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SUR

LA CONNEXION LINEAIRE

DE QUELQUES SURFACES ALGEBRIQUES,

Par M. v’asse H. LACAZE,

Agrégé de I'Université.

INTRODUCTION.

Dans une Note parue aux Comptes rendus (4 septembre 1899), M. Arthur
Berry annoncait qu'il avait déterminé toutes les surfaces du quatriéme degré qui
possédent des intégrales de différentielles totales de premiére espéce, en em-
ployant la méthode donnée par M. Picard ('). Cette méthode consiste a déter-
miner la surface F(z, y, 5) = o, de degré m, de fagon que 1’on puisse trouver
quatre polynomes 8(z, y, z), d'ordre m — 3, salisfaisant, en premier lieu, aux
conditions suivantes :

JF JoF JoF JoF
0|52+628—f+930—z +64—Jt———0, (

99, 96, 99, . 99 _

oz "oy T T T
ou ¢ représente la variable d’homogénéité.

Au mois de janvier 1goo, M. .de Franchis (2) publiait un Mémoire sur les sur-
faces du quatriéme degré dont le genre géométrique est nul, et il remarquait, a
la fin de ce Mémoire, que M. Berry avait certainement omis de citer une surface
du quatriéme degré parmi celles qui admettent des intégrales de différentielles
totales de premiére espéce.

J’ai voulu alors reprendre cette question 3 un autre point de vue et chercher
Pordre de connexion linéaire des surfaces du quatriéme degré, c’est-a-dire le

(Y) Théorie des fonctions algébriques de deux wvariables indépendantes, t. 1,
Chap. V.

(%) M. pE Francuis, Le superficie irrazionali dv 4° ordine di genere geometrico-
superficiale nullo (Rendiconti del Circolo matematico di Palermo, t. XIV).
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nombre des intégrales de différentielles totales de premiére et de seconde espéce
attachées a ces surfaces.

Je commence par rappeler la notion de cycle linéaire d’une surface algébrique,
ainsi que la méthode pour trouver le nombre de cycles linéaires distincts d’une
telle surface, d’aprés les idées de M. Picard, telles qu’elles sont exposées dans le

Tome I de sa Théorie des fonctions algébriques de deux variables indépen-
dantes, Chap. Il et IV,

J'indique ensuite comment, étant donnée une surface de la forme
2=f(z, y),

on peut établir certaines propositions permettant, dans un trés grand nombre de
cas, de déterminer trés simplement I’ordre de connexion linéaire de cette surface.
Japplique ces principes aux surfaces particuliéres pour lesquelles f est un poly-
nome du sixiéme ou du huitiéme degré en x et y. Je remarque aussi que les sur-
faces du quatriéme degré admettant des cycles finis, c’est-a-dire des cycles non
équivalents a zéro, sont représentables sur un cone cubique, et je détermine ces
surfaces par une voie différente de celle suivie par M. de Franchis.

= 0 GO a—

CHAPITRE 1.

I. — CyYCLES LINEAIRES D'UNE SURFACE ALGEBRIQUE. GE& NERALITES.
1. Soit une relation algébrique
(1) F(%)’,Z)Zo

entre trois variables complexes z, y, z, définissant z comme fonction de x et y;
en employant le langage géométrique, nous dirons que cette relation définit une
surface algébrique F.

A cette surface F on peut faire correspondre birationnellement une surface ®
n’ayant aucun point multiple et située dans un espace a cinq dimensions ('). Si,
par analogie avec la théorie des fonctions d’une variable complexe, on représente
sur une sphére chaque coordonnée complexe de I’espace a cinq dimensions, la

(1) E. Picarp, Comptes rendus, p. 532-538; 15 mars 1897. — Théorie des fonctions
algébriques de deux variables indépendantes, t. 1, p. 82.
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surface @ définira une variété fermée a quatre dimensions réelles, située tout
entiére a distance finie et ne se coupant pas elle-méme.

