P. DUHEM
Recherches sur I’hydrodynamique

Annales de la faculté des sciences de Toulouse 2° série, tome 4 (1902), p. 101-169
<http://www.numdam.org/item?id=AFST_1902_2_4 101_0>

© Université Paul Sabatier, 1902, tous droits réservés.

L’accés aux archives de la revue « Annales de la faculté des sciences de Toulouse »
(http://picard.ups-tlse.fr/~annales/) implique 1’accord avec les conditions générales d’utilisa-
tion (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AFST_1902_2_4__101_0
http://picard.ups-tlse.fr/~annales/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

RECHERCHES SUR L'HYDRODYNAMIQUE,

Psar M. P. DUHEM.

DEUXIEME PARTIE.

SUR LA PROPAGATION DES ONDES.
(SUITE ET FIN.)

CHAPITRE 1I.

LA METHODE D’HUGONIOT.

§ 1. — Dérivitions piverses. Les peux rEmmes p’Huconior.

Nous avons étudié, au Chapitre précédent, les propriétés des surfaces le long
desquelles les éléments du mouvement d’un fluide, c’est-a-dire les six quantités

w, ¢, w, p, I, T,

sont discontinus. Dorénavant, nous supposerons que, dans la région étudiée, et
pendant le laps de temps considéré, ils demeurent continus. Mais, dans cette
région et pendant ce laps de temps, chacun de ces éléments peut se composer de
plusieurs fonctions analytiques différentes. De la découlent divers problémes qui
seront examinés aux deux Chapitres suivants. Au présent Chapitre sera exposée
la méthode propre a traiter ces problémes.

Considérons une certaine région de l’espace et un certain laps de temps.
Soient u,(z,y, 2, t), us(x,y, z, t) deux fonctions analytiques uniformes définies
en tous les points (z,y, ) de cette région et a tous les instants ¢ de ce laps de
lemps.

Supposons qu’a l'instant ¢ une certaine surface S soit tracée dans la région
considérée et qu’elle partage cette région en deux parties r et 2.

Supposons que cette surface S jouisse, a 'instant ¢, des propriétés suivantes :

Sur la surface S, les deux fonctions u,, u, sont égales entre elles; il en est de
méme de deux dérivées partielles correspondantes quelconques de ces deux
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fonclions par rapport aux variables z, y, 3, ¢, jusqu’aux dérivées partielles de
Pordre (n —1) inclusivement; mais il existe au moins une dérivée partielle
d’ordre n de la fonction u, qui, sur la surface S, n’est pas égale & la dérivée
partielle correspondante de la fonction u,.

Une fonction u(x,y, s, t), égale a wu,(z,y, s t) dans la région 1, et
& uy(z,y, 5, t) dans la région 2, est continue, mais non analytique, dans la
région lotale considérée; on dit qu’a l’instant t, cette fonction u(x,y, 5,t)
admet la surface S pour onde d’ordre n.

En particulier, & I'instant ¢, la surface S sera une onde du premier ordre pour
la fonction u(x, y, 5, t) si, en tout point de la surface S et a I'instant ¢, on a

w, = u,,
tandis que 'une au moins des quatre égalilés
q 8

ouy  du, Jdu, _ du, du, _ du, du, Jdu,
dr — dx’ dy — oy’

Jds ~ 05’ 0t T ot

est inexacte sur la surface S et a 'instant ¢.

De méme, la surface S sera, a 'instant ¢, une onde du second ordre pour la
fonction u(x, y, 5, t)sil'on a, en tout point de cette surface et a tout instant,
les cinq égalités

Uy== U,,
duy _ du, duy _ Jdu, duy __ du, du, _ du,

)

dxr — ox’ dy — dy’ Jds 03 Jat — at’

tandis qu'il existe au moins une dérivée partielle du second ordre de la fonction «,
qui, a 'instant ¢ et sur la surface S, n’est pas égale a la dérivée partielle corres-
pondante de la fonction u,.

Une surface le long de laquelle la fonction « serait discontinue pourrait, i ce
point de vue, étre regardée comme une onde d’ordre o.

Lorsque nous ménerons a une telle surface une normale, nous la dirigerons du
cOté 2 vers le coté 1 et nous désignerons par a, 3, y les cosinus des angles que
cette direction fait avec Oz, Oy, Oz.

Il arrivera souvent qu’aux divers instants ¢ d’un certain laps de temps on
pourra faire correspondre une surface S variable avec ¢ et qu'a chacun de ces
instants ¢ la surface S sera une onde d’ordre n pour la fonction u(z, ¥, z, ¢); on
dira alors que cette surface variable avec ¢ représente une onde persistante.

Soient S, 3" (fig. 12) les positions respectives d’une telle onde aux instants ¢
et (¢ + dt). Par un point M de la surface S, menons une normale a cette surface;
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cette normale rencontre en M’ la surface S'; désignons par & la longueur MM/,

comptée positivement si la direction MM’ va du c6té 2 au cdté 1, et négativement
dans le cas contraire; posons enfin :

0= I dt.

I sera la vitesse normale du déplacement de londe.

L’éiude des ondes de divers ordres d’une fonction repose sur deux lemmes a la
fois trés simples et trés féconds. Ces deux lemmes ont é1é donnés par Hugoniot
qui en a tiré, touchant la Mécanique, de remarquables conséquences (*).

Soit M un point d’une surface S qui est, a 'instant ¢, pour la fonction w, une

Fig. 13.

m

}L

onde du premier ordre ( fig. 13). Soient a, b, c trois quantités finies assu-
jetties seulement a la relation

(95) ao+bB+cy=o

et ¢ une quantité infiniment petite. Par le point M, menons un segment Mm dont

(1) Huconior, Journal de Mathématiques pures et appliquées, 4 série, t. I1I, 1é87,
p- 477.
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les composantes soient ea, ¢b, ec; ce segment sera tangent en M & la sur-
face S.

Les deux fonctions u,, u, étant analytiques dans la partie de I’espace que I'on
considére, on peut écrire '

w, (M) —uy(m) _ duy Jdu, du,
————————-——-s —__();l‘ a']'"d—‘y“[)—i—'—oz C+561,
Uy (M) — us(m) _ Ou, du, du,
‘——g——***——dzﬂ—’“’d?b—‘"d—:'(/“{"sag,

les dérivées partielles du second membre se rapportant au point M et les quan-
tités 6,, B, demeurant finies lorsque ¢ tend vers o.

Retranchons ces égalités membre & membre en observant que

w, (M) = u,;(M);

nous trouvons I'égalité

(o6) Ll nlm g,

o <% . {)_u_,) a4 (dug . % b (()u2 . dul> ¢
“\dr  ox dy ()y) Jds 05

Projetons normalement le point M en . sur la surface S; s¢ la courbure de la
surface S au point M’ n’est pas infiniment grande, la distance mx est un infi-

niment petit du second ordre par rapport a e. Alors les fonctions u,, u, étant
analytiques, on peut écrire

wy(m) = u, () + %oy,

Us(m) = uy () + €9y,

%1, v2 demeurant finis lorsque ¢ tend vers o.
Sil'on observe en outre que

uy (@) = us(p),

on voit que la relation (96) devient

e(@1— Qo+ 06,— 0,) = (0(:, 0u1>

oxr ~ oz

dug_du,> du, ‘dai i
(%% o (a2

Le premier membre tend vers o avec ¢; le second ne dépend pas de ¢; il doit
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(=)0

) C ==
est donc une conséquence de 'égalité (g5).
Pour cela, il faut et il suffit qu’il existe une grandeur / telle que I'on ait, quels
que soient a, b, ¢, 'égalité
—p1) o+ (

(3% o)

D’ou la proposition suivante, qui est le premier LEmme p'Hucontor :

donc étre nul. L’égalité

ouy _
oy

ouy
oy

du,
5

duy
0z

0u2
or

du, Jdu,

dy  dy

du,

dx 05

Soit S une surface qui est, @ U’instant t, ONDE DU PREMIER ORDRE pour la
Sonction u. A chaque point de cette surface ot la courbure r’est pas infinie
correspond une grandeur [ telle que

duy  duy
Iz oz b
du, Juy [
(97) oy "oy = B4,
dus,  duy
0z oz 1k

Supposons maintenant que la surface S soit, pour la fonction u, une onde du
premier ordre persistante; soient S sa position a I'instant ¢ et $' sa position a un
instant ¢, voisin de ¢. Par un point M de la surface S menons une normale 4 cette
surface; cette normale rencontre en M’ la surface S’. Si les coordonnées du
point M sont z, y, z et si les coordonnées du point M’ sont &', 3/, &/, on a, par

définition de la vitesse 96,

1

L —Ra+o(i'—1),
—1

y
2;—,-7 =L+ Y(L'—1),
17/_.5
r— :%y -I——X(l’—t),

les quantités ¢, ¢, v demeurant finies lorsque (¢ — ¢) tend vers o.
D’autre part, la fonction «, étant analytique, on aura

w, (M, t') — u, (M, ¢) du1 du,y x’— x

+ du, y
t'—t¢ T ot T 0z i —

oy —

0u‘ ' —z
095 t'—¢

“.7

+ 6,(¢'—¢),

9, ne croissant pas au dela de toute limite lorsque (¢ — ¢) tend vers o, et les
dérivées partielles se rapportant au point M et & I'instant ¢.
Fac. de T., 2¢ S., 1V,

14
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Ces diverses égalités permettent d’écrire

ﬁ“"%é}')‘%'"‘"h(l/_t)’

J¢

(M, ') —u, (M, t) _ du, du, du,
—1 F(WOH_T)}—

7, ne croissant pas au deld de toute limite lorsque (¢ —¢) tend vers o.
On a de méme

B+ (Z)Ii'zy>3'6+n2(t’——t),

(M, 1) — us (M, 2) 2112 du, du,
=1 =t \0z*" oy

7,5 ne croissant pas au dela de toute limite lorsque (¢ — ¢) tend vers o.
Retranchons membre & membre ces deux égalités, en observant que

u, (M, ¢) =u,(M, ¢), w, (M, 'y =u, (M, t')
et en tenant compte des égalités (97). Nous trouvons

duy,  duy ., ,
P 4+ o l=(n—mny) (L' ¢).

Le second membre de cetle égalité tend vers o avec (¢'— ¢); le premier, qui ne

dépend pas de (¢ — t), doit étre nul; d’ou le pEuxieme LEMME p'Hucontor :

Soit une fonction u qui admet une oNDE PERSISTANTE DU PREMIER ORDRE; d
chaque instant et en tout point de U'onde relative a cet instant, pourvu qu’en
ce point la courbure de londe ne soit pas infiniment grande, on a l’égalité

du,  Jdu
(98) 'E: — —("ZI-—F'%[:O.

On observera que les deux lemmes précédents demeureraient vrais au cas ot les
trois variables z, ¥, z seraient remplacées par un nombre quelconque de variables

Lyy Loy o0y T
§ 2. — EXPRESSION DE LA VITESSE DE DEPLACEMENT G POUR LES ONDES
DE DIVERS ORDRES (').

Les lemmes précédents suffisent a résoudre le probléme suivant :

Une fonction u admet une onde persistante d’ordre n; au moyen des déri-

(1) Sur le théoréme d’Hugoniot et quelques théorémes analogues (Comptes rendus,
t. CXXXI, 24 décembre 1900, p. 1171).
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vées partielles d’ordre n des fonctions w,, u,, former une expression de la
vitesse de déplacement 9% qui demeure invariable par un changement de
coordonnées rectangulaires.

1° Onde du premier ordre. — Les égalités (97) et (98) donnent les trois

relations
du,  duy\ du, Odu,
%<’oz - o7> == <W - 737)“’
duy,  duy\ | [duy,  duy
(99) ()= (-G

duy,  Jduy\ du, Odu,
0z 9z)  \ot Tot )T

Elevons au carré les deux membres de chacune de ces égalités et ajoutons
membre & membre les résultats obtenus; nous trouvons la formule

2§ d(us— uy)}? d(tw,— u,))? d(uy— uy )| [O(us—u,))?
ooy St [ [ S e o [ Sl [ [ 2

qui résout, pour les ondes du premier ordre, la question posée.

2° Onde du second ordre. — Une telle onde est onde du premier ordre pour

. du . . du_ .
la fonction 9 ©L aussi pour la fonction o0 2 chacune de ces deux fonctions

appliquons la premiére des égalités (9g); nous trouvons les deux égalités

0*(uy— uy) 0% (uy— uy)
I = -
0z? oxat
02 (uy— uy) 0% (uy— uy)
o = -2
0 0t o

Multipliées membre & membre, elles donnent la premiére des égalités

0% (uy,— uy) ?(us— u,y)
]i,? J—
dx? e @

0% (uy— u,) 0% (uy— uy) ,,
62 1V 2 ! 2
oy? ¢ B

0*(uy— uy) 0% (uy— uy) _,
2 — 2
03? - ot ’

Les deux autres se démontrent d’'une maniére analogue.
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En ajoutant membre & membre ces égalités, nous trouvons la relation

(101) gvA(uz—u,)zi’%,
qui résoul, pour les ondes du second ordre, le probléme posé.
Cette relation est due & Hugoniot ().

3° Onde d’ordre pair : n = 2q. — Désignons par A, le résultat de 'opéra-
tion A répétée ¢ fois de suite. Nous allons prouver que 'on a
(ro2) é)'(;"Aq(ug—u,):ﬂ%;t:l:—lfQ-
L’égalité (101) nous montre que cette formule est exacte lorsqu’on fait ¢ =1 et,
partant, n = 2; pour en établir la généralité, il nous suffit de prouver que, si
elle est vraie jusqu’a une certaine valeur de ¢ et, partant, de n, elle demeure
encore vraie lorsqu’on augmente ¢ d’une unité et, partant, n de deux unités.

En d’autres termes, il s’agit de prouver que si la formule (102) est exacte pour
toutes les ondes d’ordre pair jusqu’a I'ordre n=2¢, on a, pour toute onde
d’ordre (n + 2),

02 (uy— uy)

(102 bis) IorH2 A (U — uy) = Jin?

Une onde d’ordre (7 -+ 2) pour la fonction u est une onde d’ordre 2 pour la
fonction A, u; on a donc, selon la formule (101),

0 A, (u,— uy)

I Ay (g — uy) = o

Une onde d’ordre (n +4-2) pour la fonction « est une onde d’ordre n pour la

2
fonction %—g; on a donc, selon la formule (102),
w A O (u—uwy) 0" (uy—uy)
gt’ A’I dt‘.’ - (nu—i—z
Enfin
0% A, (u,— uy) —A O (us— uy)
o T o

Ces trois égalités justifient I'égalité (102 bis).

(1) Hucontor, Journal de Mathématiques pures et appliquées, 4° série, t. III, 1887,
». 477.
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4° Onde d’ordre impair : n =2q -+1. — Une onde d’ordre (24 +1) pour la
fonction « est du premier ordre pour la fonction A u; on a donc, selon la for-
mule (100),

%23[0Aq(‘d‘;— Ua)]2+ [qu(;;,“‘":)AJS_F [qu(“g;_ "1)]22: [d Aq(l:;t— Ul):r_

. . Ou
Cette onde est en méme temps d’ordre 24 par rapport a la fonction 2z’ o sorte

que la formule (102) donne

d(uy—uy) 0"(112—u,).
at _ atr

A,
Enfin

08 (us—uy) ) I(us—uy)
ot - ot

Ces trois égalités nous donnent la formule

00, (us—uy)) ) [0"(us— 1))
=[G = ]

qui achéve de résoudre le probléme posé.
On voit de suite que ces formules conduiraient presque immédiatement a la
solution du probléme suivant, que nous nous bornerons a énoncer :

Donner de la vitesse 3%, pour les ondes de divers ordres, une expression qui
ne varie pas par un changement quelconque de coordonnées curvilignes
orthogonales.

§ 3. — AprricATIONS DIVERSES DE LA METHODE p’Huconror.

Avant d’appliquer la méthode d’Hugoniot aux questions d’Hydrodynamique
faisons usage des formules précédentes pour étudier diverses équations aux déri-
vées partielles que 1’on rencontre en Physique mathématique.

