités après les avoir multipliées respectivement
par oc, ~3, y et nous. trouvons

Supposons, tout d’abord, que le fluide soit incompressible. Nous aurons identi-
quement



partant,

ce qui permettra d’écrire, en tout point de la surface z,

ou bien, en vertu des égalités 

égalités qui entraînent celle-ci :

L’égalité (1 63 ) donne alors

et partant, selon les égalités (161),

D’ailleurs, si l’onde est persistante, on doit avoir, selon l’égalité (98),

en sorte que l’égalité (i65) donne

. 

Les égalités (166) et (i6~) justifient le théorème suivant, déjà invoqué au pré-
cédent paragraphe :

A u sein. d’un fluide visqueux incompressible, une onde persistante, qui est
au moins du second ordre pour les composantes it, , v, cw de la vitesse et pour
la température T, est aussi au moins du second ordre pour la pression I1.

Supposons maintenant le fluide compr~essible. D’après ce qui a été dit au para-
graphe 1, la surface ce, onde du second ordre pour la densité p et la 



ture T, est aussi onde du second ordre pour la pression M; on a donc encore

en sorte qne l’égalité (i63) devient

Mais on a ~11’e Partie, condition (65)]

]}égalité précédente devient donc

Les égalités (164) et (165) étant ainsi établies pour tous les fluides visqueux,
reportons-les dans les égalités (162 ) ; nous trouvons

et comme on a Partie, condition (62 bis)]

les égalités précédentes deviennent

D’autre part, d’après ce que nous avons vu au Chapitre il existe un

vecteur n2,, ~t~ tel que l’on ait 
.

et si l’onde considérée est persistante, on a

Les égalités (168), (169), nous enseignent alors que toutes les



dérivées partielles du second ordre des différences (u~ - (vz - 
sont nulles sur la surface y. Si l’onde considérée est persistante, elle est certaine-
ment d’ordre supérieur au second pour les composantes de la vitesse.

Si le fluide est compressible, il existe deux grandeurs R.o, R,, telles que l’on

ait, en tout point de la surface or,

En outre, si l’onde est persistante,

L’équation de continuité nous enseigne que l’on a identiquement en tout

point,

ce qui permet d’écrire, en tout point de la surface a-,

ou bien, en vertu des égalités (171)? (17~)? ~y3) et (~74)y

égalités qui donnent



Il existe deux grandeurs telles que, sur la surface ~,

En outre, si l’onde est persistante, on a

Considérons la relation supplémentaire Partie, égalité (94)] et supposons
d’abord le fluide bon conducteur :

Elle nous donnera, en tout point de la surface ~,

ou, selon les égalités (176),

ou enfin

Supposons, au contraire, le fluide mauvais conducteur :

Nous aurons, en tout point,



partant

ce qui permet d’écrire, en tout point de la surface a~,

Si l’on observe que la surface Ty onde du second ordre pour p et T, est d’ordre
supérieur au second pour u, v, iv, on voit que ces égalités deviennent

ou bien, en vertu des égalités (176), (y~~, (178),

Ces égalises donnent

Discutons les diverses égalités obtenues.

PREMIÈRE SECTION. - Fluides incompressibles et bons conducteurs.

L’égalité (yg), jointe aux égalités (I76), (y; ), (I78), nous enseigne que la
surface c est onde d’ordre supérieur au second pour la température T, comme
elle l’est déjà pour les composantes u, v, cr~ de la vitesse ; si donc elle pouvait
être du second ordre par rapport à quelque élément du mouvement, ce serait par
rapport à la pression II; mais, au paragraphe suivant, nous démontrerons qu’elle
est, au moins, du troisième ordre par rapport à la pression n; nous pouvons donc
énoncer le théorème suivant : :

Au sein cl’ccn fluide visqueux, incompressible et bon conducteur, on ne

peut observer aucune onde qui soit du second ordre par rapport à certains
éléments dcc mouvement et d’ordre aic moins égal à 2 par rapport aux autres
éléments.



DEUXIÈME SECTION. - Autres fluides.

Ici, nous devons distinguer deux cas.

PREMIER CAS. - On n’a pas

Dans ce cas, l’égalité (181) donne l’égalité

même si le fluide est mauvais conducteur. Les égalités (176), (y~), (1 78) mon-
Lrent alors que la surface (j est, pour la température T, une onde d’ordre supé-
rieur à 2.

Si le fluide est compressible, l’égalité ~y~) donne

ce qui, moyennant les égalités (171), (y~,~, (173), montre que la surface a est
une onde au moins du troisième ordre pour la densité p.

Il reste à examiner si l’onde ne peut pas être du second ordre par rapport à la

pression Il. Que cela soit impossible pour un fluide incompressible, nous en
sommes assurés par un théorème qui sera démontré au paragraphe suivant, si, au
contraire, le fluide est compressible, nous savons, par ce qui a été dit ~, que
la surface a, onde au moins du troisième ordre pour la densité p et la tempéra-
ture 1’, est, au moins, du troisième ordre pour la pression II.
Nous pouvons donc énoncer le théorème suivant : :

aucun fluide visqueux on ne peut une onde qui soit du second
ordre par rapport à certains éléments du mouvement et d’ordre au moins

égal à 2 pour les autres, à moins que les deux niasses fluides séparées par
cette onde ne demeurent les mêmes pendant toute la durée du mouvement.

SECOND CAS. - On a

Dans ce cas, si le fluide est mauvais conducteur, l’égalité ~r8i) peut être 
fiée, bien que eo diffère de o; si le fluide est compressible, l’égalité peut
être vérifiée, bien que Ro diffère de o. 