Revenant & la relation (1), nous pouvons, dans I’espace & quatre dimensions,
qui est le champ des variables z et y, considérer une courbe fermée C telle que,
en partant d’un point (x,, y,) de cette courbe avec une valeur initiale z,, on
revienne au point de départ avec la méme valeur de 5. La courbe C sera une
variété ou continuum a une dimension réelle; nous supposerons que cette courbe
ne passe par aucun point critique de la variable z regardée comme fonction de 2
et . Une courbe telle que C est un ¢ycle linéaire de la surface F.

A chaque cycle linéaire C de F correspondent des courbes fermées sur F et
sur ®. Deux cycles linéaires sont considérés comme équivalents si I'on peut
passer de I'un a 'autre par une déformation continue. Un cycle sera dit nul (')
si 'on peut le déformer d’une maniére continue, de facon que la courbe fermée
correspondante tracée sur ® se réduise & un point.

On démontre qu’un cycle infiniment petit autour d’un point simple de la sur-
face F est un cycle nul.

2. A chacun des cycles distincts de F correspondra dans ®, comme nous
P’avons déja dit, une courbe fermée et, par ces courbes fermées, on ne pourra pas
[aire passer un espace a deux dimensions dont elles limitent une partie, car, s’il
en élait ainsi, ces courbes fermées et, par suite, les cycles se raméneraient 3 un
nombre moindre, c’est-a-dire qu’ils ne seraient pas distincts. On aura ainsi un
certain nombre de courbes fermées dans ® et ne formant pas frontiére sur @ ; mais,
si on leur adjoint une courbe fermée quelconque v, dans le domaine ®, elles
formeront avec y frontiére compléte sur .

Le nombre des cycles distincts de la surface F sera donc égal & p,—1, p, étant
le nombre qui exprime I'ordre de connexion linéaire de la variété @, et la ques-
tion des cycles distincts d’une surface peut se ramener ainsi & une question de
géométrie de situation.

Toutefois, il conviendra de se placer a un autre point de vue pour la recherche
effective du nombre p, — 1 relatif a la surface F. Etant donné un cycle linéaire C
tracé sur la surface I, déformons ce cycle d’une facon continue de maniére que,
dans ses positions successives, il satisfasse aux mémes conditions que C; nous
obtiendrons ainsi un cycle C,. Si les axes ont une disposition quelconque, tous
les cycles linéaires de la surface pourront étre amenés (2), par une déformation
continue de ce genre, a étre contenus dans un continuum

¥ = consl.;

(1) E. Prcaro, Théorie des fonctions algébriques, t. I, p- 92.
(?) E. Prcarp, Théorie des fonctions algébrigues, t. 1, p. 86.
Fac, deT., 2¢ S, 11I. 20
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en d’autres termes, les cycles de la surface F seront des cycles pour la courbe
F(x, ¥, z) =o,

le symbole y indiquant que y doit étre regardé comme un paramétre. Mais Lous
les cycles de la courbe précédente ne seront pas, en général, distincts si on les

considére sur la surface F. Nous allons voir comment, en faisant varier y, on
pourra déja s’assurer que plusieurs de ces cycles sont équivalents.

3. Soit la courbe
S=z(z—1)(xr—y),

ou y désigne un paramétre, et soit une inlégrale I n’ayant pas de points singuliers
logarithmiques, attachée a cette courbe; par exemple,

lzfdf.

Pour une valeur donnée de y, on pourra définir ainsi les périodes w,, w, de

cette intégrale I. Marquons les points o, 1, et un autre point quelconque z,.
Nous désignerons par u,, us, u; les valeurs de 1 correspondant respectivement
aux lacets (2, 0), (2o, 1), (20, ¥), la détermination initiale de z au point z, étant
toujours supposée la méme. Nous poserons

W= Uy — Uy,

Wy == Uy — Uy}

wy, w, sont des fonctions de y qui ne changent pas si I'on fait décrire a y un
contour fermé n’enveloppant aucun des points o, 1. Soit alors un contour y cou-
pant le lacet (z,, 1) et supposons que y décrive y dans le sens de Ja fleche ( fig.1).