La premiére que nous considérerons, avec Hugoniot (*), est I’équation

du

(104) a’Au = G

(1) Hucontor, Journal de Mathématiques pures et appliquées, 4° série, t. III, 1887,
p. 477
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ol a est une conslante réelle, que 'on rencontre dans I'étude des pelits mouve-
ments des fluides; la comparaison des égalités (101) et (r04) montre de suite que
si une intégrale de cette équation offre une onde du second ordre, cette onde se
déplace avec une vitesse

(105) I ==+ a.

Ce résultat s’étend d’ailleurs & toutes les ondes d’ordre supérieur & 2 que pour-
rait présenter une intégrale de I'équation (104). En ellet, une onde d’ordre n

s
aL—
d’autre part, cette fonction vérifie encore une équation de la forme (104), comme
on le voit en différentiant (n — 2) fois par rapport a ¢ les deux membres de
I'équation (104).

Des considérations semblables (') s’appliquent a V'éguation des télégra-
phaustes :

(n>2) pour la fonction « est du deuxi¢me ordre pour la fonction ——; et,

du __ d*u
106 a’Au — —
(106) For = o
ou a et . sont deux constantes réelles. En tout point d’une onde du second ordre
pour la fonction «, on a

ou, _ du,

ot — ¢’

en sorte que I’équation (106) exige que I’on ait, en un tel point
q q ge q ) P )

2 J—
A A(uy— uy) = 9*(tta— 1) ufﬂz “),
La comparaison de cette égalité avec 'égalité (1o1) montre que la vitesse de dé-
placement d’une onde du second ordre pour une intégrale de ¢ équation (106) est
encore donnée par I'égalité (105).

Comme dans le cas précédent, ce résultat s’étend aux ondes d'ordre supérieur
aa.

Il peut arriver que les formules du § 2 conduisent a attribuer a 92, pour les
ondes d’un certain ordre, une valeur infinie ou négative; dans ce cas, nous
sommes certains qu'une intégrale de 1'équation considérée n’admet pas d’onde

3

persistante de 'ordre considéré.

(1) Sur Uinterprétation théorique des expériences hertsiennes (L’Eclairage élec-
trique, t. 1V, 1895, p. 494).
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Ainsi, en tout point d’une onde du second ordre pour la fonction «, on a

du; _ du,
ot T o’
une intégrale de I’équation
ou
(107) Au—p PTk

que I'on rencontre dans la théorie de la conductibilité, ne pourrait donc admettre
une onde du second ordre sans que 'on e, en Lous les points de cette onde,

A(uy— uy) =o,

partant, selon I'égalité (101),

N*P=co
Une intégrale de I'équation
2
(108) a?Au + %ZI;-:O

ne pourrait admettre une onde du second ordre sans que I'on eit, en vertu de
Iégalité (101),
%2 — — a?.

Les intégrales des deux équations (107), (108) ne sauraient donc admettre
d’onde persistante du second ordre; cette proposition s’étend sans peine aux

ondes d’ordre supérieur a 2 et fournit le théoréme suivant :

St, de part et d’autre d’une surface S qui peut varier avec t, deux fonc-
tions analytiques u,, u, vérifient soit I’équation (107), soit I’équation (108),
et si U'on a, en tout point de la surface S et a tout instant,

Uy = Uy,
duy _ du, duy __ du, duy _ Odu, duy __ du,
dr — dz’ dy — dy’ ds 95’ ot~ ot’
les deux fonctions u,, u, se prolongent analytiquement l'une ’autre.

L’équation

Nu

P} 2
(109) aﬁb—tAu—p.Au——;,c’ o7 = °

se rencontre dans I’étude de la propagation de I’électricité au sein des corps con-
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ducteurs (') et dans I’étude des petils mouvements des fluides compressibles vis-
queux (2). Imaginons qu'une intégrale de cette équation admette une onde du
troisiéme ordre. Nous aurons, en tout point de cette onde,

0*(us— uy)

A(u2_u1):O’ ()42 o,

partant

o(uy— uy)
A_T—-O

D’autre part, cette onde du troisiéme ordre pour la fonction « serait du premier
ordre pour la fonction Au; si elle était persistante, on aurait, en vertu des éga-

lités (97) et (98),

d(uy— uy)

7) 7}
Q'C)d—wA(ct2——u,):—aaA(uz—u,):—-aA o

et, partant,
dG = o.

Une intégrale de I'équation (109) ne peut donc admettre d’onde persistante du
troisiétme ordre (®), ni, comme on le prouverait sans peine, d’onde persistante
d’ordre plus élevé, a moins que cette onde ne soit immobile.

Une intégrale de I’équation de Laplace

(110) Au=o,

ou « est une fonction des seules variables z, y, z, & 'exclusion de ¢, peut-elle
admettre une onde du second ordre? Appliquée immédiatement, I’égalité (101)
devient une identité; mais on peut remarquer que les théorémes précédents sont
encore vrais si, au lieu des trois variables z, y, z, la fonction étudiée ne dépend
que de deux variables z, y; qu’enremplacant dans I'équation précédente lalettre 5
par la lettre ¢, elle devient

02 u gfit d*u_o
0t oy T oE T

(V) Sur interprétation théorique des expériences hertsiennes (L’Eclairage élec-
trigue, t. IV, 1895, p. 494).

(2) Sur la généralisation d’un théoréme de Clebsch (Journal de Mathématiques
pures et appliquées, 5° série, t. VI, 1900, p. 213).

(3) Sur la théorie électrodynamique de Helmholts et la théorie électromagnétique
de la lumiére (Archives néerlandaises des Sciences exactes et naturelles, 2° série, t. V,
1901, p. 227).
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et que, si une intégrale de cette équation admettait une onde persistante du
second ordre, la formule (101) donnerait, pour cette onde,

INr=—1,
ce qui est impossible.
Le méme procédé conduit, sans aucune difficulté, a la démonstration de la pro-
position suivante :

Une intégrale de U'équation aux dérivées partielles d’ordre an

an—1 2n—1
(r11) A,ltt+Ad——lf+13 J «

()x?"—l (-)?;;_—2—()7 +...+Lll.:'0,

ot A, B, ..., L sont des fonctions des seules variables z, y, z, analytiques
dans tout Uespace, et ot w est une fonction des seules variables x, y, z,
n’admet ni onde d’ordre n, ni onde d’ordre supérieur a n.

Ce théoréme entraine 'impossibilité d’ondes dont 'ordre serait égal ou supé-

rieur & 2 non seulement pour les intégrales de I'équation de Laplace, mais encoré
pour les intégrales de I'équation

(112) Au+ku—=o,

que Von rencontre dans I'étude des mouvements vibratoires des fluides et dans
une foule de questions d’Acoustique, d’Optique ou d’Electrodynamique.

Il démontre 'impossibilité d’ondes d’ordre égal ou supérieur a 4 pour les inté-
grales de I'équation

(113) AAu=o,

que I'on rencontre dans I’étude des corps élastiques isotropes en équilibre.

§ 4. — Les paramirres pE M. Hipamaro.

Les deux lemmes d’Hugoniot, énoncés et démontrés au § 1, peuvent étre éten-
dus aux ondes d’ordre ~ sous une forme trés remarquable qui a été indiquée par
M. Hadamard ().

Supposons que la surface S soit, a I'instant ¢, onde d’ordre n pour la fonc-

. . . . =1y
tion u; elle est évidemment onde d’ordre 1 pour la fonction —d———, ou
dl‘“ ()},(1 ()_-'c()[p

a+b+c=n—p—r

(1) J. Hapamsro, Bulletin de la Société mathématique de France, t. XXX, p. 5o,
19 décembre 1900.

Fac. de T., 2¢ S., 1V, 5
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A cette fonction appliquons le premier terme d’Hugoniot, qu’expriment les
égalités (97); nous aurons les égalités

0" (uy— uy) 0" (uy— uy) 07 (1ty— uy)
dxa+t gyb gseotP  Jae dybTidsedir 0wt dy? 9zt gt

a 5 v

que I'on peut encore écrire

07 (uy— u,) 0" (u,— uy) 9" (uy— uy)
dxe Tyl 9z P Qe dy"t 9z odp _ det dyb dseri o
o+t 6[) 70 - o @/)—H 7(: - ol ﬁl) ./c—H )
Le rapport
0" (uy— uy)
du*t gyt dz¢ dur
aat! @l) 70

prend donc, en un point donné de I'onde, une valeur qui ne change pas lorsqu’au
numérateur on remplace une dérivation par rapport a  par une dérivation par
rapporl & » ou par une dérivation par rapport a z, pourvu qu'en méme
temps, au dénominateur, on remplace un facteur « par un facteur 3 ou par un
facteur 7.

Cela posé, considérons la fonction

0" (uy— uy)
d.xt dys dz* dep ’

ol 7, 7, k ont des valeurs entiéres et non négatives qui vérifient la relation
(114) il+j+k=n—p.
Cette fonction peut se déduire de la fonction

0" (uy— uy)
()xn—p dcp

en remplacant j fois de suite une différentiation par rapport &  par une différen-
tiation par rapport a y et k fois de suite une différentiation par rapport a4 z par
une différentiation par rapport a z.

Nous arrivons ainsi, au théoréme suivant :

Prevrer rEmve pE M. Hapamaro. — Sila fonction u admet a Uinstamet la
surface S pour onde d’ordre n, en chaque point de cette onde le rapport
0% (uy— uy)
0z 9y dsF otr

ol B7 .),/?_—’
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ou les indices i, j, k peuvent prendre toutes les valeurs entiéres et non néga-
tives qui vérifient ’égalité
i+j+k=n—p,
a une valeur I, qui dépend de p, mais point de i, j, k.
Ce lemme peut donc encore s’énoncer de la maniére suivante :
A chaque point de la surfaceS correspondent (n + 1) paramétres
lO’ lﬂ’ ey l"’
auw moyen desquels toutes les dérivées partielles d’ordre de la différence
(u2— u,)s’expriment, en ce point, par les formules

0" (u, — o . .

0" (u,— uy) A . .
Wz()m'aﬁ:“’ﬁpr (i+j+k=n—p),

(115)
oM (us—uy) o (uy— uy) 0 (uy—uy)
dz o1 = &ln, W— =Bl “osdrt 71
| or(—w)
| ‘ aer -

Supposons maintenant que la surface S soit, pour la fonction «, une onde
persistante d’ordre n. Prenons un point sur cette surface; en ce point, les trois
quantités a, 3, vy, ne peuvent étre nulles a la fois; pour fixer les idées, suppo-
sons a différent de o.

L’onde considérée est une onde persistante du premier ordre pour la fonction
o"—1u

dzn=P=1g¢r”

A cette fonction appliquons la seconde égalité (99), qui découle du second
lemme d’Hugoniot; nous trouvons

(116) 9.(’0"(112——-u,) 0" (uy— u,)

dx—r gtr dxt-r—t ggr+l =0

Mais les égalités (115) donnent
0" (uy— uy)
dxn=r Qv

0" (uy— uy)
0'1;11—11—1 d(p—l—-l

— gn=p Z,”

J— —p—1
— an-r=1l,,,,
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Moyennant ces égalités, et aprés suppression du facteur -7 qui n’est pas nul,
I'égalité (116) prend la forme

(117) lpr+ 961, =o0
qui entraine la proposition suivante :

Secono rLemme pe M. Havamano. — Si la surface S est, pour la JSonc-
tion u, une onde persistante d’ordre n, les (n + 1) paramétres

lOy ll) ey ln

Jorment, en chaque point de cette onde et & chaque instant, une progression
geéométrique de raison — 9G.

On peut donner (') des paramétres

l

0 ln ceey lu

des expressions, formées au moyen des dérivées partielles d’ordre n de la diffé-

rence (u; — u,), expressions qui ne changent pas par un changement quelconque
de coordonnées rectangulaires.

Deux cas sont a distinguer :
PreMIER cAs : (n — p) est pair,
(118) n—p=—agq.

Visiblement, nous avons, pour une fonction f quelconque,

A AL
Aqf:<0wf2'+5)£+d_z{> ’

la puissance qui figure au second membre étant une puissance symbolique. 1l en
résulte que

07 (uy— u;) -
Aq——dtl’— -=

0% 0P (uy,— u,) 0’ ()I’(ui—u',) 0 0r(uy— u,) (’1).
O A R A = T

Les égalités (115) transforment sans peine cette égalité en

A 0P (ty— uy)

7 aer =(a*+fr+ )7L,

(V) Sur les théorémes d’Hugoniot, les lemmes de M. Hadamard et la propagation
des ondes dans les fluides visqueux (Comptes rendus, t. CXXXII, 13 mai 1901, p. 1163).
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ou bien, comme a2 + 32+ v2=1, en

ar
(119) . lp:a;Aq(”‘z‘—ui)a
formule qui résout la question proposée.

DeuvxikME cas : (n — p) est impair,

(120) n—p=—a2q-+I.
Dans ce cas, ona

orH (i, — u))

T gz ot
_ [ 9" (uy—uy) - J* 9P (uy— uy) o 0* OP I (u,— uy) ((1).
T |9z odwoewr dyr  dyoer T dsotr

Selon les égalités (115), cette égalité devient

9P (1, — 1)

oo = a( g

et donne la premiére des égalités

d 0P As(uy— uy)

b= T o

ay . 0 0PA(uy—uy)

CBIP~ 5.; dtp ’

» _ 9 d/’A,,(u,——ul).
P 0z aer

Les deux autres se démontrent d’'une maniére analogue.
Sil'on éléve au carré ces trois égalités et qu’on ajoute membre & membre les
résultats obtenus, on trouve la formule

, [0 0728,(uy— uy)])? 0 07 A, (uy— uy))? d P A, (us— wy)]?
(121) l,,—[a; — dti’ ! ] + [d—y_——q 57 ! ] + [—d—s T S : ]

qui résout la question posée.
L’égalité (117) nous permet d’écrire, en vertu de la derniére égalité (115),

0"(u2—u,)'

(122) (—)—rl, = 9

Si (n — p) est pair,

(118) n—p=—agq,
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les égalités (119) et (122) donnent la relation

ar 0" (uy— u,y)
(123) g I (g gy = L)
Si (n—p) est impair,
(120) n—p=2q-1,
les égalités (121) et (122) donnent
. A, (uy— 2
(124) J(F(”—m%[_a% or q((;l[p "')]
_d_d"A,,(uz——u,) 2 d oA (us—u)) |2} __ [0 (uy— ) ]?
- [dy ot ] + [E o J %‘“[ PIG ] ’

Ces égalités (123) et (124) redonnent immédiatement les formules démontrées
au § 2. En effet, si n est pair, 'égalité (118) est vérifice lorsqu’on y fait p = o, et
Pégalité (123) reproduit 'égalité (102); si n est impair, 'égalité (120) est vérifiée
Jorsqu’on y fait p = o, et I'égalité (124) reproduit I'égalité (103).

§ B. — OnxpE QUI PROPAGE UN VECTEUR. — VECTEURs pE M. Hapamano.

Supposons que les trois fonctions
“(-T;J’,Z,t)o "’(‘T}y":"t)’ ‘V(T,J’,J,t)

soient les Lrois composantes d’un vecteur V. Si la surface S est, a I'instant ¢, onde
d’ordre n pour 'une au moins des Lrois fonctions u, ¢, w et si, pour les deux
autres, elle est onde d’ordre n ou d’ordre supérieur & n, ou enfin d’ordre 1nfini,
cas auquel elle n’interrompt pas le caracteére analytique de ces deux fonclions, on
dit que la surface S est, a Uinstant t, onde d’ordre n pour le vecteur V.

La notion de permanence de'onde s’étend sans peine a ce cas.

Si la surface S est onde d’ordre n pour le vecteur V, les dérivées partielles
d'ordre n de la fonction (us— u,) s’expriment toutes par les égalités (115), au
moyen des (n -+ 1) paramétres Ly, &y, ..., ly3 les dérivées partielles d'ordre n de
la fonction (¢ — ¢,) s’expriment de méme au moyen de (n ~+1) parameélres my,
My, ..., my; enfin les dérivées partielles d’ordre n de la fonction (w,— wy)
s’expriment de méme au moyen de (n 1) paramélres ng, Ry, « -+, Nn

Mais les paramétres I, mp, np peuvent étre regardés comme les trois com-
posantes d’un vecteur W,. On peut donc énoncer le théoréme suivant

Si, a Uinstant t, la surface S est onde d’ordre n pour le vecteur V, il
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existe, en chaque point de cette surface, (n + 1) vecteurs

W, W, ..., W,

au moyen desquels s’expriment, en ce point et & cet instant, les dérivées par-
tielles d’ordre n des composantes de la différence géométrique V,— V,.