’ 

Nous pouvons donc énoncer les propositions suivantes: :

Si un fluide visqueux est ou mauvais conducteur, ou compnessible, ou à la fois
mauvais conducteur et compressible, on peut y observer une onde du second



ordre par rapport à certains éléments du mouvement, d’ordre supérieur à 2
pour les autres éléments et qui, pendant toute la durée du mouvement, sépare
les mêmes masses fLuides. .
Pour les diver’ses catégories de fluides visqueux, cette onde présente les

particularités suivantes : .

FLUIDE VISQUEUX, INCOMPRESSIBLE ET MAUVAIS CONDUCTEUR. - Du second 

par )~apport à la température T et à la pression II, l’onde est au moins du
troisième ordre par rapport aux composantes u, v, cw de la vitesse.

FLUIDE VISQUEUX, COMPRESSIBLE ET BON CONDUCTEUR. - Du second 01’dr’e par’

rapport à la densité 03C1 et à la pression II, l’onde est au moins du troisième
ordre par rapport aux composantes u, v, cw de la vitesse et à la température T .

FLUIDE VISQUEUX, COMPRESSIBLE ET MAUVAIS CONDUCTEUR. - Du second ordre

par rapport à la densité p, à la température T et à la pression II, l’onde est acc
moins du troisième ordre par rapport aux composantes ic, v, cw de la vitesse.

§ 3. - DES ONDES DU TROISIÈME ORDRE PAR RAPPORT A CERTAINS ÉLÉMENTS

DU MOUVEMENT.

Continuant notre analyse, nous allons supposer que la surface ~ est au moins
onde du troisième ordre relativement au; grandeurs

u, v, p, T.

En ce qui concerne la pression II, nous supposerons seulement qu’elle est au
moins du second ordre.

Selon les lemmes de M. Hadamard, énoncés et démontrés au Chapitre précé-
dent, les dérivées du troisième ordre ( u2 - (v2-- v, ), (~v2- s’expriment
toutes, sur la surface ~, au moyen de quatre vecteurs (h, mo, no), (l,, n, ~;
( l.~ n ~ ( l m n ). Si l’onde a~ est persistante, on a

Il suffira de démontrer que

pour prouver que toutes les dérivées partielles du troisième ordre de (u2- 
(v2 - v, ~, ( vc~2 - c~, ) sont nulles sur la surface ~, et que celle-ci est une onde
au moins du quatrième ordre pour les composantes u, v, w de la vitesse.



Toutes les dérivées partielles du second ordre de la différence (II2 - s’expri-
ment, sur la surface a, au moyen de trois quantités Po, P,, P2, liées par les rela-
tions

Il suffira de prouver que l’on a

pour démontrer que l’onde ce est au moins du troisième ordre par rapport à la

pression II.
Considérons les équations, vérifiées en tout point du fluide [égalités (135)

et (158~1,

En différentiant la première de ces égalités par rapport à x, la seconde par rap-
port à y et la troisième par rapport à z, nous obtenons trois nouvelles égalités,
vérifiées en tout point du fluide, et qui sont

les ... désignant des termes qui varient d’une manière continue lorsqu’on traverse
la surface a.

Ces égalités montrent de suite que l’on a, sur la surface a,

En ajoutant ces égalités membre à membre, on trouve l’égalité

Supposons d’abord que le fluide soit incompressible.
Nous avons, en tout point, 9 == o, partant o, ce qui donne, sur la surface cr~



L’égalité (186) devient alors

D’oû le théorème suivant, invoqué sans démonstration au paragraphe précédent : :

Au sein d’ccn fluide incompressible, une onde qui est au moins du troi-
sième ordre par rapport à u, v, cv et 1’, est aussi au moins du troisième
ordre par rapport à II.

Si le fluide est compressible, nous savons, par ce qui a été dit 1, que la
surface a, onde au moins du troisième ordre par rapport à p et à T, est au moins
du troisième ordre par rapport à II; nous avons donc l’égalité (I83). Mais, d’autre
part, nous avons l’inégalité Partie, inégalité (6~~~

Les égalités (183~ et (186) nous donnent alors l’égalité (18~~.
Les égalités (~83~ et (i8~~ étant vraies en toutes circonstances, les égalités (i85~

donnent

car on a Partie, inégalité (62 

L’onde considérée est donc au moins du quatrième ordre par rapport aux com-
posantes u, v, (V de la vitesse.

Sur ]a surface cr, toutes les dérivées du troisième ordre de la différence A, )
s’expriment au moyen de quatre grandeurs Ro, R,, R~, R3, liées par les relations

Légalité Ro = o enseigne que la surface o- est onde au moins du quatrième
ordre pour la densité p.

Si le fluide est compressible, on a, en chaque point et à chaque instant,

et, par conséquent,



Cette égalité peut s’écrire

... désignant des termes qui varient d’une manière continue au travers de la

surface r.

On en conclut sans peine, en vertu des égalités (188), que l’on a, sur la sur-
face o,

Sur la surface les dérivées du troisième ordre de la température T s’expriment
au moyen de quatre quantités Oo, e, , Oz, 03, liées par les relations

Si l’on a

l’onde considérée est au moins du quatrième ordre par rapport à la tempéra-
ture T. ,

Supposons d’abord le fluide bon conducteur. En tout point et à tout instant
sont vérifiées la relation supplémentaire [1re Partie, égalité (g4)] et aussi les

égalités que l’on obtient en différentiant celle-ci par rapport à x, ou à y, ou

à z. Ces dernières égalités peuvent s’écrire .

les... désignant des termes qui varient d’une manière continue au travers de la
surface a. On en conclut sans peine que l’on a, sur la surface o,

ce qui entraîne l’égalité (191).
Supposons maintenant le fluide mauvais conducteur. L’égalité (180) est vé-

rifiée en tout point et à tout instant; il en est de même de l’égalité



qui peut s’écrire

... désignant un ensemble de termes qui varient d’une manière continue au tra-
vers de la surface o. On en conclut, en vertu des égalités que l’on a, en

tout point de la surface a,

La discussion s’achève alors comme au paragraphe précédent et conduit aux
conclusions que voici : .