Lorsque le point y arrivera prés du lacet (2, 1), on déformera ce lacet de telle
sorte que le point y ne lerencontre pas. On obtiendra ainsi, lorsque y sera revenu
au point de départ, une figure dans laquelle les lacets (z, 1), (2o, y) (fig. 2) ne
seront plus les lacets primitifs. Les quantités désignées plus haut par w,, w., us
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seront remplacées par les quantilés

Uy, Uy+2(Uz—Uy), Us~+ 2(Us— Uy),

ce qui revient a dire qu’au lieu des périodes w,, w,, nous aurons maintenant

d’autres périodes Q,, Q,,
Q=— w + 2w,,

Q= — 20, + 3w,,

qui sont des combinaisons linéaires, & coefficients entiers, des périodes primitives.

De méme, soit la courbe déja considérée

(1) F(a, y,2)=0

et considérons une intégrale de premiére ou de seconde espéce relative a cette
courbe

(2) I:fR(x,y, 3) dz,

ou R(z, ¥, 5) désigne une fonction rationnelle de et z, et aussi du paramétre y.
La courbe (1) élant de genre p, I'intégrale I admettra, pour une valeur donnée

de y, 2p périodes

W1y Oy ...y Wape

Aprés une circulation de y, ces périodes o se changeront en d’autres Q qui
seront des combinaisons linéaires, a coefficients entiers, des périodes primitives;

nous aurons

(S) Qi=mio+miwy+...+ml,m,y (I=1,2,...,2p).

Les équations (S) expriment un fait géométrique : elles indiquent, si Cy, C,, ...,
C, désignent les cycles correspondant aux périodes w,, w,, ..., w,, quele cycle G,
par exemple, par une déformation continue accompagnant Ja variation de y, a été
transformé en une somme de m, fois le cycle C, plus m} fois le cycle C, plus, etc.,
plus m;  fois le cycle Cyp.

4. Les substitutions (S) forment un groupe G. Une intégrale abélienne quel-
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conque, de premiére ou de seconde espéce, attachée & la courbe (1) donnera lieu
a ce méme groupe G.

M. Fuchs (*) a montré que les périodes d’une intégrale ahélienne, de premiére
ou de seconde espéce, relative a une courbe telle que (1), satisfont & une équa-
tion linéaire (E) dont les coefficients sont des fonctions rationnelles de y. Les
diverses équations (E), qu’on peut ainsi former, correspondant aux diverses inté-
grales de premiére et de seconde espéce de la courbe (1), ont méme groupe de
substitutions, et ce groupe est le groupe G.

Soit’

d’rw A= L
OCQP_T—FQZI,_I‘T_T o AW =0
dy?p dy*r

(E)

I'équation que vérifient les périodes de D'intégrale (2) déja considérée. Si I'on
veut obtenir cette équation, on considérera I'intégrale J suivante,

e a1
J= ail,w—i“agp-lm -+ .. ‘+0(0],

et 'on remarquera que les périodes de cette intégrale sont toutes nulles, en vertu
de I'équation E. Par conséquent, J sera une fonction rationnelle de z et de z, et,
par suite, de y. Posons alors

uy, = [ o, dur, uz:fcpz dex, Ceey ltl,r:fcgl,dr,
V) :/4}, dx, (' :fupo da, cey Vp = [tl/,,d.f,

les intégrales u élant les intégrales de premiére espéce de la courbe (1), et les
intégrales ¢ désignant p intégrales de seconde espéce formant avec les intégrales «
un systéme fondamental.

Pour exprimer que I'intégrale J se réduil & une fonction de z et z, on écrira,
d’aprés un théoréme di & Weierstrass :

1° Que la somme des résidus du produit J(?i<x,)7, z) est nulle;

2° Que la somme des résidus du produit J¢; (x, ¥, z) est nulle
(i=1,2,...,2p).

On obtiendra ainsi 2p relations linéaires et homogénes entre les 2p —+ 1 coef-

ficients a.

() Fucns, Journal de Crelle, t. T1 et 73.