Supposons maintenant que I'onde soit persistante. Les égalités (117) nous don-
neront les relations

lpiy+ 01, =o, My~ Iomy = o, Ry + don, =o,

qui entrainent la proposition suivante :

\

Si la surface S est une onde permanente d’ordre n pour le vecteur V,
a chaque instant et en chaque point de cette onde, les (n + 1) vecteurs W,,
Wi, ..., W, sont dirigés suivant une méme droite; si on les compte positi-
vement suivant une direction D choisie sur cette droite, ils forment une pro-
gression géométrique de raison (— ).

La direction D se nomme alors direction de la perturbation propagée par
Uonde S; lorsqu’elle est sans cesse normale a I'onde S, on dit que celle-ci pro-
page une perturbation longitudinale; lorsqu’elle est sans cesse tangente a
I'onde S, on dit que celle-ci propage une perturbation transversale.

Les considérations contenues en ce dernier paragraphe sont dues en entier a

M. Hadamard.

CHAPITRE III.

DES ONDES DANS LES FLUIDES VISQUEUX.

§ 1. — DEs ONDES DU PREMIER ORDRE PAR RAPPORT A CERTAINS ELEMENTS

pU MOUVEMENT ().

Imaginons qu’en un fluide visqueux une surface s soit, a 'instant ¢, onde au
moins du premier ordre pour les trois composantes u, ¢, & de la vitesse, pour la
température T et, en outre, si le fluide est compressible, pour la densité.

(1) Sur les théorémes d’Hugoniot, les lemmes de M. Hadamard et la propagation
des ondes dans les fluides visqueux (Comptes rendus, t. CXXXII, 13 mai 19ot, p. 1163).
Des ondes qui peuvent persister en un fluide visqueux (Ibid., t. CXXXIIL, 14 octobre 1901,
p- 579).
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Quant a la pression II, nous ne la contraindrons pas a varier d’une maniére
continue au travers de la surface considérée.

Celte onde pourra-t-elle étre persistante ?

Pour discuter cette question, nous n’avons pas le droit de faire usage des équa-
tions du mouvement des fluides visqueux, telles qu’elles sont données par les
équations (74) de la premiére Partie; celles-ci, en effet, reposent sur une trans-
formation qui a é1é exposée en cette premiére Partie, au § 3 du Chapitre I, et la
légitimité de cette transformation, comme nous I'avons formellement observé en
cet endroit, est subordonnée a une condition : ¢’est que les six quantités vz, vy, v;,
Ty Tyy Tz SOient continues dans tout le fluide et admettent, en tous les points de
ce fluide, des dérivées partielles finies.

Or, si nous admettons pour va, vy, vz, T, Ty, Tz les expressions données par les
égalités (51) de la premiére Partie ou (43) de la seconde Partie, nous voyons que
ces six quantités sont précisément discontinues le long de ’onde o.

Nous devons donc renoncer a imposer ala quantité d&,, donnée par I’égalité (46)
de la premié¢re Partie, la transformation que nous lui avions fait subir et chercher
a la transformer d’une autre maniére.

Tragons dans le fluide, a 'instant ¢, une surface fermée X conlenant la surface =
a son intérieur; soit @ la masse fluide que renferme la surface o, et soit b la masse
fluide qui lui est extérieure.

La quanltité dG, peut toujours s’exprimer ainsi

(125) dt, = dC,,+ d&,,

dTyq, dTyy étant définis par les égalités

. ddz dor oy
(126) db‘,a_u.[lv[lx—(;;— -1'*...—|—‘L'_—,<T)/~ -+ or >]C/‘GF,
~ o dor 0%z  dady)
(12/) de,, _\/I:[ij‘ll— + ...+ Tz <—d‘_};—+()—£)]([w'

Au sein de la partie b, les six quantités vz, vy, vz, Ty Tyy Tz SONL continues et
admelttent des dérivées partielles qui sont finies; on peut donc app.[iquer a dg, la
transformation que, dans la premiére Partie, nous avons fait subir a la quan-
tité d&, lout entiére.

Conservons & ps, Py, Pz, 4, ¢y, =lasignification que donnent les égalités (48)
et (49) de la premiére Partie; en chaque point de la surface T désignons par 7,
la normale vers 'intéricur de la partie b; posons

|

A

» == — [vz COS (N4, ) + 72 COS(np, ) + Ty €OS (74, 5)],

(128) Ty =— [7: €0s(ny, &) + vy COS( N4y ) + Ty COS( R, 5)],

|

;= — [Ty €OS (74, &) + T4 COS (724, ¥) + Vs COS( Ry, 3)],
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et les égalités (125) et (127) nous permettront d’écrire
(129) d8,= d,, +fb<qxax+qyay+q;as>dw
+f(1’$ 8z + p, Oy -+ p29z) dS
s
+L(T.x 0x + T, 0y + T; 05) dX.

Choisissons la surface = d’'une maniére particuliére.

De part et d’autre de la surface ¢ menons deux surfaces dont la distance 4
a la surface £ soil infiniment petite; 'une de ces surfaces, Z,, se trouvera du
c6té 1 de la surface o; 'autre, =,, se trouvera du coté 2. Nous composerons la
surface X de ’ensemble des deux surfaces Z; et 2, ; nous écrirons I'égalité (129) et
nous y ferons tendre A vers o. '

Le volume occupé par la masse a du fluide tend vers o avec %; dés lors, il
résulte de I'égalité (126) que d@,, tend vers o; de plus, au second membre de

Pégalité (129), le second terme tend vers 'intégrale

f(qx&r -+ gy Oy + ¢ 03) dw,

étendue au volume entier occupé par le fluide; & ce méme second membre le
troisi¢me terme ne varie pas avec £ ; il nous reste donc & chercher la forme limite
du terme

(130) f(nxéx—i—ﬂyéy—i—r;&z)dl

Cette intégrale se partage en deux autres intégrales analogues, 1'une relative a
la surface X, 'autre relative a la surface 3,.

Chaque élément d2, dela surface =, a pour limite un élément ds de la surface s;
les quantités cos(ns, x), cos(ns, ¥), cos(ns, z) relatives au premier ont pour
limites respectives les quantités o, 3, y relatives au second; les quantités vz, vy, vz,

Tzy Ty, Tz ONL pour limites respectives vgy, Vyi, Vzi, Tor, Tyi, Tz1- S1 donc on pose

o1 == Vg & -+ Tz 13 + Ty1 Y
(]31) Tl'y|':‘f;!0£+vy15 +Tx17’

Moy =Ty & + T B+ Vi ys
la partie de U'intégrale (130) qui se rapporte a la surface ¥, aura pour limite

—f(ﬂ,ﬂ 0% + Ty Oy -+ Tz 03) do.
G

Fac. de T., 2 S., IV. 16
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Si I'on pose de méme

g Mg = Va0 =+ Tz B -+ Tya s
(131 bis) .

la partie de I'intégrale (130) qui provient de la surface ¥, aura pour limite

[(ﬂxg 62 + Tyy Oy + 752 03) do.
Vs

Or pourra donc écrire, en observant que les quantités 3z, 8y, 3z doivent étre

continues méme au travers de la surface =,

(£32) dé, = f(qxax—l—(]yay—i-q;as)dw
+f(px8x -+ Py Oy + p;05)dS
S

+/ [(Tas— Tz1) O -+ (Tye— Ty ) Oy + (Teze— T3, ) 65] S5
o

Telle est 'égalité que I'on doit substituer & I'égalité (47)de la premiére Partie.
C’est cette expression (132) de d&, que nous devons mntroduire dans I’équation
fondamentale (2) de la premiére Parlie, en sorte que Pon devra avoir, en toute

modification virtuelle,
(133) dE.+ dG,—&ﬁ%—f(qx or —+ g, 0y + ¢ 03) dos
i [(pedx -+ py oy + p.de)dS
vSs

-|—/ [(Mao—Tz1) O + (Rys— Ty ) Oy + (Tzp — Tz ) 65] do=o.
G

Nous pouvons appliquer tout d’abord cette égalité & une modification virtuelle

pour laquelle on ait, en tout point de la surface ,
6xr = o, dy = o, 43 —o.

Nous serons alors condutts & la proposition saivante :
Il existe une grandeur finie II, continue dans tout le fluide, saul peut-étre en la
surface s, telle que l'on ait :
1° En tous les points de la surface S qui limite le fluide, les égalités [ 1" Partie,
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égalités (76)]
Mcos(n;, ) =P, + pa,
(134) ¢ Heos(nyy) =P, + py,
IICOS(/Z,', 5) == P:. -+ Pz

2° En tout point de la masse fluide hors la surface s, les égalités [ [ Partie,

égalités (74) et (75)]

(X Xe= 1) — 7=,
v )1
(135) W —p(Xi+Xe—7yy) —gy=o0,
oIl

E—p(Xi+Xe—"/;)—q;:0

et, sile fluide est compressible, I'égalité

% _

(136) H+p‘-’(A,~—|—Ac)——p‘15§_o.

Donnons maintenant a la masse fluide un déplacement virtuel quelconque. Au
moyen des égalités (134), (135), (136), et par un calcul trés semblable a celui
qui occupe le début du Chapitre I, § 8, nous trouverons que 'on a

A8, + da,-—afj+f(qxax+qy8y+qzaz)dm
+f(p16x+py8y+p;65)ds
S

:/'(H,—H,)(a8x+ﬁ<§)'+ y ds) do.

-Si 'on conserve alors a @y, By, €z, Lsa, ®y2y @22 le sens que donnent les

égalités (35) et (35 bis), I'égalité (133) devient
f[(ti’n_ ®,1) 82 + (Rya— Dyy) O + (Rag— B21) 03] do = o,

Cette égalité doit avoir lieu quelle que soit la modification virtuelle imposée au
fluide, par conséquent quelle que soit, le long de la surface &, la loi de variation
des quantités 3z, 3y, 3z; la condition nécessaire et suffisante pour qu’il en soit
ainsi est la suivante :
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On a, en tout point de I’onde =, les trois égalités

®rs— fol =0,
(137) R, — Ly =o,

R — D=0,
qui peuvent s'écrire plus explicitement, en vertu des égalités (35) et (35 bis),

(Ver— Var) a4+ (T2 — ~zx)(3 -+ (Tyz—Tyl)Y -+ (H2—Hl)a—:0’
(138) (Taa— Tz )t 4+ (Vya— Vyy ) B+ (T2 — T21) 7 + (I,—1II,)3 =o,
(tya— Ty1) @+ (Taa— T2 ) B+ (Va2 — 721 ) 7 + (I — )y =o.

Les quanlités vz, vy, ¥z Ta, Ty, Tz SODL supposées données par les égalités (43).

Or, selon ce que nous avons vu au Chapitre II, § 5, il doit exister, en chaque
bl q p bl bl ? q
point de la surface &, un vecteur (/,, m,, n,y) tel que 'on ait

d(uy—uy) d(uy—u,) d(uy— uy)
L) g, Sot) —py, SR =y,
A(9y— 91) d(ve— ¢y) d(vy— )

(139) I Pa— Y —am,, ————20], ! =B my, B P ! =y m,,
o(wy—w,) d(wy—wy) O(ws—wy)
R P 0 =B n, ——gs = /e

Ces égalités donnent

du, dv, divy  duy ov, dw,

(140) e Jy + 5z —%-—W“WZ“ZO‘FB’"O““Y”M
R S

FO R L
(%+%% _%_%% =Bl + am,.

En vertu de ces égalités (139), (140), (141), les égalités (43) donnent

/

Voo — Yo =— A (p, T) (atly + Bmg+ yny) —2p(p, T)aly,

Vya— vy = — A (p, T) (aly + Bmy~+yno) —2p(p, T)Bmy,
Yoy — Vo =— A(p, T) (&ly —+ Bmg+yne) —2p(p, T)yno,
Ter— Tey=— p(p, T) (ymo—+ 1),

Tya— Ty =—u(p, T) (ane +7k),

(142)

Tay — Toy = — [(p, T) (Bl —+ amy).
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En vertu de ces égalités (142), les égalités (138) deviennent
o[, — I, — (A 4-2p) (aly+ Bmg+yn)] — p[B(Bl —amy) —y(an,—~yl )]=o,
(143) { B[, — I, — (A +2p2) (aly+ Prrg+yny)] — ply (ymo— Bry ) —a(Ble — amy)] =0,
Py — T — (A + 2p) (alo+ Bmo+yne)] — pla(any —yl ) — B (yme—Br, )] =o.

Ajoutons ces égalités membre & membre aprés les avoir multipliées respectivement

par a, 3, v; nous trouvons
(144) I,— I, — [A(p, T) +2p(p, T)] (aly+ Bmo—+ yny) =o.

Pour tirer les conséquences de celte égalité, nous distinguerons deux cas,
selon que le fluide est ou non compressible.
Supposons d’abord que le fluide soit incompressible. Dans ce cas, 'on a

Jdu, dv, dwy Jdu, a9, ow,y

Ve oy T T 9w oy Tos ¢

et, par conséquent, en vertu de I’égalité (140),
(145) _ aly+ Bmy+yny,=o.
Cette égalité (145), jointe a I'égalité (144), donne
(146) IL,=1I,.

Il r’est donc pas possible, en un fluide incompressible, d’observer une sur-
Sace au passage de laquelle les composantes de la vitesse et la température
varieraient d’une maniére continue, tandis que la pression varierait d’une

maniére discontinue.

Par anticipation, nous avions énoncé ce théoréme au Chapitre I, § 11.
Moyennant 1'égalité (144), les égalités (143) peavent s’écrire :

plp, T)[lo — a(aly-+=PBmo+ynry)]=o,
p(p, T) [mo— B(aly+Bme+yno)] =09,
(e, TY[ny — y (aalo—+ B+ yny)] =0

ou bien, en observant que I'on a [I** Partie, condition (62 bis)],
p(p, T) >0
et en tenant compte de I'égalité (145),

(147) l,=o, my,= o0, n,=o.
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Les égalités (139) deviennent alors

duy _ 0y duy_0uy Oy Juy
dx — oz’ ()y*dy’ 05 05’
‘d_‘_’l _()Vz % o ()"'2 0V1 . d"g
(148) gr —dz 9y —ody 0z 05’
Iy _Owa 0w, 0wy Owy_ 0w

dr — dx 0)"_0}»’ s T 05

Supposons maintenant que 'onde o soit persistante. Selon ce que nous avons
vu au Chapitre T, § 5, nous aurons

du, du,

5 BJe —
ot~ ar T b =o
99 9% | 3 ppy—
ot ot 0= 0
ow,  Ow,

9% _ ™ on, —o.
ot " Tor Tohme=o

Moyennant les égalités (147), ces égalités deviennent

Jdu, du, dvy 00, dw, 0w,
A —_——— _ _—
(149) Jat ot at ot at ot

Voyons maintenant ce que donne I'égalité (144) lorsque le fluide est supposé
compressible. '
Dans ce cas, nous devons écrire, de part et d’autre de la surface o,

.08(p, T)

d 7

(136) H+p*(As+Ae)—p
o et T variant d’une maniére continue lorsqu’on traverse la surface ; il en est de
méme, d’aprés ce que nqus avons vu (I' Partie, Chap. I, § 4), de

,98(p, T)

PQ(Ai—*‘AC)_P ()O

~ et, partant, de IT. On a donc
(146) I, =10,
L’égalité (144) devient alors

[(A(p, T) +2p(p, T)] (ely+ Bmy+yny) = o.
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Mais on a [I* Partie, condition (63)]
Mp, T) +2u(p, T) > o.
I’égalité précédente devient donc
(1453) aly+ Bmy+ yno=o.

Les égalités (148) et (149) s’établissent alors comme dans le cas précédent; I'onde
considérée ne peul persister que si elle est, par rapport aux composantes de la
vitesse, d’ordre supérieur au premier.