Aic sein d’un FLUIDE VISQUEUX, INCOMPRESSIBLE ET BON CONDUCTEUR, on ne peut
observer aucune onde qui soit dic troisième ordre par rapport à certains élé-
ments du mouvement et d’ordre au moins égal à 3 pour les autres éléments.
Au sein de tout autre FLUIDE VISQUEUX, on peut observer une telle onde.

Si le fluide est INCOMPRESSIBLE ET MAuvAis CONDUCTEUR, cette onde est du 
siéme ondre pour T et II et d’ordre au moins égal à 4 pour u, v, vv.

Si le fluide est COMPRESSIBLE ET BoN CONDUCTEUR, cette onde est du troisième
ordre pour a et I1 et d’ordre au moins égal à 4 pour u, v, w et T.
Si le fluide est COMPRESSIBLE ET MAUVAIS CONDUCTEUR, cette onde est du 

sième ordre pour p, T et I1 et d’ordre au moins égal à 4 pour u, v, w.
Les deux masses fluides que sépare la surface de l’onde demeurent les

mêmes pendant toute la durée du mouvement, car on a

g ~ - RÉSUMÉ DES PROPRIÉTÉS DES ONDES AU SEIN DES FLUIDES VISQUEUX (~).

On voit sans peine que les démonstrations données aux §§ 2 et 3 s’étendent de

proche en proche et s’appliquent aux ondes de tous ordres. Si l’on réunit alors ce

qui a été dit dans le présent Chapitre aux résultats obtenus au Chapitre I, § 11,
on parvient à des théorèmes entièrement généraux au sujet des ondes qui peuvent
persister en un fluide visqueux. Ces théorèmes s’appliquent même aux surfaces de
discontinuité pour certains éléments, surfaces qui sont des ondes d’ordre o par
rapport à ces éléments.

(1) ) Des ondes qui peuvent persister en un fluide visqueux (Comptes rendus,
t. CXXXIII, 14 octobre 1go1, p. 5;g).



Voici ces théorèmes : :

THÉORÈME I. - Au sein d’un FLUIDE VISQUEUX, INCOMPRESSIBLE ET BON CON-

DUCTEUR, il ne peut persister aucune onde, quel qu’en soit l’ordre par rapport
aux divers éléments du mouvement.

En toute la masse d’un tel, fluide et pendant toute la durée du mouvement,
sauf peut-être à un instant isolé, u, v, cw et T sont des fonctions continues et
analytiques de x, y, z, t.

THÉORÈME II. sein FLUIDE VISQUEUX qui est ou COMPRESSIBLE, Oll

MAUVAIS CONDUCTEUR , OlG A LA FOIS COMPRESSIBLE ET MAUVAIS CONDUCTEUR, on peut
observer des ondes persistantes. -

Si le fluide est INCOMPRESSIBLE ET MAUVAIS CONDUCTEUR, une onde d’ordre n
par rapport à T et à II est au moins d’ordre (n + I) par rapport à u, v, w.

Si le fluide est COMPRESSIBLE ET BON CONDUCTEUR, une onde n pal’
~°apport à p et à il est au moins d’ordre (n + y par rapport à u, v, cw et à ~I’.
Si le fluide est COMPRESSIBLE ET MAUVAIS coNDucTEuR , une onde n par

rapport à p, à T et à II est au n2oins d’ordr’e ( n + I) par rapport à tc, v, w.

THÉORÈME III. - La vitesse de déplacement de l’onde est ég’ale, en chacun
des points de cette onde, à la projection de la vitesse du fluide sur la normale
à l’onde :

Les ondes partagent donc le fluide en masses qui demeurent les mêmes pen-
dant toute la durée du mouvement.

Au sein de chacune de ces masses u, v, w, 03C1, T, II sont des fonctions conti-
nues et analytiques de x, y, .~, t.

- -

CHAPITRE I~.
DES ONDES DANS LES FLUIDES PARFAITS.

§ 1. - QUELQUES PROPRIÉTÉS THERMODYNAMIQUES DES FLULDES
SANS VISCOSITÉ ( ~ ).

Dans ce Chapitre, nous nous proposons d’étudier les propliétés des fluides
parfaits, c’est-à-dire des fluides pour lesquels les deux coefficients de viscosité

(1) Sur les chaleurs spécifiques des fluides dont les éléments sont soumis à leurs
actions mutuelles ( Comptes rendus, t. CXXXII, I I février I90I, p. 



sont identiquement nuls :

Nous exposerons d’abord quelques considérations sur les coefficients calori-
fiques de ces fluides, considérations qui nous seront. utiles ensuite.

Dans une modification réelle ou virtuelle où la densité p et la température T
varient de 03B403C1, 03B4T, la masse élémentaire dm dégage une quantité de chaleur dQ
que donne l’égalité (82) de la première Partie, à condition d’y supprimer le tra-
vail dm des actions de viscosité ; nous avons donc

La quantité

est Partie, égalité (84)] la chaleur spécifique à densité constante du
fluide.

Selon le postulat de Helmholtz, cette quantité est essentiellement positive :

D’autre part, en tout point non situé sur une surface de discontinuité, nous
avons Partie, égalité ~; 5~~

Nous allons écrire cette dernière condition sous une forme un peu différente.