SUR LA CONNEXION LINEAIRE DE QUELQUES SURFACES ALGEBRIQUES. 15'7

5. Soit une variété V,,, a n dimensions, située dans I'espace général 2 m dimen-
sions (m 2 n), ou I'on désigne les coordonnées d’un point par (&4, Xy, ..., Zn).
Dans I'espace général a m dimensions, on peut considérer une intégrale simple

vi=n

(3) N Xyda,,

i=1

ou les X sont des fonclions des quantités réelles z,, x;, ..., 2, restant uni-
formes et continues quand le point (z,, 2, ..., Zn,) se déplace dans V,; on
suppose que les conditions d’intégrabilité sont remplies quand on regarde
Zngay oy m comme fonctions de x4, 23, ..., Z,. On a ainsi une intégrale de
différentielle totale dans V,.

L’intégrale (3) étant une intégrale arbitrairement choisie sous les conditions
indiquées, l'ordre de connexion linéaire de V, est égal au nombre, augmenté
d’une unité, des périodes distinctes de cette intégrale.

Cela étant, envisageons le continuum & quatre dimensions réelles représenté

par I’équation
F(z,7,5)=o.

Sur celte variété, a chaque valeur de y correspondent, comme il a été dit,
2p cycles Gy, Gy, ..., Cyp, et chacun d’eux, par une circulation convenable dey,
se raméne a une somme de multiples des différents cycles C,, C,, ..., Cyp. L'en-
semble de ces cycles et du transformé de I'un d’eux forme donc frontiére com-
pléte. Par suite, si 'on considére une in tégrale de différentielle tolale de la nature
de I'intégrale (3), et si 'on désigne par

Pl’ P‘Z) cety P?[l

ses périodes relativement aux cycles C,, C,, ..., Csp, la période correspondant
au cycle transformé de C, sera encore P,, et de méme pour les autres. On aura
donc

(m) Pi=m{Py+ miPy+...+mi,P,, (i=1,2,...,2p),

et & chaque substitution du groupe G correspondront 2p équations de cette
forme.

Les équations (w) correspondant & toutes les substitutions du groupe G n’ad-
metiront, en général, que la solution

P,=o, P,—=o, cey P,, = o,

c’est-a-dire que tous les cycles de la surface se réduiront a zéro.

S'il arrive qu'on puisse satisfaire a toutes les équations (w) autrement qu’en
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annulant toutes les quantités P, supposons alors que, de I'ensemble des équa-
tions (), on puisse tirer 2p — r des quantités P en fonclion des r autres restant
arbitraires, il est clair que le nombre des cycles distincts de la surface sera au
plus égal a r.

On a ainsi effectué une premiére réduction des cycles linéaires de la surface F.
Cette réduction sera suffisante dans les cas particuliers de surfaces que nous
allons bientét considérer. Nous indiquerons néanmoins comment on pourra,
dans le cas général, achever de déterminer le nombre des cycles distincts d’une
surface. 4

6. Les considérations précédentes, basées sur I’étude d’une intégrale abélienne
dont les périodes sont fonctions de y, ne permettent pas d’affirmer que le
nombre 7 soit égal & p, — 1, parce qu’on n’a envisagé que des déformations par-
ticuliéres de cycles correspondant a la déformation de la surface de Riemann,

F(x, ;’, z) - 0.

Le nombre r doit donc étre envisagé seulement comme un maximum du
nombre p, — 1 des cycles linéaires distincts de la surface.
Soient alors 2p intégrales abéliennes distinctes n’ayant pas de points critiques

logarithmiques, relatives a la courbe ' (z, 7, 5) = o. Désignons-les par
Ii:fcpi(x,y,s)dx (i=1,2,...,2p).

Les périodes de ces intégrales ont le méme groupe de substitutions.
On peut chercher & déterminer des fonctions rationnelles de y,

ay, @y ..., Gyp,
de telle sorte que les périodes de I'intégrale
ali+a,l,+...+aly,
ne dépendent pas de y. Soient
oy, o ., ek,
les 2p périodes de 1,. Nous aurons a écrire les 2p équations

QoL+ aoi+. ..+ apeif =P; (hk=r1,2,...,2p),

les P étant des constantes. En particulier, si ces constantes satisfont  'ensemble

des équations (=), les équations précédentes détermineront pour les @ des fonc-
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tions rationnelles de y. En effet, en vertu des équations (=), quand y a décrit un
chemin fermé quelconque, le systéme d’équations en a est identique au pré-
cédent.