Dans le cas ot le fluide est compressible, la densité variant d’'une maniére con-
tinue sur la surface o, il doit exister une grandeur R, telle que I'on ait, en tout
point de la surface s,

(0(p2—p1) _ d(pa—pi) d(ps—p1)
\"’__aa: = 2Ry, 5y = BB S = 1R,
(150) < 205 o)
27 M1 vd
( ——dt— -+ ‘)URO-—O.

En vertu des égalités (148) et (130), 'équation de continuilé

ge—i—ud‘o—t—vﬁ—l—wip——i— (—)’—i—l—-(k—i—g‘f —=o
of T o Ty T TP \ow T oy T 05 T

donne, en toul point de la surface o,
(151) (au+4-Bo +yw—Io)Ry=o.

La température étant également continue sur la surface o, il existe une gran-
deur 0, telle que, sur cette surface,

()(T2_~T1):a®0’ ﬂrQ__T’)ZQG\)’ d(T2—T1):Y 0
(152) dy ds
152
AT —T) o
—-—d—t—+9b®0_0.

Supposons, d’abord, le fluide bon conducteur.

De part et d’autre de la surface o, tracons (fig. 14) deux surfaces oy, o,
paralleles & o et situées a une distance & de o. Sur la surface & prenons une
aire MN = A ; par le contour de cette aire, élevons des normales & la surface s;
ces normales découpent sur la surface o, une aire M, N, et sur la surface 5, une
aire My;N,. Pendant le temps d¢, le fluide qui se trouve a l'instant ¢ dans le

volume M, N, M;N; (ou a) dégage une quantité de chaleur A d¢, qui s’obtiendrait
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en faisant la somme, pour tous les éléments de ce volume, de la quantité dQ
donnée par 1'égalité (go).

Fig. 1.

M

Y
S )
/77

D’autre part, en désignant par 4 le coefficient de conductibilité calorifique du

1

fluide, cette quantité de chaleur est donnée par I'expression

—dt¢

dS étant un élément de la surface M, N, M;N, qui entoure le volume a et n, la
normale de 1’élément dS vers I'intérieur du volume a. Nous avons donc

Cette égalité est générale.

Faisons maintenant tendre % vers o et cherchons la forme limite de I'éga-
lité (153).

L’égalité (go) de la premiére Partie permet d’établir immédiatement que X est
de Pordre du volume « et tend vers o avec /.

L’intégrale qui figure au second membre se compose de trois parties :

Une premiére partie, relative a I'aire latérale M, N, M, N,, tend vers o avec h.

Une seconde partie, relative a 'aire M; Ny, a pour limite

(e T 20

Jds
Une troisiéme partie, relative a l'aire My Ny, a pour limite

JT, ()Tg JdT,
f/\ <()— d)’ B—F = y) ds.
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Si nous tenons compte des égalités (132), nous voyons que lintégrale

f/.‘ (—’))}: dS a pour limite [/.‘@o(lc' et que la forme limite de I'égalité (153) est
. o . ;\

j k®,dz =o.
A

I aire A étant une aire quelconque prise sur la surlace o, il revient au méme de

dire que 'on a, en tous les points de la surlace 7,
(154) 0,=o.

Supposons maintenant que le fluide soit mauvais conducteur. La quantité de
chaleur dQ dégagée dans le temps dt par chaque ¢lément dw du fluide est égale
a 0. Selon 'égalité (go) de la premiére Parlie, celle condition s'exprime par
I'égalité

*%(p, T) /0T aT oT JT
T Bl (b ol e al o e L s
ot dx dy ds Jat

(e, T) (011 v 0._‘>

02

— Ty

do0T \oz "oy T 0z

e [ Ou Jdv a2
+ 2(p, l)<(ﬁ -+ oy + T>

. du\? dv \? aw\? Jdv dw\2
s () - () () (%)

(()«v Jdu 2+ Jdu 4 av\?|
= \ox o= (@ ﬁJ~“

En vertu des égalités (148) et (152), celte quantité se réduit &

(155) (atwe +Bo 4+ yw—6) O, =o.
.

La démonstration des égalités (154) et (155) est évidemment valable pour tous
les fluides, compressibles ou non, visqueux ou non; I'égalité (154) suppose seu-
lement que I'onde soit au moins du premdier ordre par rapport a u, v, w et p.

En réunissant les résultats oblenus, nous allons étre en mesure de répondre a

cette question :

Au sein d’un fluide visqueux en mouvement, peut-on observer une surface
qui soit onde persistante du premier ordre pour lU'une au moins des six
quantités u, v, w, o, I, T et onde d’ordre égal ou supérieur a 1 pour les cing
autres?

Fac.de T., 2° S., 1IV. 17
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PREMIERE sEcTiON. — Fluides incompressibles bons conducteurs.

Les égalités (148) et (149) montrent que la surface s est d’ordre supérieur au
premier pour les composantes u, ¢, w de la vitesse; les égalités (152) et (154)
montrent qu’il en est de méme pour la température. Si la surface o était onde du
premier ordre pour I'un des éléments du mouvement, ce ne pourrait étre que
pour la pression II. Mais nous démontrerons au paragraphe suivant la proposition
que voici : Si, en un fluide incompressible, une surface o est onde au moins du
second ordre pour u, ¢, w, T, elle est au moins du second ordre pour la pression II.
Admettant d’avance cette proposition, nous pouvons énoncer ce théoréme :

Auw sein d’un fluide visqueux, incompressible, bon conducteur, aucune
surface ne peut étre onde persistante du premier ordre pour 'un au moins
des éléments du mouvement et d’ordre égal ou supérieur a 1 pour les autres.

DEUXIEME stcTioN. — Aulres fluides.
Premier cas. — On n’a pas
(156) Mo = 2w~ 5o 4y,

Dans ce cas, si le fluide est compressible, on a, en vertu de I'égalité (151),
(157) Ry=o.

Si le fluide est mauvais conducteur, on a, en vertu de I'égalité (155),
(154) 0, = o.

Dés lors, en vertu des égalités (148) et (149), la surface considérée est onde au
moins du second ordre par rapport, aux composantes u, ¢, w de la vitesse; en
vertu des égalités (154) et (152) il en est de méme par rapporta la température T';
enfin, si le fluide est compressible, en vertu des égalités (157) et (150) il en est
de méme de la densité p.

Reste a savoir si ’onde considérée ne pourrait pas étre du premier ordre par
rapport & la pression II.

Si le fluide considéré est incompressible, cela sera impossible en vertu de la
proposition que nous avons déja invoquée et qui sera démontrée au paragraphe
suivant.

Dans le cas ou le fluide est compressible el ou les actions qu’il subit ne sont pas
newtoniennes, la démonstration de cette proposition nécessite quelques remarques
préliminaires.

Si, dans un certain domaine, la densité g admet, par rapport a z, y, 3, ¢, des
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dérivées partielles jusqu’a 'ordre ninclusivement et si ces dérivées sont continues,
il en est certainement de méme, en général, de la fonction A,.; mais il n’est nulle-
ment certain qu’il en soit de méme de la grandeur A;; existence ou la non-exis-
tence de ces dérivées dépend évidemment de la maniére dont la fonction ¢ (p, ¢/, 1),
qui est infinie pour r = o, se comporte pour les valeurs de r voisines de o. Aussi
avons-nous été amenés (I Partie, Chap. I, § 4) & faire 'myrornise suivante :

La fonction Y(o, o', 1) est d’une nature telle que la grandeur A; admette
AN P’ 5
ar rapport ¢ x, vy, 3, t des dérivées partielles continues jusqu’a Uordre n
P P y YV 2
dans tout domaine ou la densité o admet des dérivées partielles continues
jusqu’'a lUordre n.

Dans tous les cas ou cette hypothése est justifiée I’égalité

0:(.0,T)_0

(136) IT+p2(A;+A,) —p? o

nous montre que, si, dans un certain domaine, en un fluide compressible, la
densité g et la température T admettent des dérivées partielles continues
jusquw’a Uordre n, il en est de méme de la pression II.

Dés lors, les égalités (150), (152), (154) et (157) nous montrent que la surface =
est, pour la pression II, en un fluide compressible, une onde d’ordre supérieur au
premier.

Nous pouvons désormais énoncer la proposition suivante :

En un fluide visqueux, il est impossible d’observer une onde qui soit du
premier ordre pour certains éléments du mouvement et d’ordre au moins
égal a 1 pour les autres, a moins que 'onde ne soit la suiface de séparation
de deux masses fluides qui restent les mémes pendant toute la durée du
mouvement.

DeuxikME cas. — On a
(156) Wo=oau—+Be—+yw.

Dans ce cas, si le fluide est compressible, I'égalité (151) est compatible avec
I'hypothése que R, est différent de o; si le fluide est mauvais conducteur, 1’éga-
lité (155) est compatible avec 'hypothése que 0, est différent de o; nous pouvons
donc énoncer le théoréme suivant :

En un fluide visqueuz, qui est ou mauvais conducteur, ou compressible,
ou a la fois compressible et mauvais conducteur, on peut observer des ondes
qui sont du premier ordre par rapport & certains éléments du mouvement et
d’ordre supérieur au premier pour les autres. Les deux masses fluides que
sépare une telle onde restent les mémes pendant toute la durée du mouvement.
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Une telle onde présente, pour les dicerses espéces de fluides, les caractéres
suivants :
1° FLuipEs INCOMPRESSIBLES ET MAUVALS cONDUCTEURS. — L’onde, du premier

ordre pourT et 11, est d’ordre plus élevé pour u, ¢, v.

2° FLUIDES cOMPRESSIBLES ET BONs conpucTEURS. — L’onde, du premier ordre

pour petll, est d’ordre plus élecé pour u, v, wetT.

3" FLUIDES COMPRESSIBLES ET MAUVAIS CONDUCTEURS. — L’onde, du premier

ordre pour s, Wl et T, est d’ordre plus élecé pour u, ¢, w.

§ 2. — DEs ONDES DU SECOND ORDRE PAR RAPPORT A CERTAINS ELEMENTS

DU MOUVEMENT.

Sapposons qu’a I'instant ¢, au sein d’un fluide visqueux, une surface s soil
onde au moins du second ordre pour les composantes w, ¢, v de la vitesse, pour
la température T et, en outre, si le fluide est compressible, pour la densité .
Quant a la pression II, nous supposerons seulement, au début, que, pour elle.
I'onde est au moins du premier ordre. Nous serons amené ainsi a4 démontrer un
théoréme invoqué au paragraphe précédent.

La condition restrictive indiquée en la I'* Partie, au Chapitre I, § 3, est remplie
dans I'hypothése ot nous nous plagons. Nous pouvons donc faire usage des équa-
tions du mouvement des fluides visqueux sous la forme qui a été donnée en cet
endroit par les égalités (74). Cette forme n’est autre que celle qui est donnée en
la présente Partie par les égalités (135), avec les expressions suivantes de ¢, ¢, -
[ [ Partie, égalités (58)] :

06 dA
G _(7\—1—1.1)5} +;LA11+607
du Jp <()u dv) o . <du ()w> dp.

K

2 or —d;_i_dx—d—; 9: o9z )as
f/y-:(l—l—}*)g—ﬁ"‘#m’“‘gg-}
- /
(158) ' 9 du>2&+?0_"()_ﬁ’- <(1‘_r dw\ du
\oz Tov)ez Ty ay 03+«U>$’

q::(l—l—y)g—f—l-;LAw—k—Ogg

dw  Ju\du <d_w . de\ o dw O
<a£+d; dy " az)oy 295 ds’

Jdx +

—Ju 00 Ow
T ox ' dy | 0=
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I’onde = étant supposée au moins du deuxiéme ordre pour u, ¢, v, il existe
en chaque point de cette surface un vecteur ,, m,, n, tel que on ait

P (uy—uwy) 0*(uy— uy)

Pluy—uw)

dw =0 o TP E =
(s — uy) *(uy— uy) 0*(uy— u,)
= B —_—= = — = af
(159) / 0yds 27 by 05 0x rers oxdy 3o
)% (g —
i—(—‘—()“zz i =%y, e P ,
L et et s e S e e

¢ et T étant continus, ainsi que leurs dérivées partielles du premier ordre, sur la
surface s, il en est de méme de A(p, T) et de p(p, T), de sorte que les éga-
lités (158) permettent d’écrire
[ Ter— Gur=[2(0, T) + p.(, )] (atly + B g+ yny) 2 + p(p, T) 1,
Iyr— qy1=[2(o, T) -+ p(p, T)] (dy+ Bmg+ yny) B + ®(o, T)m,,
L Gz — g = [M(p, T) + p(p, T)] (alo+ Bmg+yne) 7 + p2(p, T) .

(160)

Les hypothéses faites sur u, ¢, w nous assurent que vy, Yys Yz varient d’une
maniére continue au travers de la surface o; les hypothéses faites sur P, jointes a
ce qui a été supposé en la I Partie, Chapitre I, § 4, nous assurent qu’il en est
de méme pour X;, X., Y;, Y., Z;, Z,; enfin, la surface ¢ étant onde au moins du

premier ordre pour la pression II, il existe assurément un vecteur P, tel que

oI, —11,) _ oL, — M) (I, —10,)
(161) T-«at), d;_‘—‘*—rlp, T——/P.

Dés lors, les équations (133 ) permettent d’écrire, en chaque point de la surface 5,

P —[M(p, T) + pp, T)] (dy+ By +yno) | o — pip, T)l, =o,
(162)  { JP—[A(p, T) + p(p, T)] (aly -+ Bmy+ yn) | B — p(p, TYmy=o,
:P—[)‘(P»T)_“V’(P’T)l(alo“_ B’"o"")“lo):Y_H-(P;T‘)'no = 0.

Ajoutons membre & membre ces égalités aprés les avoir multipliées respectivement

par o, 3, v et nous trouvons
(163) P — (0, T) + 2p2(p, T)] (2ly+ Brg+ yny) = o,

Supposons, tout d’abord, que le fluide soit incompressible. Nous aurons identi-

quement
7 ——ﬂ .(E ﬂv—o
oz oy T T
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partant,
dx — 7’ a9 %

ce qui permettra d’écrire, en tout point de la surface s,

AGB=0) _ 0G=0)_ 95—

or ’ 2

ds
ou bien, en vertu des égalités (159),

(ady+Bmy—+yny) o= o,
(ly+ Bmy+yny,)B=o,
(aly+PBmg+yny)y=o,

égalités qui entrainent celle-ci : L
(164) oly+ Bmy+yn,=o.
L’égalité (163) donne alors
(165) P=o
et partant, selon les égalités (161),

(166) d(ﬂﬂd:;nl)zo’ d(“%’;l—li):___o’ ()(Hl’d:'lll):

D’ailleurs, si'onde est persistante, on doit avoir, selon I'égalité (98),

o(I, —1I,)

P =
T, + P =o,

en sorte que I'égalité (165) donne

oL —1,) _

(167) T

- Les égalités (166) et (167) justifient le théoréme suivant, déja invoqué au pré-
cédent paragraphe :

Au sein-d’un fluide visqueux incompressible, une onde persistante, qui est
au moins du second ordre pour les composantes u, v, w de la vitesse et pour
la température T, est aussi au moins du second ordre pour la pression 1I.

Supposons maintenant le fluide compressible. D’aprés ce qui a été dit au para-
graphe 1, la surface o, onde du second ordre pour la densité o et la tempéra-
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ture T, est aussi onde du second ordre pour la pression II; on a donc encore
(1635) P =o,
en sorte que I’égalité (163) devient

[2(p, T) +2p(p, T)](atly+ .3mo‘+ ¥ ny) =o.
Mais on a [ L™ Partie, condition (65)]
1(0, T) 4+ 2p(p,T) > o.
1’égalité précédente devient donc
(164) aly+ Bmy+ yn, =o.

Les égalités (164) et (165) étant ainsi établies pour tous les fluides visqueux,

reportons-les dans les égalités (162); nous trouvons
@2, TYlg=o. w(o, Tymy=o, p(p, Tyn,=o,
et comme on a [ 1" Partie, condition (62 bis)]
»(p, T) > o,
les égalités précédentes deviennent
(168) l,=o, n, = o, ny=o.