Considérons les fonctions i (R, x, y, z, t~, x, y, z, t~, définies en

la Ire Partie, Chapitre I, § 4.
Nous aurons

L’égalité ( 1 g~ ~ pourra alors s’écrire

Cette égalité peut s’interpréter.
Supprimons toutes les parties du fluide qui sont contiguës à l’élément 



mais, aux corps extérieurs qui exercent l’action x, y, z, t), adjoignons
d’autres corps exerçant précisément une action égale à x, y, z, t). Pour
conserver à l’élément dm sa densité et son état de repos ou de mouvement, il

faudra appliquer à sa surface une pression II donnée par l’égalité (198).
Supposons ces corps extérieurs fictifs choisis de telle manière que la forme de

la fonction x, y, z, t) demeure invariable. A des variations ~a, de la

densité p et de la température T correspondrait une variation ~II de la pression fi
donnée par l’égalité 

.

Posons

L’égalité (199) nous enseigne que si, dans la modification définie plus haut à
laquelle cette égalité se rapporte, la température T demeure invariable, la densité p

augmente de d P Sn, avec

tandis que si la pression II demeure invariable, la densité augmente de (2014) 
avec .

Au sein d’un fluide qui est en état d’équilibre stable, on a (f)

Toutes les fols que cette Inégalité est est positif et est de

signe contraire à (d03C1 dT)II.

Considérons une modification du genre de celles que nous venons de définir et

où la pression tï garde une valeur Invariable; p croît de ( ’ ) §T; selon les éga-

(1) Sur la stabilité de l’équilibre d’une masse fluide dont les éléments sont soumis
à leurs actions mutuelles [Journal de Mathématiques pures et appliquées, 5" série,
t. III, p. I74; condition (63); i8()y].



lités (ig4) et (195), la quantité de chaleur dégagée par l’élément dm devient

on bien, en vertu de l’égalité ( 202 ),

en posant t

La quantité T, t) peut, en vertu de l’égalité (204), être regardée
comme la chaleur spécifique à pression constante de l’élément dm; elle diffère
de la chaleur spécifique à densité constante par un caractère essentiel; pour la
connaître, il ne suffit pas de connaître la densité p et la température T au sein de
l’élément dm; ; il faut en outre connaître la disposition et l’état des corps dont
proviennent les actions extérieures, la figure du fluide et la distribution des

masses au sein de cette figure. 
’

Si la condition de stabilité (203) est satisfaite, la chaleur spécifique à
pression constante T, x, y, z, t) est, en chaque point, supérieure â la
chaleur spécifique à densité constante.

Considérons une des modifications pour lesquelles est écrite l’égalité (199) et
supposons quelle constitue, pour l’élément dm, une modification isentropique.

L’entropie T) dm de l’élément dm est définie par l’égalité [Ire Partie, éga-
lité (85)]

On a donc, en une modification isentropique quelconque,

Entre les égalités (199) et (206), éliminons 8T et remplaçons §p par ( 2014’ ) 3tl.
Nous trouverons, en tenant compte de Inégalité (200),



ce qui peut encore s’écrire

ou bien, en vertu des égalités (201), (195) et ( ~04 ),

égalité qui est la généralisation de la classique relation de Reech.
La relation ~206 ~, qui exprime que la modification est isentropique, peut s’écrire,

en vertu de l’égalité (202),

ou bien, en vertu de l’égalité (i95),

Mais ici 03B403C1 = (d03C1 dII) 03B4II; si donc on tient compte des é g alités (20I) et (208)

et si l’on remplace 03B4T par on trouve l’égalité 
.

ce qui est la généralisation d’une relation due à Joule.
Ainsi, toutes les lois que l’on démontre, en Thermodynamique élémentaire, pour

un fluide soumis uniquement à une pression normale et uniforme, s’étendent à
un fluide dont les éléments exercent les uns sur les autres des actions quelconques,
newtoniennes ou non. Mais tandis que, dans le premier cas, ces lois sont générales,
elles ne s’a ppliquent, dans le second cas, qu’à certaines modifications virtuelles
définies d’une manière particulière, à savoir celles pour lesquelles il est permis
d’écrire la relation y gg),

Malgré le caractère abstrait et, semble-t-il, purement artificiel, des considé-
rations que nous venons de développer, nous allons en reconnaître l’intérêt par
l’étude de la propagation des ondes au sein des fluides parfaits.



§ 2. - PROPAGATION DES ONDES AU SEIN DES FLUIDES PARFAITS.

EMPLOI DES ÉQUATIONS D’EULER.

La propagation des ondes dans les fluides parfaits a déjà fait l’objet de recher-
ches extrêmement importantes de la part d’Hugoniot (~); c’est à cette occasion
qu’ont été imaginées les méthodes développées aux Chapitres II, III et IV du pré-
sent écrit. Toutefois, l’analyse d’Hugoniot est susceptible de certains développe-
ments et de certaines généralisations (2) que favorise singulièrement l’emploi des
vecteurs de M. Hadamard.

Cette étude de la propagation des ondes dans les fluides parfaits peut se faire,
comme l’a déjà observé Hugoniot, soit au moyen des équations hydrodynamiques
dites équations d’Euler) soit au moyen des équations hydrodynamiques dites
équations de Lagrange; nous allons successivement ces deux procédés,
en usant d’abord des équations d’Euler.

Pour obtenir les équations d’Euler, il suffit de prendre les équations générales
de l’Hydrodynamique [Ire Partie, égalités (79)] et d’y annuler les fonctions ~,~~, T~,

T). Nous obtenons alors les équations .

A ces équations, il faut joindre l’équation de continuité

dans le cas où le fluide est compressible, la relation

et, enfin, Ia relation supplémentaire.

( 1) HUGONIOT, Mémoire sur la propagation du mouvement dans un fluide indéfini
(Journal de Mathématiques pures et appliquées, 4e série, t. III, 1887, p. 188, et t. 1V,
~ 888, p. 153).

(2) Sur les ondes longitudinales et transversales dans les fluides parfaits (Com~te,~
rendus, t. CXXXII, 3 juin I90I, p. 1303).