Si nous posons
Ri=aioi+ a9+ ..+ a2p0y,

R, sera une fonction rationnelle en z, ¥, s, et les périodes de 'intégrale

fR,dx

ne dépendront pas de y. Il s’ensuit que I'expression
(x,3) (x,z)
f My o 9 f R, diw
(g, 2) d‘y o‘y (X9, 51)

sera une fonction rationnelle de z, y, z et de 5, 5, élant une racine de I’équa-

tion en 3z,
F(xe, y,5)=o0,
et, par conséquent, si l’on pose

I (41',5)0[{1 (Ar,:'.)dl:{1 (1',:)()1{1
s,_n—l[f —07dx+f dyalocf...JrIl S|

(2, 54) (g, 82) Xy, Sp)

34y By + .., Sm élant les m racines de F(z,,y, ) = 0, S, sera une fonction ration-

nelle de x, y, z et 'intégrale J,,
J, ::fl{, dx +- 5, dy,

sera une intégrale de différentielle totale pour la surface F.
Pour déterminer pratiquement les fonctions a de y el, par suite, R, (z,y, 3),
on pourra appliquer le théoréme de Weierstrass déja cité a I'intégrale S,. On

. .o i . ., . da
obtiendra ainsi 2p équations linéaires et homogénes entre a,, a,, ..., Qap, 21—17
Y
da, da,, .. i . ,
= e > les coefficients de ces équations étant des polynomes en y; on en
dy dy

tirera a,, ..., a,, en fonction de a, et de ses dérivées, et a, satisfera i une équa-
tion linéaire (&) d’ordre au plus égal a 2p dont les coefficients seront des poly-
nomes en y.

7. L’intégrale J, qui vient d’étre obtenue admet r périodes arbitraires données
'S L) . . o, .
alavance sur la surface F. Si F est une surface n’ayant que des singularités ordi-
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naires, c’est-a-dire une courbe double avec des points triples, ces singularités
étant les plus générales de leur nature, M. Picard a alors démontré que, parmi
les r périodes arbitraires de J;, il n’y en a aucune provenant d’une courbe loga-
rithmique.
1l s’ensuit que, dans ce cas, le nombre r représentera le nombre des cycles
linéaires distincts. On aura
pi—1=r.

De plus, en supposant toujours que I n’admet que des singularités ordinaires,
) P ] q q g 3
Pintégrale J, est une intégrale de différentielle totale de premiére ou de seconde
P
espéce, et l'on est encore conduit & ce théoréme, que le nombre des cycles dis-
tincls d’une surface est égal au nombre des intégrales de différentielles totales de
premiére et de seconde espéce attachées a la surface.
Si la surface F est quelconque, il pourra arriver que les r périodes arbitraires
de l'intégrale J, ne soient pas toutes des périodes cycliques, certaines d’entre
1 p yeliq )
elles provenant de singularités logarithmiques. On aura alors

pi—i<<r.

SiT'on veut trouver le nombre des cycles distincts de la surface, on pourra la
transformer birationnellement en une surface F, n’ayant que des singularités
ordinaires, et le nombre r, 41 relatif a cette surface F, exprimera l'ordre de
connexion linéaire de F.