D’autre part, d'aprés ce que nous avons vu au Chapitre 11, § 5, il existe un

vecteur /y, my, ny tel que 'on ait

T e A
(169) ! éi%i:a;‘) —am,, 02(5;752&2 — B, 5’f<;’5232 —ym,,
R T
el si 'onde considérée est persistante, on a
’ {,+ )01, =o, my—+ Jomy = o, ny -+ o ny=o,
(170) ( o ("_5; ) + NI, =o, ?i(_%{_f’_) + Jom, —o, ()2<(%; @) —+ )on,==o.

Les égalités (159), (168), (169), (170) nous enseignent alors que toutes les
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dérivées partielles du second ordre des différences (1ta — 1)), (92— 04), (W2 —¥y)

sont nulles sur la surface &. Si 'onde considérée est persistante, elle est certaine-

ment d’ordre supérieur au second pour les composantes de la vitesse.

Si le flaide est compressible, il existe deux grandeurs Ry, Ry, telles que I'on

ait, en tout point de la surface g,

> (p,— 9 (s

s/ ( dw‘z = RO’ ()).2 ) — Bz RU’ ().(p(;;_g £ - 72 “0’
(171) <« Y 0% ( »
( TSt =g, PP — e, ‘_%_“;7_9') — o5 R,,
_ I (p2—p1) _ P (p2—p1) *(pa—01)
(172) dx 0t =alty, ()y()t =BR, I EY A R,
En outre, si I'onde est persistante,
(173) R,+ %R,=o, WJP)LRX:O.
L’équation de conlinuité nous enseigne que l'on a idenliquement, en
point,
(174) K:@—l——d-pu—i—f)—ov—}—ipw:o
Jat  Jx dy ! 0s ’
partant
oK JK oK
= =o — =o,

_-— 0 —_— -
dx ’ dy ’ e
ce qui permet d’écrire, en tout point de la surface ,

I(K,—K,) I(K;—K,) I(K,—K,)
T =0, —()7—‘—‘——0, —d:.— O

ou bien, en vertu des égalités (171), (172), (173) et (174),

(et +Bo +yw— )R =o,
(et +Bo+yw—I)R3=o,
(e +Bv 4+ yiw —I6)Ryy =o,

égalités qui donnent

(175) (e + By +yw—I)Ry=o.

toul



(177)

(179)

(180)

(176)

(178)
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1l existe deux grandeurs 0, , telles que, sur la surface ,
[ 0*(T,—T R *(T,—T 0*(T,—T
PN — v, 2T - D —gre, LT,
*(T,—T,) (T, —Ty) (T, —Ty)
dyds Py O, T 0s0xr 1200 dxdy 438
*(T,—Ty) i (T,—Ty) *(T,—Ty)
dwor . —* % ayar — PO osor — 1 O
En outre, si 'onde est persistante, on a
0,+ 9%0,=o, d(Tst P')+3w,_o

Considérons la relation supplémentaire [I* Parlie, égalité (94)] et supposons

d’abord le fluide bon conducteur :
k(p, T) > o.
Elle nous donnera, en tout point de la surface o,
k(p, TYA(T,—T,) =0
ou, selon les égalités (176),

k(p, T)Y®,=o,

ou enfin

0,—=o.

Supposons, au contraire, le fluide mauvais conducteur :

k(p, T)=o.
Nous aurons, en tout point,
T 0% or T o7
7= pdl“(dx R TSR PR m)
Ef 9T op\oz "9y * 05
+7\(P,T) <_0ﬁ_|_9_"_+¢20_"
E dx  dy 0z
2!"(9’ T)[(ou dw'\*
—E > B 03
(dv dw d_w 2 ou
d_ oz oy

Fac. de T., 2¢ S., IV,

20\ _
ox ]_0’

18
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parlant

a9 9 _
ox " oy % BT ®

ce qui permet d’écrire, en toul point de la surface o,

Ol —J1) _ 00 —J) _ 9= _

dx ’ dy ’ 03

Si 'on observe que la surface =, onde du second ordre pour p et T, est d’ordre
supérieur au second pour «, ¢, &, on voit que ces égalités deviennent

(O M=Ty  (T—-Ty (T —T)  0(Ta—Ty) _

ozt T ' T gz ay Yoz T dwar °
(T, =Ty 0T, —=T,) (T —Ty) 0*(To—Ty)
u ay 0z + ¢ 9y -+ dy 93 -+ dy ot =o,
(T, —Ty) = 0*(T,—T) (T, —Ty)  0*(T,—T,) _

u 93 0% + ¢ 93 dy -+ w P -+ 0z 0¢ =o,

ou bien, en vertu des égalités (176), (177), (178), .

(e +Bo+yw— )0 a=o,
(e +Bv+yw—I6)0,8 =o,
(2t 4+ By 4+ yw — )0,y =o.

Ces égalités donnent

(1871) (au+ B¢+ yw—I)0,=o.

Discutons les diverses égalités obtenues.

PREMIERE SECTION. — Fluides incompressibles et bons conducteurs.

L’égalité (179), jointe aux égalités (176), (177), (178), nous enseigne que la
surface o est onde d’ordre supérieur au second pour la température T, comme
elle est déja pour les composantes u, ¢, w de la vitesse; si donc elle pouvait
étre du second ordre par rapport a quelque élément du mouvement, ce serait par
rapport & la pression IT; mais, au paragraphe suivant, nous démontrerons qu’elle
est, au moins, du troisiéme ordre par rapport ala pression IT; nous pouvons donc

énoncer le théoréme suivant :

Au sein d’un fluide visqueux, incompressible et bon conducteur, on ne
peut observer aucune onde qui soit du second ordre par rapport a certains
éléments du mouvement et d’ordre au moins égal & 2 par rapport aux autres

éléments.
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DEUXIEME SECTION. — Autres fluides.
Ici, nous devons distinguer deux cas.
Premier cas. — On n’a pas
(136) ' No=au+Be+yw.
Dans ce cas, 'égalité (181) donne I’égalité
(179) } @9: o,

méme si le fluide est mauvais conducleur. Les égalités (176), (177), (178) mon-
trent alors que la surface o est, pour la température T, une onde d’ordre supé-
rieur & 2.

Si le fluide est compressible, I’égalité (175) donne
R0: o,

ce qui, moyennant les égalités (171), (172), (173), montre que la surface ¢ est
une onde au moins du troisiéme ordre pour la densité o.

Il reste 4 examiner si I'onde ne peut pas étre du second ordre par rapport a la
pression Il. Que cela soit impossible pour un fluide incompressible, nous en
sommes assurés par un théoréme qui sera démontré au paragraphe suivant; si, au
contraire, le fluide est compressible, nous savons, par ce qui a é1é dit au § 1, que
la surface ¢, onde au moins du troisiéme ordre pour la densilé p et la tempéra-
tare T, est, au moins, du troisiéme ordre pour la pression II.

Nous pouvons donc énoncer le théoréme suivant :

En aucun fluide visqueux on ne peut observer une onde qui soit du second
ordre par rapport & certains éléments du mouvement et d’ordre au moins

égal a 2 pour les autres, a moins que les deux masses fluides séparées par
cette onde ne demeurent les mémes pendant toute la durée du mouvement.

Seconp cas. — On a
(156) N =au—+Bv+yw,

Dans ce cas, si le fluide est mauvais conducteur, 'égalité (181) peut étre véri-
fiée, bien que O, différe de o; si le fluide esl compre551ble Iégalité (175) peut
étre vérifiée, bien que R, différe de o.

Nous pouvons donc énoncer les propositions suivantes :

Siun fluide visqueuz est ou mauvais conducteur, ou compressible, oua la fors
mauvais conducteur et compressible, on peut y observer une onde du second
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ordre par rapport & certains éléments du mouvement, d’ordre supérieur a 2
pour les autres éléments et qui, pendant toute la durée du mouvement, sépare
les mémes masses fluides.

Pour les diverses catégories de fluides visqueux, cette onde présente les
particularités suivantes :

FLUIDE VISQUEUX, INCOMPRESSIBLE ET MAUVAIS CONDUCTEUR. — Du second ordre
par rapport & la température T et a la pression W, l'onde est au moins du
troistéme ordre par rapport aux composantes u, v, w de la vitesse.

FLUIDE VISQUEUX, COMPRESSIBLE ET BON cONDUCTEUR. — Du second ordre par
rapport a la densité p et a la pression 11, l'onde est au moins du troisiéme
ordre par rapport aux composantes u, v, w de la vitesse et a la température T.

FLUIDE VISQUEUX, COMPRESSIBLE ET MAUVAIS CONDUCTEUR. — Du second ordre
par rapport ala densité p, a la températureT et a la pressionIl, Uonde est au
moins du troisiéme ordre par rapport aux composantes u, v, w de la vitesse.

" § 3. — Des ONDES DU TROISIEME ORDRE PAR RAPPORT A CERTAINS ELEMENTS

DU MOUVEMENT.

Continuant notre analyse, nous allons supposer que la surface ¢ est au moins
onde du troisiéme ordre relativement aux grandeurs

u, v, w, p, T.

En ce qui concerne la pression II, nous supposerons seulement qu’elle est au
moins du second ordre.

Selon les lemmes de M. Hadamard, énoncés et démontrés au Chapitre précé-
dent, les dérivées du troisiéme ordre (u, — uy), (v2— ¢1), (w2 — w,) s’expriment
toutes, sur la surface o, au moyen de quatre vecteurs ({y, my, no), (&, my, ny),
({2, my, ny), (I3, ms, ny). Sil'onde o est persistante, on a

I, +J%l, =o, l, +960 =o, l, +35l, =—o,
my+ dbm,=o, my—+ Jom,=o, my—+ domy=o,

n, -+ JIbn, =o, ny, +dn, =o, ny + Jbn, = o.
Il suffira de démontrer que
(182) l,=o, my=o, ny=o

pour prouver que toutes les dérivées partielles du troisitme ordre de (u,— u,),
(va— 1), (w2— ;) sont nulles sur la surface o, et que celle-ci est une onde
au moins du quatriéme ordre pour les composantes u, ¢, w de la vitesse.
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Toutes les dérivées partielles du second ordre de la différence (IT, — II, ) s’expri-
ment, sur la surface 5, au moyen de trois quantités P, P, P,, liées par les rela-

tions
Pi—l“a‘(’Po:O, P2+ ‘D‘GPIZO-

11 suffira de prouver que I'on a
(l83) Po: o

pour démontrer que 'onde o est au moins du troisiéme ordre par rapport a la
pression II.
Considérons les équations, vérifiées en tout point du fluide [égalités (135)

et (158)],

ol a6 oA

du dp. (du + _d_v) op (d_u dw) ap. —0

2920z \ay Toz)ay “\ozs "ox)as

...................................................

En différentiant la premiére de ces égalités par rapport & x, la seconde par rap-
port 2 ¥ et la troisiéme par rapport a z, nous obtenons trois nouvelles égalités,
vérifiées en tout point du fluide, et qui sont

o1l 0%0 d
d_xz.._()\—-{—y,)()—x-.—z—l.l.azAu +...=0,
2l 020 d
JA - —_— — L — . =
(184) e (l—i—p)dyz pdyAv +...= o0,
01l 9%0 90
o7 — ) on —eg Aw +...=o,

les . .. désignant des termes qui varient d’'une maniére continue lorsqu’on traverse

la surface s.
Ces égalités montrent de suite que I'on a, sur la surface o,

‘PO_‘ [M(ps T) 4+ (o, T)] (ot ly =+ By + }’"o):“z"‘ p(p, T)aly=o,
(185) { {Po— [A(p, T) + p(p, T)] (2ly+ Bmag-+yno)| 32— p(p, T)BLy=o,
{Po—[A(p, T) + p(p, T)] (2 ly+ By + yno)|7* — p(p, T)ylo=o.

En ajoutant ces égalités membre & membre, on trouve I'égalité
(186) Po—[M(p, T) +2p(p, T)] (2o + Brmg+ yno) = 0.

Supposons d’abord que le fluide soit incompressible.
Nous avons, en tout point, § —o, partant Al = o, ce qui donne, sur la surface o,

(187) aly+ Bmy+ yny=o.
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L’égalité (186) devient alors
(183) Py=o.
D’ott le théoréme suivant, invoqué sans démonstration au paragraphe précédent :

Au sein d’un fluide incompressible, une onde qui est au moins du troi-
siéme ordre par rapport a u, ¢, w et I, est aussi au moins du troisieme
ordre par rapport a Il.

Si le fluide est compressible, nous savons, par ce qui a été dit au § 1, que la
surface ¢, onde au moins du troisiéme ordre par rapport a g et a T, est au moins
du troisiéme ordre par rapport 4 IT; nous avons donc I’égalité (183). Mais, d’autre
part, nous avons l'inégalité [ I Partie, inégalité (65)]

2(p, T) +2p(p, T) >o0.

Les égalités (183) et (186) nous donnent alors P’égalité (187).
Les égalités (183) et (187) étant vraies en toutes circonstances, les égalités (185)
donnent

(182) l,=o, my=o, n,=o,
car on a [I* Partie, inégalité (62 bis)]
p(p, T)>o.

L’onde considérée est donc au moins du quatriéme ordre par rapport aux com-
posantes u, ¢, v de la vitesse.

Sur la surface 5, toutes les dérivées du troisiéme ordre de la différence (p2— 54)
s’expriment au moyen de quatre grandeurs Ry, Ry, Ra, Rj, liées par les relations

(188) R, +96Ry=o, R,+ R, =o, R;+ 9tR,=o.

Légalité Ry=o0 enseigne que la surface ¢ est onde au moins du quatriéme
ordre pour la densité p.
Si le fluide est compressible, on a, en chaque point et a chaque instant,

@ t i u—l—i v+i Ww=o0
ot ozt T gy Pt T P

et, par conséquent,

A<9—E+£— u—l——d—pv—l—-ipcv .;_o.
ot T 9z T oy 03
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Cette égalité peut s’écrire

9 9 0J d _
a—tAp—|—u(—)—a;Ap+vd—yAp+w(—’—zAp+..._o,

... désignant des termes qui varient d’une maniére coutinue au travers de la
surface o.

On en conclut sans peine, en vertu des égalités (188), que 'on a, sur la sur-
face o,

(189) - (au+Be+yw—I6)Ry,=o.

Sur la surface s, les dérivées du troisiéme ordre de la température T s’expriment
au moyen de quatre quantilés ©,, 0, ,, 0,, liées par les relalions

(190) 0,-+960,—o, 0, + )0, =o, 0,+ )e0,=—=o.
Sil'on a
(1971) 0,=o,

'onde considérée est au moins du quatriéme ordre par rapport a la tempéra-
ture T. .

Supposons d’abord le fluide bon conducteur. En tout point et a tout instant
sont vérifiées la relation supplémentaire [1*® Partie, égalité (94)] et aussi les
égalités que l'on obtient en différentiant celle-ci par rapport & z, ou a y, ou
a 5. Ces derniéres égalités peuvent s’écrire

k(p,T)%AT—F...:O,
l((p,T)i AT +...=o,
dy

vy O
k(P, [’)(T AT‘i—...:O,
les ... désignant des termes qui varient d'une maniére continue au travers de la
surface . On en conclut sans peine que I'on a, sur la surface s,

a®,=o, O,=o, Y0,=o,

ce qui entraine I’égalité (191).
Supposons maintenant le fluide mauvais conducteur. L'égalité (180) est vé-
rifiée en tout point et & tout instant; il en est de méme de 1'égalité

Al =o
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qui peut s’écrire

T 0¢/ 0 J J J

—p-— (U5 AT + ¢—— AT +w — AT + — AT ) +...=0
EPor\%oz TPay N TS Tt )T ’
... désignant un ensemble de termes qui varient d’une maniére continue au tra-
vers de la surface 5. On en conclut, en vertu des égalités (1go), que I'on a, en
tout point de la surface s,

(192) (e +Bo+yw—I)B,=o.