Imaginons qu’une surface o- soit onde persistante du premier ordre pour u,
~~, cw. Il existera un vecteur (10’ mo, no) tel que, sur la surface T,

Moyennant ces égalités, on a, sur la surface y,

D’après ce que nous avons vu au Chapitre I, § la surface a~, au travers de

laquelle les composantes de la vitesse varient d’une manière continue, est onde au
moins du premier ordre pour la pression II et la densité p ; il existe donc deux

- grandeurs Po, Ro telles que l’on ait, en tout point de la surface ce,

Moyennant les égalités (211) l’équation de continuité (210) montre



que l’on a, en tout point de la surface ce,

En traversant la surface ce, les grandeurs X~ Ye, Ze varient certainement d’une
manière continue ; il est aisé de voir qu’il en est de même de X~ Yi, Zi ; si, en
effet, on se reporte à la définition de la fonction ce, y, z, t) donnée en la
Ire Partie, Chapitre ï, § 4, on voit que Xi, Yi, Zi s’obtiennent en remplaçant R

par 03C1(x, y, z, t) dans - ~v ~x, 
-

~v ~y, 
-

~v ~z; or, d après ce qui a été suppose en

cet endroit, la continuité de p assure la continuité de - -,2014.? - 2014) , - 2014’~ ’ dr ~ ~j

Les égalités (209), (212), (213) nous montrent alors que l’on a, en tout point
de ]a surface T, -

Les égalités ~2I5) et (216) sont vraies aussi bien pour les fluides compressibles
que pour les fluides incompressibles, et cela quelle que soit la forme de la relation
supplémentaire. Discutons, tout d’abord, les conséquences de ces égalités.

Multiplions respectivement les égalités (216) par a, 03B2, y et ajoutons membre à
membre les égalités obtenues; nous trouvons l’égalité

D’autre part, multiplions respectivement les égalités par 10, nio, iio et

ajoutons membre à membre les résultats obtenus. Nous trouvons l’égalité

Parvenus à ce point, nous distinguerons deux cas :

PREMIER CAS. - L’onde, du premier ordre par rapport aux composantes u,
v, cw de là vitesse, est supérieur au premier pour la densité P :

Ce cas est évidemment le seul qui puisse se présenter en trn fluide incompres-
sible.

Les égalités (219) et ( 2 1 5 ) donnent

Selon la dénomination introduite au Chapitre 5, L’ONDE EST TRANSVERSALE,



L’égalité ( 2 1 7 ) donne alors

L’onde est supérieur au premier par rapport à la pression.
’ 

Enfin, l’égalité ( 2 1 8 ) donne

Les deux masses fluides que sépare l’onde considérée demeurent les mêmes
pendant toute la durée du mouvement.

Moyennant les trois égalités ( 2 i ~~, ( 21 ~ ~, ( 2 i 8 ), il est très facile de voir que
chacune des quatre égalités (220), (221), (222) a pour conséquence les
trois autres. Donc, chacune des quatre propositions que nous venons d’énoncer
entraîne les trois autres.

DEUXIÈME CAS. - L’onde, du premier ordre par rapport aux composantes ic,
v, (V de la vitesse, est aussi du premier ordre par rapport à la densité 03C1.

Dans ce cas, on n’a pas l’égalité ( 21 ~~ et, partant, on ne peut avoir aucune des
trois égalités (220), (221), (222); en particulier, on n’a pas

L’onde considérée est certainement du premier ordre par rapport à la

pression...

Comme on n’a ni l’égalité (221~~ ni l’égalité ~z2~~, les égalités ~2~6~ donnent t.

Selon la terminologie définie au Chapitre II, § ~~ L’ONDE CONSIDÉRÉE EST LONGITU-
DINALE.

Les égalités ~21J~ et (2 17) donnent

Dans le cas actuel, où aucune des égalités (219), (2?0), (221) n’est vérifiée,
cette égalité devient

Elle fait connaître la valeur de ~"~.



Pour pousser plus loin et déterminer la valeur de p°, , il faut faire usage de

l’égalité (198) (ce qui est assurément permis, puisque ce second cas ne peut se
rencontrer qu’en un fluide compressible) et de la relation supplémentaire.
En tenant compte de la définition deJ, donnée par l’égalité (200~, l’égalité (Ig8)

nous donne

L’onde considérée étant au moins du premier ordre pour la température T

(Chapitre I, § 11), il existe une grandeur eo telle qu’en tout point de la surface ?

Au passage de la surface e, varie d’une manière continue comme et ZT;

selon les principes posés en la lre Partie, Chapitre I, § 4, il en est de même de Ai,

~Ai ~03C1, ~Ai ~x; enfin, il en est assurément de même de et de ses dérivées par-

tielles, partant de J. Dès lors, les égalités (2~3), (214), (225), (226) donnent,
en tout point de la surface ~, la première des égalités

Les deux dernières s’établissent d’une manière analogue. Ces égalités donnent

Parvenus à ce point, nous devons scinder notre deuxième cas :

A. LE FLUIDE EST BON CONDUCTEUR DE LA CHALEUR. - Dans Ce cas, selon des

considérations exposées au Chapitre ~l, considérations qui s’appliquent
aussi bien aux fluides parfaits qu’aux fluides visqueux, on a

L’onde est d’ordre supérieur au premier pan rapport cc la température.



L’égalité (22~) donne alors

en sorte que l’égalité (z2/) devient

Elle nous enseigne qu’une onde longitudinale du premier ordre rae peut per-
sister qu’au sein d’un fluide où la condition (203) est vérifiée.