8. 1l existe des surfaces pour lesquelles il est possible de trouver immédiate-
ment le nombre Pi1—1, en formant directement les intégrales de différentielles
totales de premiére et de seconde espéce attachées a la surface. Nous donnerons
deux exemples simples :

Soit la surface

s=Vo (@) +Vi(y),

w & !
® élant un polynome en z et v un polynome en y. Nous pourrons prendre, pour
les coordonnées d’un point de cette surface, les expressions

x =o,
y=2,
5 =03+,

{ et (¥ satisfaisant de plus aux relations

(4) B =9 (a),
(3) = (a).
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Inversement, on aura

oa =x,
o=y,
23 =5+ —-—9($)_¢('Y)’

z

23125_ C‘?(x)T"P_,(_y_))

et, par conséquent, il y a correspondance univoque entre un point de la surface
considérée et un systéme de deux points pris, I'un sur la courbe (4), I'autre sur
la courbe (5). Si p et p' désignent les genres respectifs de ces deux courbes, on
voit qu'on pourra former p + p' intégrales de différentielles totales de premiére
espéce, et p + p' intégrales de différentielles totales de seconde espéce, de telle
sorte que toute autre intégrale de premiére ou de seconde espéce attachée a la
surface soit une combinaison linéaire de celles-la. On pourra donc écrire

pi—1i—=2p+ap.
Soit encore la surface dont les coordonnées ont pour expression

o+ o
xr = aa', y= qa’ =B+ p,

B et ' étant donnés par les équations

t—a(1—a)(a—Kka) =9¢(a),
B=a'(1—a') (1— k') = @(a'),

a, o seront racines de ’équation en «,

u*—2yu—+ x=o;
d’out 1l viendra ,
a=y-+Vyt—a,

' =y —\yr—a,

2 =z + ___qo(a)—:(p(a')’

2@:;+¢WW?¢W%

il existera une correspondance univoque, cette fois, entre un point de la surface
donnée et un systéme de deux points pris sur une seule courbe. Considérons,
relativement i cette courbe, 'intégrale suivante, qui reste toujours finie,

do do’
6) = | == 4+ | ==
( ) K] ﬁ ﬁl

Fac. de T., 2* S, III. 21
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Si, dans cette intégrale, on remplace a, o/, B, B par leurs expressions en fonction
de z, y, z, il viendra

K,::fpdx+Qd_y,

P et Q étant rationnels en z, 5, 3.

Réciproquement, toute intégrale de différentielle totale de premidre espéce
appartenant & la surface sera de la forme (6), aprés qu’on y aura remplacé z, y, =
par leurs expressions en fonction de o, o, B, p.

De la méme maniére, on pourra former une intégrale de seconde espéce K.,
telle que toute intégrale de premiére ou de seconde espéce attachée a la surface
s’exprime linéairement en fonction de K, et de K,. L’ordre de connexion linéaire
de la surface sera donc égal a trois.

Il. — Sur LA REDUCTION DES CYCLES LINEAIRES DES SURFACES 32= f(&, ).

1. Les surfaces que nous allons considérer seront de la forme
(1) F=f(x,y),

" f(x,y) désignant un polynome en z,y. Ce cas est le plus simple : tous les cycles
de la surface pouvant étre amenés dans un continuum ¥ = const. correspondront
alors a4 des contours tracés dans ce continuum et enveloppant deux racines seule-

ment de I'équation en z
f(.l', )’) =0,

ou y a la valeur constante considérée.

Nous allons présenter quelques remarques simples permettant, dans bien des
cas, sinon toujours, de résoudre le probléme de la connexion linéaire pour une
surface de la forme (). ’

2. M. Picard a démontré que si f(z, y) estle polynome en z, y, le plus général
de son degré, 'ordre de connexion linéaire de la surface (1) correspondante est
égal & un. Tous les cycles linéaires de la surface se réduisent a des cycles nuls.

On sera conduit 4 la méme conclusion dans bien d’autres cas. Faisons voir,
tout d’abord, que si f est un polynome irréductible en z, y, la surface (1) n’aura
pas de cycles finis.

On peut toujours supposer qu’il existe, au moins, une valeur de y, soit y = b,
pour laquelle I'équation

Sf(x,b)y=0o0

aura une racine double @, cette racine étant double seulement. Cela étant, don-
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nons & y une valeur arbitraire yy, 'équation f(z,y,) = o aura m racines
1‘1, '.1‘2’ ctty x”l

et, en général, la demi-somme de deux de ces racines ne sera pas égale ala demi-
somme de deux quelconques des m — 2 autres racines.