La discussion s’achéve alors comme au paragraphe précédent et conduit aux
conclusions que voici :

Au sein d’un FLUIDE VISQUEUX, INCOMPRESSIBLE ET BON CONDUCTEUR, OR e peul
observer aucune onde qui soit du troisiéme ordre par rapport a certains élé-
ments du mouvement et d’ordre au moins égal & 3 pour les autres éléments.

Au sein de tout autre FLUIDE VISQUEUX, on peut observer une telle onde.

St le fluide est 1NCOMPRESSIBLE ET MAUVALS CONDUCTEUR, cette onde est du troi-
siéme ordre pour T et 1 et d’ordre au moins égal a 4 pour u, v, w.

Si le fluide est cOMPRESSIBLE ET BON CONDUCTEUR, celte onde est du troisiéme
ordre pour o et Il et d’ordre au moins égal a 4 pour u, ¢, w et T.

Si le fluide est cOMPRESSIBLE ET MAUVAIS CONDUCTEUR, celte onde est du troi-
siéme ordre pour o, T et Il et d’ordre au moins égal a 4 pour u, ¢, w.

Les deuz masses fluides que sépare la surface de Uonde demeurent les
mémes pendant toute la durée du mouvement, car on a

(193) N =au+ B+ yw.

§ 4. — Résumt DES PROPRIETES DES ONDES AU SEIN DES FLUIDES VISQUEUX (")

On voit sans peine que les démonstrations données aux §§ 2 et 3 s’étendent de
proche en proche et s’appliquent aux ondes de tous ordres. Si I'on réunit alors ce
qui a été dit dans le présent Chapitre aux résultats obtenus au Chapitre I, § 11,
on parvient a des théorémes entiérement généraux au sujet des ondes qui peuvent
persister en un fluide visqueux. Ces théorémes s’appliquent méme aux surfaces de
discontinuité pour certains éléments, surfaces qui sont des ondes d’ordre o par
rapport a ces éléments.

(1) Des ondes qui peuvent persister en un fluide visqueux (Comptes rendus,
t. CXXXIII, 14 octobre 1901, p. 579).
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Voici ces théorémes :

Tutorime I. — Au sein d’un FLUIDE VISQUEUX, INCOMPRESSIBLE ET BON CON -
DUCTEUR, il ne peut persister aucune onde, quel qu’en soit l’ordre par rapport
auzx divers éléments du mouvement.

En toute la masse d’un tel fluide et pendant toute la durée du mouvement,
sauf peut-étre a un instant isolé, u, ¢, w et T sont des fonctions continues et

analytiques de x, y, z, t.

Tutorime Il. — Au sein d’un FLUIDE VISQUEUX qui est 0l COMPRESSIBLE, ou
MAUVALS CONDUCTEUR, Ol A LA FOIS COMPRESSIBLE ET MAUVAIS CONDUCTEUR, On peut
observer des ondes persistantes.

Si le fluide est INCOMPRESSIBLE ET MAUVAIS CONDUCTEUR, une onde d’ordre n
par rapport a T et a1l est au moins d’ordre (n -+ 1) par rapport & u, ¢, w.

Si le fluide est comPRESSIBLE ET BON CONDUCTEUR, une onde d’ordre n par
rapport a o et a Il est au moins d’ordre (n —+ 1) par rapport a u, ¢, weta'l.

Sile fluide est COMPRESSIBLE ET MAUVALS CONDUCTEUR, une onde d’ordre n par
rapport a o, a T et a I est au moins d’ordre (n —+1) par rapport & u, ¢, w.

Trtorime IlI. — La vitesse de déplacement de I’onde est égale, en chacun
des points de cette onde, & la projection de la vitesse du fluide sur la normale
a l’onde :

No=oau-+ o+ yw.

Les ondes partagent donc le fluide en masses qui demeurent les mémes pen-
dant toute la durée du mouvement.

Au sein de chacune de ces masses u, v, w, e, T, Il sont des fonctions conti-
nues et analytiques de x, y, 3, t.

CHAPITRE 1V.

DES ONDES DANS LES FLUIDES PARFAITS.

§ 1. — QUELQUES PROPRIETES THERMODYNAMIQUES DES FLUIDES

SANS ViscosiTE (').

Dans ce Chapitre, nous nous proposons d’étudier les propriétés des fluides
parfaits, c’est-a-dire des fluides pour lesquels les deux coefficients de viscosilé

(1) Sur les chaleurs spécifiques des fluides dont les éléments sont soumis & leurs
actions mutuelles (Comptes rendus, t. CXXXII, 11 février 1gor, p. 292).
Fac.de T, 2¢ S.| 1V. 19
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sont identiquement nuls :
hp, T)=o, pr(p, T) =o.

Nous exposerons d’abord quelques considérations sur les coefficients calori-
fiques de ces fluides, considérations qui nous seront utiles ensuite.

Dans une modification réelle ou virtuelle ot la densité p et la température T
varient de 8p, 8T, la masse élémentaire dm dégage une quantité de chaleur dQ
que donne I'égalité (82) de la premiére Partie, a condition d’y supprimer le tra-
vail dv, dw des actions de viscosité; nous avons donc

T /0%8(p, T) Lo, T) o
4 — .
(194) dQ = E< Jp OT do + T | >
La quantité
(195) c(p, Ty = — 1 928 1)

E JT?

est [Ir Partie, égalité (84)] la chaleur spécifique a densité constante du
fluide.

Selon le postulat de Helmholtz, cette quantité est essentiellement positive :

22(p, T)

(196) c>o, 9T

<0

D’autre part, en tout point non situé sur une surface de discontinuité, nous
avons [ I Partie, égalité (75)]

(197) H+~°2(Af+~’\e)’—Pdc(gp’T):o

Nous allons écrire cette derniére condition sous une forme un peu différente.

Considérons les fonctions (R, 2, ¥, 2, 1), Ae(R, 2z, ¥, 35, t), définies en
la Ir¢ Partie, Chapitre I, § 4.

Nous aurons

A,'(.Z', }’, <y t) :"l’i(f% 1’,)’, <y t)’
Ac(x) )’, 3 t) :~,l,e(p, Z, )’, Sy t)

L’égalité (197) pourra alors s’écrire

2¢(p, T) —

(198) H‘*‘Pa[@l’i(f”x:)’rs»t)"“A”e(P’x?J” z,t)]“P2 ()p .

Cette égalité peut s’interpréter.

Supprimons toutes les parties du fluide qui sont contigués a ’élément dn;
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mais, aux corps extérieurs qui exercent l'aclion A.(p, z, ¥, 3, t), adjoignons
d’autres corps exercant précisément une action égale a A (p, , y, 5, t). Pour
conserver a 'élément dm sa densité et son état de repos ou de mouvement, il
faudra appliquer & sa surface une pression IT donnée par 1'égalité (198).

Supposons ces corps extérieurs fictifs choisis de telle maniére que la forme de
la fonction (g, z,y, 5, t) demeure invariable. A des variations &g, &1 de la
densité p et de la température T correspondrait une variation ¢II de la pression II
donnée par I'égalité ‘

N 718 dN; 0N 0% 0%t .
(199) 0H+p[2<ol‘i+¢m‘e—— 5—5;>+p<—07+-0?_59—">]8 p* 2% dTaT__o

Posons

_ giy - ﬁ deﬂsi_()ﬁf'l»e
(200) J(p,T,m,y»Z")-"[2<09_”%' A’e>+p<092_—0’? 09)1'

L’égalité (199) nous enseigne que si, dans la modification définie plus haut a
laquelle cette égalité se rapporte, la température T demeure invariable, la densité p

augmente de <dp> 8Il, avec

dll
(201) » <§—1‘%>T: §>
tandis que sila pression II demeure invariable, la densité augmente de (5—%) a1,
avec .

Aua sein d’un fluide qui est en état d’équilibre stable, on a (')

(203) J>o.

.

Toutes les fois que cette inégalité est vérifiée, <~Tp]-> est positif et ()(p)d'l‘ est de
SIgne contraire a <7§,>

Considérons une modification du genre de celles que nous venons de définir et

ot la pression I garde une valeur invariable; p croit de (;lg\) oT; selon les éga-

(1) Sur la stabilité de I’équilibre d’une masse fluide dont les éléments sont soumis
a leurs actions mutuelles [Journal de Mathématiques pures et appliquées, 5° série,
t. III, p. 174; condition (63); 1897].
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lités (194) et (195), la quantité de chaleur dégagée par I'élément dm devient

_ [T 0¢ [dp | s
=g ggar ()=o)

ou bien, en vertu de I’égalité (202),

(204) dQ:_C(PyT;J?, )’, :75)61‘9
en posant

al " . - P r| 'I‘ P‘_) ()zc(lo’ 'l‘) 2
(205) L(P>l,x7)"’t)——c(9’ r)"‘E‘J(p’T’x’y’:’“[ ()p()l‘ ] ‘

La quantité¢ C(p, T, z, y, =, t) peut, en vertu de I'égalité (204), étre regardée
comme la chaleur spécifique a pression constante de 1'élément dm ; elle différe
de la chaleur spécifique 4 densité constante par un caractére essentiel; pour la
connaitre, il ne suffit pas de connaitre la densité p et la température T au sein de
I’élément dm ; il faat en outre connaitre la disposition et I’état des corps dont
proviennent les actions extérieures, la figure du fluide et la distribution des
masses au sein de cette figure.

Si la condition de stabilité (203) est satisfaite, la chaleur spécifique a
pression constante C(p, T, x,y, z, t) est, en chaque point, supérieure & la
chaleur spécifique a densité constante.

Considérons une des modifications pour lesquelles est écrite I'égalité (199) et
supposons qu’elle constitue, pour I'élément dm, une modification isentropique.
L’entropie ¢(p, T) dm de I'élément dm est définie par Iégalité [I® Partie, éga-
lité (85)]
__ 108 T)
U(no’ T) —_— E —JT *

On a donc, en une modification isentropique quelconque,

(206) 9°%(p, T) 60-4,——-—-—————()2C(P’ T)ST:O.

dodT ™ ar:

Entre les égalités (199) et (206), éliminons 8T et remplagons 8o par (j—ﬁ) oll.
Q
Nous trouverons, en tenant compte de I’égalité (200),

92¢ . 027 \? dp - 025
o) [ = (o) | G )=
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ce qui peut encore s’écrire
T ¢ | Tp*( 0% j(ﬁ) 1T
[_E5ﬁ+ET apo'r> din),~ T EJT

“ou bien, en vertu des égalités (201), (193) et (204),

N\

d, d
(28 om0 =ete D (38),

égalité qui est la généralisation de la classique relation de Reech.
La relation (206), qui exprime que la modification estisentropique, peut s’écrire,

dp
(@)
ol =— _Mg

P om

en vertu de I'égalité (202),

ou bien, en vertu de I'égalité (195),

ap
T = T——J<d—T>“ 3
" Ec(p,T) ™

dp

Mais ici 8p = <dlI> 8I; si donc on tient compte des égalités (201) et (208)
Q

. dT e e
et sil’on remplace 3T par <m)9 I, on trouve I'égalité

), = ey (1)
(dl-[)Q_—EC(p,T,x,y,z’t) dT /1

ce qui est la généralisation d’une relation due a Joule.

Ainsi, toutes les lois que I'on démontre, en Thermodynamique élémentaire, pour
un fluide soumis uniquement 3 une pression normale et uniforme, s’étendent a
un fluide dont les éléments exercent les uns sur les autres des actions quelconques,
newtoniennes ou non. Mais tandis que, dans le premier cas, ces lois sont générales,
elles ne s’appliquent, dans le second cas, qu’a certaines modifications virtuelles
définies d’une maniére particuliére, a savoir celles pour lesquelles il est permis
d’écrire la relation (199).

Malgré le caractére abstrait et, semble-t-il, purement artificiel, des considé-
rations que nous venons de développer, nous allons en reconnaitre 'intérét par
Vétude de la propagalion des ondes au sein des fluides parfaits.
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§ 2. — PROPAGATION DES ONDES AU SEIN DES FLUIDES PARFAITS.
Emrror pEs touarions p’Evier.

La propagation des ondes dans les fluides parfails a déja fait I'objet de recher-
ches extrémement importantes de la part d’Hugoniot ('); c’est a cette occasion
qu’ont été imaginées les méthodes développées aux Chapitres IT, III et IV du pré-
sent écrit. Toutefois, 'analyse d’Hugoniot est susceptible de certains développe-
ments et de certaines généralisations () que favorise singuliérement 'emploi des
vecteurs de M. Hadamard.

Cette étude de la propagation des ondes dans les fluides parfaits peut se faire,
comme l'a déja observé Hugoniot, soit au moyen des équations hydrodynamiques
dites équations d’Euler, soit au moyen des équations hydrodynamiques dites
équations de Lagrange; nous allons employer successivement ces deux procédés,
en usant d’abord des équations d’Euler.

Pour obtenir les équations d’Euler, il suffit de prendre les équations générales
de P'Hydrodynamique [I*® Partie, égalités (79)] et d’y annuler les fonctions %(p, T),
(g, T). Nous obtenons alors les équations

oIl . Ju du Ju du\
a—f;—ﬂx"””“(m R il M 55)*0’
oIl . . dv dv v de\
{209) <5—y—— (‘l’+Y€)+‘P<W‘+UE); +‘d' +WE>—O’
oIl . . ow ow 0w oW\
7)—;-—'9(/1,'—!-[6)—*—9(?"}-(!5'; +(()J_+ﬂ7)—5>__0.

A ces équations, 1l faut joindre 'équation de continuité

(210) —()—p+ipzl~|——q~mr+—d~pcv:()
Jt = dx dy’ 03 ’

dans le cas o le fluide est compressible, la relation

,0%(p, T) Y

(l98) H+P2[°{{9i(9, Zy Y5 3, l)+J‘9e(P’x’)’7 ’:’l)]"'fJ do

el, enfin, la relation supplémentaire.

(V) Huconiot, Mémoire sur la propagation du mouvement dans un fluide indéfint
(Journal de Mathématiques pures et appliquées, 4° série, t. 111, 1887, p. 188, et L. 1V,
1888, p. 153).

(2) Sur les ondes longitudinales et transversales dans les fluides parfaits (Comptes
rendus, t. CGXXXII, 3 juin rgor1, p. 1303).
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Imaginons qu’une surface s soil onde persistante du premier ordre pour u,
¢, w. Il existera un vecteur (/,, m,, n,y) tel que, sur la surface =,

d(uy—uy) o(ug—uy) o(uy—uwy) d(uy—uy) | . .
T_alo, —07_—-@10, d—;—}'lo, ———d—z*-—-—i—JtDl =0,
(2[1) ?Lﬁ;;-—vdzamo, (_)&b;___m:ﬁmo, o_(_vz_d_z._ol_):a/mo, (2_(_(’20_;—‘)1)_‘_)(,”10:0’
0 (wy— wy) d(wy— twy) 0 (wy— wy) 0 (wy— 1vy) "
L P A T S

Moyennant ces égalités, on a, sur la surface o,

duy | O 0 04
at dx T oy dz
. <du, du, du, du,

—_ . P - —_— —_— 4= - —-;)t: y
o ug Jy —+ w dz) (2 + By +yw A

% —l—ud"2 —f—vf)—v—2 —I—WQ2
J¢ ox oy Ik
99,
03

(212)

-+ W

(2 0 o
at Jdx

+ u—— +v0y >:(au+@v+yw—%)mo,

dwy 0wy 0w, 0w,
ot "9z T 0y 3

ow, dw, ow, owy\ .
_<—()7 U +0W +w-—d?>~(ocu+ﬁv+yw——gt,)n,,.

D’aprés ce que nous avons vu au Chapitre I, § 11, la surface o, au travers de
laquelle les composantes de la vitesse varient d’une maniére continue, est onde au
moins du premier ordre pour la pression II et la densité p; il existe donc deux
-grandeurs P,, R, telles que I'on ait, en tout point de la surface o,

(I, —1I,) oL, — 10, o(T,—1I,)
o =ap, X Rlgp, _(#_‘_:),PO,
*1%) O(, — II

9(p2—p1) —aR,, 2P—p) —BR,, d(pa—p1) — R,
(214) dy Jz

d(Pz‘Pl) _
—d't—— —+ Q‘GRO.—_ 0.