Selon l’égalité ~’~o ~ ~, l’égalité ( 22$) peut encore s’écrire

B. LE FLUIDE EST MAUVAIS CONDUCTEUR DE LA CHALEUR. - Dans le temps dt,
chaque élément dr~ dégage une quantité de chaleur égale à o, Selon l’égalité (po)
de la Partie, cette condition s’écrit 

’

Selon les égalités ~21 i> et (226), elle nous enseigne que l’on a, en lout point
de la surface T,

Comme on n’a certainement ni l’égalité (220), ni l’égalité (222), 0o a une valeur
finie et diiéiente de o. L’onde considérée est assurément du premier ordre

par rapport à la température.
Les égalités (2t5) et (230~ donnent

ou bien, puisque l’égalité (222) n’est sûrement pas vérifiée,

L’égalité ~ 2~ ~ ) devient alors



L’égalité (aa4) devient donc

Selon le postulatum de Helmholtz [inégalité (196)], y2014 est assurément négatif,
le second membre de l’égalité (231) est donc certainement positif, partout où la
condition (zo3~ est vérifiée. 
En vertu de l’égalité ( 20~ ), l’égalité ( ~ 3 i ~ peut s’écrire

En vertu de l’égalité (~08), l’égalité (23a ) devient

L’égalité ( r 5~ ) s’applique, au sein d’un fluide bon conducteur, aussi bien à une
onde transversale qu’aune onde longitudinale ; il en est de même de l’égalité (z~; ~,
si le fluide est mauvais conducteur et compressible; mais, dans ce cas, on a, en

tout point d’une onde transversale,

en sorte que l’égalité (2~~~ redonne

On peut donc compléter ainsi qu’il suit ce que nous savons déjà des ONDES
TRANSVERSALES: 1

Au sein fluide bon conducteur, ou bien au sein d’un fluide com-

pressible et mauvais conducteur, une onde transversale du premier ordre par
rapport à u, v, w est d’ordre supérieur à 1 par rapport à T . Au sein d’un

fluide incompressible et mauvais conducteur, elle peut être du premier ordre

par rapport à T .

Les diverses propositions que nous venons de démontrer touchant les ondes du

premier ordre par rapport aux composantes u, v, cw de la vitesse s’établissent sans

peine pour les ondes d’ordre supérieur au premier; les méthodes à suivre sont



analogues à celles dont nous avons fait usage dans le cas des fluides visqueux,
mais elles sont d’un emploi beaucoup plus simple. Nous laissons au lecteur le

soin de les développer et nous nous bornerons à énoncer les théorèmes généraux
que voici : 

.

Aic sein d’un fluide parfait, soumis à des actions newtoniennes occ non, il

peut persister en général deux sortes d’onde n par rapport aux conz-

posantes u, v, w de la vitesse (n étant au moins égal èc 1). La première sorte
est seule possible si le fluide est incompressible :

I° DES ONDES TRANSVERSALES. - Ces ondes sont acc moins d’ondre (n + 1) par
rapport à la densité et à, la pression. Les deux masses fluides que sépare une
telle onde sont les mêmes pendant toute la durée du mouvement, en sorte que
la vitesse du déplacement de l’onde est donnée par la formule

Enfin cet te onde est aic moins d’ordre (n + I) par rapport à 7.’, ù moins

que le fluide ne soit incompressible et mauvais conducteur, cas auquel elle

peut être d’ordre n par rapport à T.

2° DES ONDES LONGITUDINALES. - Ces ondes sont aussi d’ordne n pour la

densité et pour la pression.
A u sein d’un fluide BON CONDUCTEUR, une telle onde est au moins 

(n + ~) pan rapport à la températur~e T et sa vitesse de déplacement est

donnée par la formule

Au sein d’un fluide MAUVAIS CONDUCTEUR, une telle onde est d’ondne n par
rapport à la température T et sa vitesse de déplacement est donnée par
la formule

Cette dernière formule est la généralisation de celle que Laplace a donnée

pour la vitesse de propagation du son dans l’air.
On remarquera l’analogie qui existe entre les résultats que nous venons d’ob-

tenir pour les ondes d’ordre au moins égal à 1 par rapport à et les résultats

qui ont été énoncés, à la fin du § 8 et aux §§ 9 et 10 du Chapitre 1, pour les sur-
faces de discontinuité ou ondes d’ordre o par rapport à c~~.



~3. - LA MÉTHODE DE LAGRANGE. - CONSIDÉRATIONS CINÉMATIQUES.

Les problèmes relatifs aux fluides parfaits peuvent être traités par une

méthode, distincte de la précédente, que l’on nomme habituellement méthode
de Lagnange. ’Vu l’importance des résultats que nous venons d’obtenir par la
méthode dite nous allons chercher à les retrouver par la méthode

dite de Lagrange.
Nous allons tout d’abord rappeler quelques formules, de nature cinématique,

obtenues par cette méthode.

Dans la méthode de Lagrange, chaque point matériel est déterminé par ses
coordonnées a, b, c, à un instant to choisi une fois pour toutes; les coordonnées

x, y, z de ce même point matériel à l’instant t sont des fonctions continues et
uniformes de a, b, : 

l ,.. ,

Soit f( a, b, c, t) une fonction des variables a, b, c, t; nous conviendrons d’en)-
ployer les notations suivantes :

Selon ces notations,

Ces notations nous permettent d’écrire, en vertu des égalités (234),

Posons



et résolvons les équations (235) par rapport à Ob, Oc; nous trouverons, en
faisant usage de la notation des déterminants fonctionnels,

Supposons que, résolvant les égalités (23£) par rapport à a, b, c, on exprime
ces quantités en fonctions de x, y, â, t :

Les égalités (23~) nous donneront Immédiatement

Considérons une certaine surface S (t), variable avec le temps t, tracée dans
l’espace des x, y, z. Son équation est

Si, dans ceLte égalité, on remplace x, y, â par leurs expressions ( 23~ ), on
obtient une nouvelle équation

qui est l’équation d’une surface s(t), variable avec le temps t et tracée dans

l’espace des a, b, c. Les deux surfaces S ( t), s( t) sont dites correspondantes. Les
égalités (234) ou les égalités équivalentes (238) font correspondre point par
point la surface S ( t) et la surface s ( t).
En un point l~~ de la surface S(t), la normale a pour cosinus directeurs x, ~, ~~

et l’on a



Au point m, correspondant du point NI, la surface s(t) admet une normale
dont ~~, sont les cosinus directeurs, et l’on a