Prenons alors un couple de ces racines, le couple (x4, 2g), par exemple. Nous
allons pouvoir faire décrire & y un chemin tel que, y allant de y, & b par ce
chemin, les deux racines x4, g deviennent, pour y = b, égales a a.

Pour s’en assurer, il suffira de prendre 1’équation aux demi-sommes « des
racines de ’équation en x

Sz, y)=0;
ce sera une certaine équation
F(u,y)=o.

La courbe entre u et y, F(u,y)=o0, sera, en général, une courbe irréductible
comme f; car on peut supposer que la courbe f occupe une position quelconque
par rapport aux axes, et alors I est une courbe diamétrale de f correspondant
une direction arbitraire.

Soit, pour y = y,, la racine simple

Pour y = b, I'équation F = o aura certaines racines doubles; mais la racine qui
nous intéresse, u = a, sera, en général, une racine simple.

On sait alors qu'il est possible de trouver un chemin /, allant de y, en b, con-
duisant de la racine u, 4 la racine a; ce chemin permettra alors de passer du
couple (zq, 2g) au couple (a, a), comme nous voulions le montrer.

Cela étant, si y, partant de y, et suivant le chemin /, s’arréte en un point &’

Fig. 3.

trés voisin du point b, les racines x4, zg deviendront deux racines Zq, 2 de
S(x,b'Yy=0

et ces deux racines différeront infiniment peu de a. Décrivons un contour infi-
. . ’ . .
niment petit C' autour de x4, 2. Il est facile de voir que C' sera un cycle nul
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relativement & la surface considérée. S'il existe, en effet, une intégrale de diffé-
rentielle totale de premiére ou de seconde espéce attachée a cette surface, nous
considérerons un chemin d’intégration ( fig. 3) passant entre zy, g et joignant
deux autres racines quelconques xy, x5 de f(z, 0') = o.

Ce dernier correspondra & la moitié d’une période de I'intégrale considérée. Si
nous faisons décrire & y, & partir du point &', une petite courbe fermée entourant
le point 4, et si nous déformons en méme temps le chemin d’intégration indiqué,
de maniére qu’il ne rencontre aucun point critique, nous obtiendrons, lorsque y

sera revenu en b/, la disposition marquée par la fig. 4, ou I'on voit qu'il y a eu
permutation entre z, et xg. .

Le chemin primitif (&, ;) s'est ainsi transformé en ce méme chemin, aug-
menté d’un cycle infiniment petit entourant z, et zg, et que nous pouvons sup-
poser coincider avec (/. Comme les périodes d’une intégrale de différentielle
totale de premiére ou de seconde espéce ne doivent pas dépendre de y, il s’ensuit
bien que le cycle C/ sera équivalent a zéro.

Faisons maintenant revenir y de la valeur &' a la valeur y, par le chemin /; le
cycle C’ deviendra, aprés cette varialion, un certain cycle G entourant x4, xg, et
le cycle C sera nul.

Nous voyons, ainsi, qu’on pourra, dans le continuum y = y,, tracer un cycle G,
entourant z, et z, puis un cycle C, entourant x, et 23, etc.; enfin, un dernier
cycle C,,_ entourant Z,_, et &, lous ces cycles étant équivalents a zéro. D’ail-
leurs, un cycle quelconque décrit dans le continuum y =y, se raménera a une
somme de multiples des cycles Cy, Cs, ..., Cn_y, et 'on voit bien alors que tous

les cycles de la surface se réduiront a zéro.

3. La démonstration précédente n’est pas indépendante de toute hypothése
sur f; elle suppose, par exemple, qu’une certaine équation F(u,y) = o est irré-
ductible. Nous allons donc reprendre la question pour la traiter d’une fagon tout
a fait générale.