Moyennant les égalités (211) et (214), 1'équation de continuité (210) montre
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que ’on a, en tout point de la surface s,
(213) (2w +Bo 4w — ) Ry+ p(aly+ Bmy+ yn,) =o.

En traversant la surface ¢, les grandeurs X,, Y., Z. varient certainement d’une
maniére continue; il est aisé de voir qu’il en est de méme de X;, Y;, Z;; si, en
effet, on se reporte a la définition de la fonction ©;(R, z, y, z, ¢t) donnée en la
Ir¢ Partie, Chapitre 1, § 4, on voit que X;, Y;, Z; s’obtiennent en remplagant R
a0 a0 a0

par p(x, ¥, 5, t) dans — oz’ "oy 0 o d’aprés ce qui a été supposé en
T C a0 00 A
cet endroit, la‘continuité de p assure la continuité de — oz T oy T 05

Les égalités (209), (212), (213) nous montrent alors que I’on a, en tout point
de la surface s,
Pooo+p(ou + By 4+ yw—90){, =o,
(216) PiB+plau+ B¢+ yw—d)ym,=o,
Py +p(au+ By +yow—I0)n, —o.

Les égalités (215) et (216) sont vraies aussi bien pour les fluides compressibles
que pour les fluides incompressibles, et cela quelle que soit la forme de la relation
supplémentaire. Discutons, tout d’abord, les conséquences de ces égalités.

Multiplions respectivement les égalités (216) par «, 3, y et ajoutons membre a
membre les égalités oblenues; nous trouvons I’égalité

(217) Po+p(ou+Be+yw—30) (aly+ Bmy+ yny,) =o.

D’autre part, multiplions respectivement les égalités (216) par /,, m,, n, et
ajoutons membre & membre les résultats obtenus. Nous trouvons I'égalité

(218)  Po(aly+Bmi+yny)+p(au+ B¢ +yw—I0)(If+mi+ni)=o,
Parvenus & ce point, nous distinguerons deux cas :

Premier cas. — L'onde, du premier ordre par rapport aux composantes u,
¢, w de la vitesse, est d’ordre supérieur au premier pour la densité p :

(219) R,=o.

Ce cas est évidemment le seul qui puisse se présenteren un fluide incompres-
sible.

Les égalités (219) et (215) donnent
(220) aly+ Bmy+yn,=o.

Selon la dénomination introduite au Chapitre I, § 5, L’oNDE EST TRANSVERSALE.
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L’égalité (217) donne alors |
. (221) P, : o.
L’onde est d’ordre supérieur au premier par rapport & la pression.
Enfin, I’égalité (218) donne
(222) o = ou+ Bv + yo.

Les deux masses fluides que sépare U'onde considérée demeurent les mémes
pendant toute la durée du mouvement.

Moyennant les trois égalités (215), (217), (218), il est trés facile de voir que
chacune des quatre égalités (219), (220), (221), (222) a pour conséquence les
trois autres. Donc, chacune des quatre propositions que nous venons d’énoncer

entraine les trois autres.

Devxikme cas. — L'onde, du premier ordre par rapport aux composantes u,
0, w dela vitesse, est aussi dupremier ordrepar rapport a la densité o.

Dans ce cas, on n’a pas ’égalité (219) et, partant, on ne peut avoir aucune des
trois égalités (220), (221), (222); en particulier, onn’a pas

(221) P,=o.

L’onde considérée est certainement du premier ordre par rapport a la

pression.
Comme on n’a ni I'égalité (221), ni I'égalité (222), les égalités (216) donnent

(223)

ly m, ny
o

Selon la terminologie définie au Chapitre II, § 3, L’0NDE cONSIDEREE EST LONGITU-
DINALE.

Les égalités (215) et (217) donnent
[(aw+Bo+yw—2I0)2R—Py](aly+ Bme+ yn,) =o.

Dans le cas actuel, ot aucune des égalités (219), (220), (221) n’est vérifiée,
cette égalité devient

(224) (Vo —au—PBe—yw)= ::0.
0

Elle fait connaitre la valeur de 9%.
Fac. de T., 2¢ S., 1V. 20
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. , . P, . .
Pour pousser plus loin et délerminer la valeur de B_O’ il faut faire usage de
0

Pégalité (198) (ce qui est assurément permis, puisque ce second cas ne peul se
rencontrer qu’en un fluide compressible) et de la relation supplémentaire.

En tenant compte de la définition deJ, donnée par ’égalité (200), I'égalité (198)
nous donne

ol p p) PLOT

5 — — (<
(225) gz or TP g (T ) =0 5 e 5 =

L'onde considérée étant au moins du premier ordre pour la température T
(Chapitre I, § 11), il existe une grandeur 6, telle qu’en tout point de la surface s

AT —T) _ o
-0

AT, —T,)
dx - 50

(226) oy =P8 T =

0*L . .\ . .
Au passage de la surface o, JooT vare d’une maniére continue comme p et T;
p

selon les principes posés en lal'® Partie, Chapitre I, § 4, il en est de méme de <,
()0‘9' ()Q/%' . I3 A " ’

‘()ol’ dxl; enfin, il en est assurément de méme de A\, et de ses dérivées par-
tielles, partant de J. Dés lors, les égalités (213), (214), (225), (226) donnent,
en tout point de la surface o, la premiére des égalités

(PO— JR,— p* ES‘TCT@*)) 2= o,

0°¢
(PO——JR pdpdl@>p o,

01t
(Po— IR, — WT@°> y=o.

Les deux derniéres s'établissent d’'une maniére analogue. Ces égalités donnent

. 0°¢C
(227) P,— IR, — d 0,10 =o.

Parvenus a ce point, nous devons scinder notre deuxiéme cas :

A. L FLUIDE EST BON CONDUCTEUR DE LA CHALEUR. — Dans ce cas, selon des
considérations exposées au Chapitre III, § 1, considérations qui s’appliquent
aussi bien aux fluides parfaits qu’aux fluides visqueux, on a

(154) 0,=o.

Londe est d’ordre supéricur au premier par rapport a la température.
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L’égalité (227) donne alors

en sorte que I'égalité (224) devient
(228) (o —au—PBe—yw)r=]J.

Elle nous enseigne qu’une onde longitudinale du premier ordre ne peut per-
sister qu’au sein d’un fluide ot la condition (203) est vérifiée. '
Selon I’égalité (201), I'égalité (228) peut encore s’écrire

dp
a1l
B LE FLUIDE EST MAUVAIS CONDUCTEUR DE LA CHALEUR. — Dans le temps dl

chaque élément dw dégage une quantité de chaleur égale a 0. Selon l’egalue (90)
de la I*¢ Partie, cette condition s’écrit

(02 ) ﬂ(d'f_*.d'l‘ _l_()_l_‘p...l_gz‘p —_— ﬁ(%.‘.?i.'-gg —
229 a1 dx dy Js p()p dT\ox ~ dy = ds/)

(228 bis) (% —au—By —yw)i=

Selon les égalités (211) et (226), elle nous enseigne que I'on a, en tout point
de la surface s,

0*¢ 0*¢
230 “(au oy —I6)0,—p ——(aly+ Bm,—+yn,) = o.
( ) dT( +@ 7 ) p()p()f( o PMy Y 0)
Comme on n’a certainement ni I'égalité (220), niI'égalité (222), ©, a une valeur
finie et différente de o. L’onde considérée est assurément du premier ordre
par rapport & la température.
Les égalités (215) et (230) donnent

g2 0? ~
<dl€@° dpA_gTBO) (e +Bo +yw— o) =o,

ou bien, puisque I'égalité (222) n’est siirement pas vérifiée,

J%¢ J9*¢

}),Tz@()—i— Ep—d_'fR":O'

L’égalité (227) devient alors
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L’égalité (224) devient donc
(5]
P 9 0T
T
PIE

(231) (Dl'gwocu—(iv—ycv)ﬁ:‘J——

JaT?
le second membre de D'égalité (231) est donc certainement positif, partout ot la

Selon le postulatum de Helmholtz [inégalité (196)], est assurément négatif,

condition (203) est vérifiée.
En vertu de I'égalité (207), 'égalité (231) peut s’écrire
I

(@),

En vertu de I'égalité (208), I'égalité (232) devient

(232) (W —au—Be—yw)=

(233) (W —au—By—yw)= ! (J(Io,'l,x,,}',z,t).

<;i_¥[> ¢(p, T)
T

L’égalité (154) s’applique, au sein d’un fluide bon conducteur, aussi bien a une

onde transversale qu'a une onde longitudinale; il en est de méme de I'égalité (227),
sile fluide est mauvais conducteur et compressible; mais, dans ce cas, on a, en

tout point d’une onde transversale,

P,=o, R,=o,

en sorte que 1’égalité (227) redonne
('5—/| ) 0,=o.

On peut donc compléter ainsi qu'il suit ce que nous savons déja des onDEs
P )

TRANSVERSALES

Au sein d’un fluide bon conducteur, ou bien au sein d’un fluide com-
pressible et mauvais conducteur, une onde transversale du premier ordre par
rapport & u, v, w est d’ordre supérieur a 1 par rapport a T. Au sein d’un
Sluide incompressible et mauvais conducteur, elle peut étre du premier ordre

par rapport a T.

Les diverses propositions que nous venons de démontrer touchant les ondes du
premier ordre par rapport aux composantes u, ¢, w de la vitesse s'établissent sans
peine pour les ondes d’ordre supérieur au premier; les méthodes a suivre sont
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analogues a celles dont nous avons fait usage dans le cas des fluides visqueux,
mais elles sont d’un emploi beaucoup plus simple. Nous laissons au lecteur le
soin de les développer et nous nous bornerons a énoncer les théorémes généraux

que voici :

Au sein d’un fluide parfait, soumis a des actions newtoniennes ou non, il
peut persister en général deux sortes d’onde d’ordre n par rapport aux com-
posantes u, v, w de la vitesse (n étant au moins égal a 1). La premiére sorte
est seule possible st le fluide est incompressible :

1° DEs oNDEs TrANSVERsALEs. — Ces ondes sont au moins d’ordre (n + 1) par
rapport & la densité et a la pression. Les deux masses fluides que sépare une
telle onde sont les mémes pendant toute la durée du mouvement, en sorte que
la vitesse du déplacement de ’onde est donnée par la formule

(222) Wo—oau—+pPoe+yw.

Enfin cette onde est au moins d’ordre (n—+1) par rapport a'l', & moins
que le fluide ne soit incompressible et mauvais conducteur, cas auquel elle

eut étre d’ordre n par rapport a T.
P P 'Pp

2° Dgs onpEs LoNciTUDINALES. — Ces ondes sont aussi d’ordre n pour la
densité et pour la pression.

Au sein d’un fluide soN conNpUCTEUR, une telle onde est aw moins d’ordre
(n 1) par rapport a la température T et sa vitesse de déplacement est
donnée par la formule

(228 bis) (Jc—au——ﬁv—-)}w)z_—-_——l .

dp
dll )¢
Au sein d’un fluide MAUVAIS cONDUCTEUR, une telle onde est d’ordre n par
rapport & la température T et sa vitesse de déplacement est donnée par
la formule

I C(p, T, x, ¥, 5, t)
dp c(p, T)
dll /¢

Cette derniére formule est la généralisation de celle que Laplace a donnée

(233) (o —au—PBe—yw)=

pour la vitesse de propagation du son dans lair.

On remarquera ’analogie qui existe entre les résultats que nous venons d’ob-
tenir pour les ondes d’ordre au moins égal a 1 par rapport & u, ¢, w et les résultats
qui ont été énoncés, a la fin du § 8 et aux §§ 9 et 10 du Chapitre 1, pour les sur-
faces de discontinuité ou ondes d’ordre o par rapport a u, ¢, ¢v.
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§ 3. — La mérnope pE LicrancE. — CONSIDERATIONS CINEMATIQUES.

Les problémes relatifs aux fluides parfaits peavent étre traités par une
méthode, distincte de la précédente, que I’on nomme habituellement méthode
de Lagrange. Vu I'importance des résultats que nous venons d’obtenir par la
méthode dite d’Euler, nous allons chercher a les retrouver par la méthode
dite de Lagrange.

Nous allons tout d’abord rappeler quelques formules, de nature cinématique,
obtenues par cette méthode.

Dans la méthode de Lagrange, chaque point matériel est déterminé par ses
coordonnées «, b, ¢, 4 un instant ¢, choisi une fois pour toutes; les coordonnées
x, y,s de ce méme point matériel & I'instant ¢ sont des fonclions continues et
uniformes de @, b, ¢, ¢ :

x=ux(a, b,c, t),
(234) Y =y (a b, t),
' ? =3 (a, b,c,t).

Soit f(a, b, ¢, t) une fonction des variables «, b, c, ¢; nous conviendrons d’em-
ployer les notations suivantes :

df = d‘—fda—}— %db—l— g{dc—i— g———{dt,

Af_dfda—&— fdb—t—g—{dc.
Selon ces notations,
da = Aa, db = Ab, de = Ac.

Ces notations nous permetlent d’écrire, en vertu des égalités (234
P ) g ’

Az — J dx dx

X
TAG+%Ab+%AC’
ax dy dy ay
(235) Ay = 9a Aa+ﬁAb+chc,
_ 03 dz 0z
As d Aa—l—()bAb—F&Ac.
Posons
0z 0z Iz
da 0db Oc
(236) ©(a, b, ¢ty =D& 13) _ |0y dy Oy

D(a, b,c) da db dc

- - -~

< < <

da 0b OJdc
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et résolvons les équations (2335) par rapport & Ae, Ab, Ac; nous trouverons, en
faisant usage de la notation des déterminants fonctionnels,

_ D(yyz)Ax+ D(s 2) + D (x, y)A:’

® A= 5 DG, )Y T D, 0
ol _ D(y, =) D(s,2), D(z,y),_
(237) (DAb_D(c,a)A$+D(c,a)A) +l)(a, b)A“’
__D(y,5) D(s, ) D(x, y),_
O R e T e A T R

Supposons que, résolvant les égalités (234) par rapport & @, b, ¢, on exprime
ces quantités en fonctions de z, y, 5, ¢ :
a=a(x,y,5,t),
(238) b=">b(z,y,5t),

c=c(x,y,5,¢).
Les égalités (237) nous donneront immédiatement

da 1 D(y,s) da 1 D(s,x) da 1 D(x,y)

dx — ® D(b, ¢y’ dy — ® Db, c)’ 0z ®D(b, ¢)

(239) db 1« D(y,3) db _ 1 D(s,2) b 1 D(2,y)
>99 oz~ ® D(c, a) dy — ® D(c, a)’ dz — ® D(ec, a)’
@_ 1 D(y,s de 1 D(s52) de D(x,y).

oz — ® D(a, b) dy — ® D(a,b)’ ds  ® D(a, b)

Considérons une certaine surface S(¢), variable avec le temps ¢, tracée dans

I'espace des x, y, 5. Son équation est
(240) ®(x, y,z,t) =o.

Si, dans celte égalité, on remplace x,y, s par leurs expressions (234), on
obtient une nouvelle équation

(241) o(a,b,c,t)=o,

qui est '’équation d’une surface s(¢), variable avec le temps ¢ et tracée dans
I'espace des a, b, c. Les deux surfaces S(¢), s(¢) sont dites correspondantes. Les
égalités (234) ou les égalités équivalentes (238) font correspondre point par
point la surface S(¢) et la surface s(¢).

En un point M de la surface S(¢), la normale a pour cosinus directeurs =, %, v
et on a

(262) e B v
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Au point m, correspondant du point M, la surface s(¢) admet une normale
dont %, u, v sont les cosinus directeurs, et ’'on a

v

(243) LS :
Je

En vertu des égalités (238), les égalités (242) peuvent s'écrire

o

do da  d9 db  do dc

da 9z 96 ax ¢ oz
_ 5
0o 0a 95 0 05 0
da dy = 0db ()y+()_c—0y

— 14 .
T doda  do db  do de

dad: T obos T oc o=

En vertu des égalités (239) et (243), ces égalités prennent la forme

_B_

Lh a_2_7
(244) L=M—N

ol 'on a posé

_D(y, s) D(y, %) D(y, s).
L=5& " pie ot Do by ”

s _ D(s, 2) D(s, z) D(z,x)\
(243) M=5G o0 b ot Dia b5 ”

. D(zy) D(x,y) D(x,y).
N=0G o' D o T n”

\

Les formules (244) et (245) permettent de calculer o, 3, v lorsque 1l'on
connait A, u, v.