En vertu des égalités (238), les égalités ( 2/ ~a ~ peuvent s’écrire

En vertu des égalités ~~oç~) et ~2~3~, ces égalités prennent la forme

oÙ l’on a posé

Les formules (24~) et permettent de calculer o~, 3, y lorsque l’on

connaît À, p, v.
La surface S(l) occupe la position ~S à l’instant t n) et la position S’à

l’instant (t + dt) dans l’espace des x, y, z. Les points matériels qui, à l’instant
( t + dt), se trouvent sur la surface S’, se trouvaient, à l’instant t, sur la sur-

face S~.
A la surface S correspond, dans l’espace des a, b, c, une surface s. Aux deux

surfaces S’, S’1, lieux, à des instants différents, des mêmes points matériels, cor-
respond, dans l’espace des a, b, c, une même surface s‘.

Soient M un point de la surface S et m le point correspondant de la surface s.
La distance normale du point M à la surface S’, comptée positivement dans la



direction dont a, fi, Y sont les cosinus directeurs, sera désignée par ~~~ dt. La

distance normale du point m à la surface s’, comptée positivement dans la direc-

Fig. 15.

tion dont ),, u, v sont les cosinus directeurs, sera désignée par n dt. Cherchons
quelle relation existe entre n et 

Sur la surface s’, prenons un point p voisin du point m; si a, b, c sont les
coordonnées du point m, a + b + ab, c + dc seront celles du point p. La
projection du segment mp sur la direction dont a,, sont les cosinus directeurs
sera précisément n dt. On a donc

Au point p correspond un point P sur la surface S et un point l’, sur la
surface S, .

Les composantes de segment sont ~x, ày, 9a, ces quantités étant liées à
0394a, 0394b, Oc par les égalités (235) ou, ce qui revient au même, par les égalités (237).
Quant au segment P, P, ses composantes sont ~x ~t dt ~y ~t clt dt

La projection du contour P, P sur la direction dont a, 03B2, 03B3 sont les cosinus
directeurs doit donner précisément os dt. On a donc

En vertu des égalités ~23~) et ~2~~), l’égalité (2~6) peut s’écrire

En vertu des égalités ~2l~4~, l’égalité (247) peut s’écrire



Les égalités (248) et donnent

Cette formule essentielle est due à Hugoniot (t ).
La masse du fluide qu’à l’instant t conticnt une surface fermée S, tracée dans

l’espace des x, y, z, a pour valeur

l’intégrale s’étendant au volume qu’enclôt la surface S. Par le changement de
variables que représentent les équations (2;i4~, cette intégrale devient

l’intégrale s’étendant au volume enclos par la surface s, qui correspond à la sur-
face S dans l’espace des a, b, c.

Supposons que la première intégrale exprime la masse invariable d’une partie
du fluide toujours identique à elle-même. La surface S variera avec t, mais la
surface s demeurera invariable, et il en devra être de même de l’intégrale (a5t).
Donc l’intégrale (251), étendue au volume que renferme une surface inva-

riable quelconque s, tracée dans l’espace des a, b, c, garde une valeur indépen-
dante de t. Il faut et il suffit pour cela que l’on ait

égalité bien connue représente l’équation de continuité dans le système
dit de Lagrange.
On peut l’écrire plus explicitement

ou bien, en vertu de l’égalilé (236), qui définit (D(x, b, c, t),

(1) Mémoire sur la propagation du mouvement dans un fluide indéfini,
seconde Partie (Journal de Mathématiques, 4e série, t. IV, 1888, p, 153).



§ 4. - + PROPAGATION DES ONDES AU SEIN DES FLUIDES PARFAITS
EMPLOI DE LA MÉTHODE DE LAGRANGE.

Il est clair que nous avons

En vertu des égalités (255) et en supposant le fluide parfait, ce qui entraîne

les équations générales de l’Hydrodynamique [première Partie, égalité (74)]
deviennent

On a, d’ailleurs,

Cette égalité, jointe à la première des égalités ( 23g), transforme la première des
égalités (256 ) en la première des égalités

Les deux autres se démontrent d’une manière analogue.
Supposons qu’une surface s, mobile avec t et tracée dans l’espace des a, b, c,

soit onde du second ordre pour x, y, z et, partant, du premier ordre pour ~x ~t,

~y ~t, ~z ~t . A cette surface s correspondra, dans l’espace des x, y, z, une surface S.



mobile avec t et qui sera onde du premier ordre pour r~, v, c~~ [selon les éga-
lités (254)]. Dès lors, d’après ce que nous avons vu au Chapitre I, ~ 11, la surface S
sera onde au moins du premier ordre pour p et II, et, visiblement, il en sera

de même pour la surface s.