La surface S(¢) occupe la position S a linstant ¢ (fig. 15) et la position S' a
Uinstant (¢ + dt) dans I'espace des z, y, 5. Les points malériels qui, a Iinstant
(t + dt), se trouvent sur la surface S/, se trouvaient, a I'instant ¢, sur la sur-
face S.

A la surface S correspond, dans I'espace des a, b, ¢, une surface s. Aux deux
surfaces §', S/, lieux, a des instants différents, des mémes points matériels, cor-
" respond, dans ’espace des @, b, ¢, une méme surface s'.

Soient M un point de la surface S et m le point correspondant de la surface s.
La distance normale du point M a la surface S/, comptée positivement dans la
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direction dont a, 3,y sont les cosinus directeurs, sera désignée par 3% d¢. La
distance normale dua point m a la surface s', comptée positivement dans la direc-

tion dont ), u, v sont les cosinus directeurs, sera désignée par nd¢. Cherchons
quelle relation existe entre n et 9%.

Sur la surface s', prenons un point p voisin du point m; si a, b, ¢ sont les
coordonnées du point m, a - Aa, b+ Ab, ¢ Ac seront celles du point p. La
projection du segment mp sur la direction dont 2, u, v sont les cosinus directeurs
sera précisément ndt. On a donc

(246) ndt=yAa~+ pAb—+vAc.

Au point p correspond un point P sur la surface S et un point P, sur la
surface S,.
Les composantes de segment MP, sont Az, Ay, Az, ces quantités étant lides a
Aa,Ab, Ac par les égalilés (235) ou, ce qui revient au méme, par les égalités (237).
Jx s
Quant au segment P, P, ses composantes sont — d, % dt, 93 dt.
a¢ ot Jat
La projection du contour M P, P sur la direction dont «, B, sont les cosinus
directeurs doit donner précisément 9% d¢. On a donc
dx ay 0s

(247) acdt:<am+§$ +757>dt—l—och—1'—r3Ay+yA:..

En vertu des égalités (237) et (245), I'égalité (246) peut s'écrire

LAx +~MAy+NAs

4 —
(248) ndt= )

En vertu des égalités (244), I'égalité (247) peut s’écrire

(249)

o0z .dy 05\* . (LAz+MAy -+ NAs)
(9(, ad[ BBZ_/(),) de = L+ M2+ N® '
Iac. de T., 2¢ S., 1V. 21
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Les égalités (248) et (249) donnent

. " dox Jdv S0\ ®?2 \
(250) (%= =% ~ % ~7%) = D

\

Cette formule essentielle est due & Hugoniot (*).
La masse du fluide qu’a l'instant ¢ contient une surface fermée S, tracée dans

I'espace des x, y, 5, a pour valeur

fffp(x,y,z,t)dxdyd;,

I'intégrale s’étendant au volume qu’enclét la surface S. Par le changement de
variables que représentent les équations (234), cette intégrale devient

(251) ff p(a,b,c,t)y®(a,b,c,t)dadbde,

I'intégrale s’étendant au volume enclos par la surface s, qui correspond i la sur-
face S dans I’espace des a, b, c.

Supposons que la premiére intégrale exprime la masse invariable d’une partie
du fluide toujours identique & elle-méme. La surface S variera avec ¢, mais la
surface s demeurera invariable, et il en devra éire de méme de I'intégrale (251).

Donc lintégrale (251), étendue au volume que renferme une surface inva-
riable quelconque s, tracée dans I’espace des a, b, ¢, garde une valear indépen-
dante de ¢. 1l faut et il suffit pour cela que 1'on ait

(252) (%[p(a, byc,t)®(a, b,c, t)] =o.

Cette égalité bien connue représente I'équation de continuité dans le systeme
dit de Lagrange.
On peut I'écrire plus explicitement

do(a,b,c,t)
Jt

+o(a b, c’t)dda(a, b, c, t) Y

®(a, b,c,t) 9t

ou bien, en vertu de 1’égalité (236), qui définit ®(a, b, ¢, t),

d_p_+D(y,z) 2z +D(‘y,z) JPx +D()’,z) ?x
at D(b,c) dadt = D(c,a) dbat  D(a, b) dc ot
D(sz,2) oy  D(s,2) &*y | D(s 2) 9%y

T D(8,¢) dadt " D(c, a) 96t T D(a, b) de ot
D(x,y) 0%z _}_D(x,y) 0%z _}_D(x,_y) 0%z
D(b,c) daot '~ D(c, a) bt~ D(a, b) dcdt

(233) @

= 0.

(1) Hueoxtor, Mémoire sur la propagation du mouvement dans un fluide indéfini,
seconde Partiec (Journal de Mathématiques, 4° série, t. IV, 1888, p. 153).



RECHERCHES SUR L’ OYDRODYNAMIQUE.

§ 4. — ProrAcATION DES ONDES AU SEIN DES FLUIDES PARFAITS.

Ewmrrot pE LA METHODE DE LAGRANGE.

Il est clair que nous avons

ox J L
(254) U= 5o =S o— I
02;1’ 02 02:
(235) le= a0 = dz{’ LS E

En vertu des égalités (255) et en supposant le fluide parfait, ce qui entraine

[/ == qy—0, q:=—=0,

les équations générales de I'Hydrodynamique [premiére Partie, égalité (74)]

deviennent
oll Rxr
Jz —p (X4 X¢) + OW — 0,
oIl %y
5 A .Y P L —
(2')6) (}y .O(YI v wYc) 4 P ()lz — 0,
oIl . 0*s
d—E—P(L‘ "FZ(_)—‘FP—()}?——O
On a, d’ailleurs,
ﬂ]*dﬂdha JIl 9b oIl ()c.
Jdr — dd dx 9v dx T ¢ ox

Cette égalité, jointe & la premiére des égalités (239), transforme la premiére des
égalités (256) en la premiére des égalités

Dy, Yol D(y,=s)dll  D(y, s) ol

—0 ® <X,+ XU—— ()_J‘> == 0,

D(b,¢) da " D(c,a)y 06 " D{(a, b) de o
- D(s,2) ol  D(s,2)dll  D(z, ) oll N a*y\
(257) Do, ¢) 92 * Die,a) b D(a,b) JE_P@<Y" P Yo W) =
D(z,y)oll  D(x,y) ol  D(z,y) oll . s\
D(b,c) da " D(c,a) 9b ~ D(a,b) 53“9(0<Z‘+Z”_W> =

Les deux autres se démontrent d'une maniére analogue.
Supposons qu’une surface s, mobile avec ¢ et tracée dans I'espace des «, b, c,

. . dx
soit onde du second ordre pour z, y, z et, partant, du premier ordre pour ==,

a¢
dy 0z ,
TR T A cette surface s correspondra, dans I'espace des x, ¥, z, une surface S,
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mobile avec ¢ et qui sera onde du premier ordre pour u, ¢, w [selon les éga-
lités (254)]. Déslors, d’aprés ce que nous avons vu au Chapitre I, § 11, la surface S
sera onde au moins du premier ordre pour p et II, et, visiblement, il en sera
de méme pour la surface s.

Nous pourrons donc, d'aprés ce qui a été dit au Chapitre II, trouver, en chaque
point de la surface s, un vecteur f, g, & et deux grandeurs € et &, tels que I'on

ait

go“;f;;%@:m e S At
e R

(d”zzzf”—m T il e O e B
(239) ——d(pzd;"') =2a, ———‘”"’Zb_p') =pd, —_()(P?d:p‘) =R, ———0(9207"‘) +nd=o,
(260) 0(1120211'):)#;‘, ()(IIZZH')——;L(J?, ()(sz;"'):v‘l‘, %}H—')%—n‘f:().

La surface s étant onde du second ordre pour z, y, 5, les dérivées partielles du
premier ordre de ces quantités varient d’'une maniére continue en traversant celle
surface, et il en est de méme de ® et de lous ses mineurs. Dés lors, les éga-
lités (253), (258) et (259), jointes aux égalités (245), montrent que l'on a, en
tout point de la surface s,

(261) @R n—p(Lf+Mg+ NA)=o0.

D’aprés ce que nous avons vu en la premiére Partie, Chapitre I, § 4, X, Y, Z,,
X, Yi, Z; varient d’une maniére continue lorsqu’on traverse la surface S et, par-
tant, la surface s. Dés lors, les égalités (257), (258) et (260), jointes aux éga-
lités (245), montrent que 'on a, en tout point de la surface s, les trois égalités

‘ CL —p®nf =o,
(262) ®M —pPdng =o,
? EN —p®nh=o.
De ces égalités (262) on tire sans peine les deux égalités
(263) ®Lf+Mg+NL)y—p®n(f*+ g*+ 1*)=o,
(264) QL2+M2+N*) —p®n(Lf+Mg+Nhi)=o.

Ici, distinguons deux cas :
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Presien cas. — Londe est dordre supérieur a 1 par rapport a la densité g :
(265) R =o.
L’égalité (261) donne alors
(266) Lf+Mg+Nh=o.

Interprétons ce résultat.
En multipliant les deux membres de 1’égalité (266) par A el tenant comple des

égalités (258), (254) et (244), nous trouvons la premiére des égalités

0(uy;— uy) d(9y— ¢4) d(wy— wy)
*ga TP T g da . ”

d(uy— uy) d(vy— 94) O(wy— wy)
Cgp TR YT g =9

0.

d(uy— uy) d(va— ¢y) d(wy—w)
« dc + 53 dc - Jde -

Les deux autres se démontrent d’une maniére analogue. Multiplions respective=
p

ISR T da db dc . .
ment ces égalités par 9z’ 92" 95 & ajoutons-les membre & membre; nous trou-

vons I’égalité

d(uy— uy) A(va— ¢q) ) d(wy— w,)
* dw P dx - dx =0

qui, si I'on se reporte aux égalités (211), devient la premiére des égalités

(aly+Bmo+yny)oe=o,
(aly+Bmy+yny)B=o,
(aly+ Bmy—+yn,)y =o.

Les deux autres se démontrent d’une maniére analogue. Ces égalités montrent

que 'on a, en tout point de la surface S,
(220) aly+ Bmy+ yny=o.

L’égalité (266), vérifiée en tout point de la surface s, exprime donc que la sur-
face S est une onde TRANSVERSALE.
Moyennant I'égalité (266), 1'égalité (264) devient

(267) $=o.
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L’onde considérée est d’ordre supérieur au premier par rapport a la
pression 1II.

p®, qui est la densité du fluide al'instant ¢, ne peut étre nul; les égalités (263)
et (266) donunent donc

(268) n=o.

La surface s est immobile dans l’espace des a, b, c; done, dans son mouye-
ment, la surface S sépare toujours Uune de I’autre les deux mémes masses

Sluides.

D’ailleurs, en vertu de I'égalité (250) et des égalités (254), I'égalité (268)
donne

(222) I — o+ Be A+ yw=o.

On voit sans peine, par les égalités (261), (263) et (264), que chacune des éga-
lités (265), (266), (267) et (268) entraine les Lrois autres; chacun des quatre
caractéres que nous venons d’énumérer entraine les trois autres.

On retrouve ainsi tout ce que nous avons démontré, au §2, au sujet des ondes

transversales.

Seconp cas. — L'onde est effectivement du premier ordre par rapport a la
densité p.

On n’a pas
(265) R =o.

Dés lors, on ne peut avoir 'égalité (267), en sorte que L'onde est effective-
ment du premier ordre par rapport a la pression Il.

On ne peut avoir non plus I'égalité (268), et, comme o® est essentiellement
positif, les égalités (262) donnent

f

z| =

IS

(269)

i AN

Interprétons ces relations.
Multiplions les trois numérateurs par

da b dc

Yoz TPOE TV 0x
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et tenons compte des égalités (244); les relations (269) deviendront
(S S s )
= ! <)‘gd_" +Hgd_b +~,gﬁ>
B dx dx dx
ab dc>

[ da
—;<l/l5;T“/15;+u/L0—x .

En vertu des égalités (258) et (254), ces égalités donnent

1 d(uy— uy) 1 9(0s—¢y) 1 d(wg—-wi)‘
P dx B dx Ty dx

Celles-ci, en vertu des égalités (211), donnent la premiére ligne du groupe suivant

aly, am, an,

o BTy ’
%:ﬁmozﬁno,
o 6 7
vh_yme v
o g v

Les deux autres lignes s’obtiennent d’une maniére analogue. Ce groupe d’éga-
lités équivaut aux égalités

_omy, _ n

(223) ___B___7

R |~

Les égalités (269), vérifiées en tout point de la surface s, expriment donc que
la surface S est une onde LONGITUDINALE.
Les égalités (261) et (264) donnent

L*+ M?*+ N2 @
Qe - .,
(270) TETTeT R

Transformons cette égalité.

On a

0<H~2—H1):0(H2—H1)Qg+d(ﬂs—ﬂ1)ég+d(ﬂ2—ﬂ1)d_c

dx da ox db ox de Jdx

ou bien, en vertu des égalités (213), (239), (245) et (260), la premiére des éga-
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lités
L® M@
aPo="350  BPe=5

Les deux autres se démontrent d’une maniére analogue.
On en tire, en vertu des égalités (244),

VL2 + M?+ N2,

(271) P,=

o=

Une démonstration semblable donne
R
(272) Ro_—_w‘/Lz—i—Ml—;-N’,

le radical ayant le méme signe que dans I’égalité (271).
Des égalités (271) et (272) on tire

® P
Les égalités (250), (254), (270) et (273) donnent alors I’égalité

P
(224) (0 —ou—Br—yw):= L.
R,
Nous avons ainsi retrouvé, par la méthode de Lagrange, tous les résultats qui
avaient été obtenus, au § 2, par la méthode d'Euler.

CONCLUSION DE LA SECONDE PARTIE.

En terminant la premiére Partie de ces recherches, nous avons insisté sur le
caractére extrémement limité et particulier des cas ou le mouvement des fluides
donne prise aux méthodes ordinaires de ’'Hydrodynamique.

On pouvait penser que ces restrictions, qui pésent sur la plupart des théorémes
dits générauz de 'Hydrodynamique, viendraient également borner I'étude de la
propagation des ondes; en fait, Hugoniot et M. Hadamard (') n’ont abordé cette
étude qu’en supposant 'existence de la fonction A définie en la premiére Partie,
Chapitre 111, § 2; en oulre, ils ont supposé que les actions étaient newtoniennes
et que le fluide n’était pas visqueux.

(1) Cf. P. AepeLL, Traité de Mécanique, t. 111, p. 337.
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Ces restrictions, heureusement, n’influent pas sur le probléme de la propaga-
tion des ondes persistantes; ce probléme peut étre traité avec une généralité qui
n’a d’autre limite que la généralité méme des équations fondamentales de 'Hy-
drodynamique; on peut dire que la solution compléte que nous avons donnée
de ce probléme constitue LE SEUL THEOREME VRAIMENT GENERAL que ['on ait
obtenu en Hydrodynamique. En particulier, nous avons obtenu un théoréme
qui est exact pour tous les fluides possibles, visqueux ou non visqueux, conducteurs
ou non conducteurs; seuls, les fluides qui sont a la fois visqueux, incompres-
sibles et bons conducteurs de la chaleur en sont exclus; ce théoréme est
le suivant :

Ln tout fluide, on peut observer des ondes, d’ordre quelconque, qui sé-
parent sans cesse les deux mémes masses fluides et, partant, ne se propagent

pas.’

Parmi les phénoménes qui manifestent nettement de semblables ondes, on peut
citer, outre les cas anciennement connus des tourbillons et des jets, la propaga-
tion de la chaleur par convection au sein d’'une masse liquide, si bien étudiée, au
point de vue expérimental, par M. Bénard ('); les curieuses cellules dont ce
physicicn a observé la formation trouvent leur explication immédiate dans le
théoréme précédent.

1) H. BENARD, Journal de Physique, 3° série, t. IX, 1900, p. 5313; t. X, 1901, p. 254.
) ysiq 900, | I
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