Nous pourrons donc, d’après ce qui a été dit au Chapitre II, trouver, en chaque
point de la surface s, un vecteur f, g, Il et deux grandeurs et tels que l’on

ait

La surface s étant onde du second ordre pour x, y, ~, les dérivées partielles du

premier ordre de ces quantités varient d’une manière continue en traversant cette
surface, et il en est de même de  et de tous ses mineurs. Dès lors, les éga-
lités (253), (a58) et (259), jointes aux égalités (245), montrent que l’on a, en
tout point de la surface s,

D’après ce que nous avons vu en la première Partie, Chapitre T, S 4, Xe, Ye, Ze,
Xi, Yi, Zi varient d’une manière continue lorsqu’on traverse la surface S et, par-
tant, la surface s. Dès lors, les égalités (257), (258) et (260), jointes aux éga-
lités (245), montrent que l’on a, en tout point de la surface s, les trois égalités

De ces égalités (262) on tire sans peine les deux égalités

Ici, distinguons deux cas :



PREMIER CAS. - L’onde est d’ordre supérieur à 1 par r°apport à la densité 03C1 :

L’égalité (261) donne alors

Interprétons ce résultat.
En multipliant les deux membres de l’égalité (266) par ~, et tenant compte des

égalités (258), (254) et (244), nous trouvons la première des égalités

Les deux autres se démontrent d’une manière analogue. Multiplions respective-
ment ces égalités par ~a ~x, ~b ~x, ~c ~x, 

et ajoutons-les membre a membre ; nous trou-
vons l’égalité

qui, si l’on se reporte aux égalités (21 1), devient la première des égalités

Les deux autres se démontrent d’une manière analogue. Ces égalités montrent
que l’on a, en tout point de la surface S,

L’égalité (266), vérifiée en tout point de la surface s, exprime donc que la 
face S est une onde TRANSVERSALE.

Moyennant l’égalité (266), l’égalité (264) devient



L’onde considérée est supérieur au premier par rapport à la
pression I~. .

pa, qui est la densité du fluide à l’instant to, ne peu être nal; les égalités ~2(~3~
et ~266~ donnent donc

La sur face s est immobile dans l’espace des a, b, c; donc, dans son mouve-
ment, la surface S sépare toujours l’une de les mêmes masses

fluides.

D’ailleurs, en vertu de l’égalité (250) et des égalités ~~~4), l’égalité (268) 
donne

On voit sans peine, par les égalités ( 26 1 ), ( 263~ et (264 j, que chacune des éga-
lités (265), (266), (267) et (268) entraîne les trois autres; chacun des quatre
caractères que nous venons d’énumérer entraîne les trois autres.

On retrouve ainsi tout ce que nous avons démontré, au § 2, au sujet des ondes
transversales.

SECOND CAS. - est effectivement du premier ordre par rapport èc la
densité P. .

On n’a pas

Dès lors, on ne peut avoir l’égalité (26~ ~, en sorte que l’onde est effective-
ment du premier ordre par rapport èc la pression II.
On ne peut avoir non plus l’égalité (268), et, comme p(D est essentiellement

positif, les égalités (262) donnent

Interprétons ces relations.

Multiplions les trois numérateurs par



et tenons compte des égalités (2~4~; les relations ( 26g) deviendront

En vertu des égalités (258) ces égalités donnent

Celles-ci , en vertu des égalités (2I I~, donnent la première ligne du groupe suivant

Les deux autres lignes s’obtiennent d’une manière analogue. Ce groupe d’éga-
lités équivaut aux égalités

Les égalités (26g), vérifiées en tout point de la surface s, expriment donc que
. la surface S est une onde LONGITUDINALE.

Les égalités (261) et (264) donnent

Transformons cette égalité.
On a

ou bien, en vertu des égalités (2i3), (239), ( ~~ 5 ~ et (260), la première des éga-



Les deux autres se démontrent d’une manière analogue.
On en tire, en vertu des égalités (2/~~~,

Une démonstration semblable donne

le radical ayant le même signe que dans l’égalité ~2~ l~.
Des égalités (271) et (2~72) on tire

Les égalités ( 250 ), (254), (270) et (2~3~ donnent alors l’égalité

Nous avons ainsi retrouvé, par la méthode de Lagrange, tous les résultats qui
avaient été obtenus, au § 2, par la méthode d’Euler.

CONCLUSION DE LA SECONDE PARTIE.

En terminant la première Partie de ces recherches, nous avons Insisté sur le
caractère extrêmement limité et particulier des cas où le mouvement des fluides
donne prise aux méthodes ordinaires de l’Hydrodynamique.
On pouvait penser que ces restrictions, qui pèsent sur la plupart des théorèmes

dits généraux de l’Hydrodynamique, viendraient également borner l’étude de la

propagation des ondes; en fait, Hugoniot et Hadamard (1) n’ont abordé cette
étude qu’en supposant l’existence de la fonction A définie en la première Partie,
Chapitre III, § 2 ; en outre, ils ont supposé que les actions étaient newtoniennes
et que le fluide n’était pas visqueux.

(1) ) Cf’. P. AppELL, Traité de Mécanique, t. III, p. 33; .
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Ces restrictions, heureusement, n’influent pas sur le problème de la propaga-
tion des ondes persistantes; ce problème peut être traité avec une généralité qui
n’a d’autre limite que la généralité même des équations fondamentales de 
drodynamique; on peut dire que la solution complète que nous avons donnée
de ce problème constitue LE SEUL THÉORÈME VRAIMENT GÉNÉRAL que l’on ait
obtenu en Hydrodynamique. En particulier, nous avons obtenu un théorème
qui est exact pour tous les fluides possibles, visqueux ou non visqueux, conducteurs
ou non conducteurs; seuls, les fluides qui sont à la fois visqueux, incompres-
sibles et bons conducteurs de la chaleur en sont exclus; ce théorème est

le suivant : :

En tout fluide, on peut observer des on.des, d’ordre quelconque, qui sé-
parent sans cesse les deux mêmes masses fluides et, partant, ne se propagent
pas. 

’

Parmi les phénomènes qui manifestent nettement de semblables ondes, on peut
citer, outre les cas anciennement connus des tourbillons et des jets, la propaga-
tion de la chaleur par convection au sein d’une masse liquide, si bien étudiée, au
point de vue expérimental, par M. Bénard (f); les curieuses cellules dont ce

physicien a observé la formation trouvent Peur explication immédiate dans le
théorème précédent.

(’) Il, BÉNARD, Journal de Physique, 3esérie, t. IX, I900, p o3; t. X, I90I, p. 2y.