A cet effet, soit, d’abord, une surface ayant pour équation

3= T Ty
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une expression telle que o, devant désigner désormais un polynome irréductible
en z,y de degré a. Pour une valeur donnée y, de y, 'équation en z, 3,=0,
admettra une racine @, ; I’équation o5 = o donnera cinq aulres racines

by, by ..., bs

Joignons par un trait continu les points a,, by, bs, ..., bs (fig. 5). Nous repré-

senterons par la notation
(bz, b3)7

par exemple, le cycle entourant les racines b, b; et qui correspond au double de
la valeur d’une intégrale de différentielle totale quelconque de premiére ou de

seconde espéce attachée a la surface, prise de b, a by, suivant le chemin marqué
par le trait continu by, b;, ce dernier étant supposé parcouru sur I'un des deux

feuillets de la surface de Riemann z2= f(, ). Nous poserons encore
wy = (ay, by).

Un cycle quelconque de la surface se réduira a une combinaison linéaire a coef-
cients entiers des cycles fondamentaux

w, (b, by), (bz,b;;), (bsyba); (bbyb5)'

Cela étant, nous savons qu’on peut faire parcourir successivement a y plusieurs
chemins partant de y, et y revenant, de telle sorte que le premier de ces chemins
échange les racines b, et by, le second lesracines b,, et by et ainsi de suile jusqu’au
dernier qui échangera b, el b;.

Pendant cette variation de y, le cycle w, se transformera en un certain cycle o
entourant les racines @, et b, ; puis ce cycle « se transformera en un autre 3 corres-
pondant aux racines @, et b;; on ira ainsi jusqu’a un cycle & formé avec les ra-
cines a, et by. , .

Ecrivons que la valeur d’une intégrale quelconque de différentielle totale de
premiére ou de seconde espéce attachée & la surface ne change pas quand on passe
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du cycle w, au cycle «. Il viendra une relation de la forme
Ay == /zw, ~+- k(bl, bg) -+ ZU,

ou % et k sont des entiers impairs, U désignant une somme de multiples des cycles
fondamentaux autres que w, et (b, b;). De méme, I'intégrale considérée conser-
vera la méme valeur quand on passera du cycle « au cycle 8, etc., et, enfin, du
cycle y au cycle 8. Finalement, nous aurons quatre équations de la forme

[ (b4, by) +2U,=o,
S(bi, by) +2U,=o,
| (b, b)) +2U,=o,
V(b4 b5) +2U0,= o,

ou les expressions Uy, Uy, ..., U, désignent des sommes de multiples des cycles
fondamentaux. Des équations précédentes on déduit qu’il existera, entre un cycle
fondamental quelconque et le cycle w,, une relation linéaire et homogéne a coef-
ficients entiers. On aura, par exemple,

m (b, b;) + nw,=o,

m et n étant des entiers. Il s’ensuit que la surface considérée admettra, au plus,
un cycle fini.
Supposons alors que la droite

g, =0

passe & 'origine, qui est aussi un point simple pour la courbe o5 = o, la tangente
en ce point & oy et la droite o, étant d’ailleurs différentes et aucune d’elles ne
coincidant avec I'un des axes.

Pour y voisin de zéro, nous aurons & considérer deux racines z infiniment
petites : 'une, a), provenant de o, = o; l'autre, b}, donnée par oy = 0. Soit un
cycle C (fig. 6), entourant une des deux racines infiniment petites, a,, par
exemple, et une racine de ’équation o5 = o différente de 0.

§

Fig. 6.

Ny
Si nous faisons décrire a 3, dans son plan, une courbe fermée trés petite enfer-
mant l'origine, chacun des points @, &, décrira également dans le plan des z un

contour trés petit comprenant 'origine & son intérieur. Si, en méme temps, on
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suit la déformation du cycle C, on voit que, y étant revenu au point de départ,
ce cycle se sera transformé (fig. 7) en un autre (, qui est équivalent au cycle

Fig. 7.

primitif C, augmenté de deux fois un cycle G, entourant le point &), &,. D’aprés
laremarque, déja faite plusieurs fois, que les périodes d’une intégrale de différen-
tielle totale de premiére ou de seconde espéce ne dépendent pas de y, le cycle C,
sera un cycle nul sur la surface considérée. .

Nous sommes ainsi assurés que, dans le continuum ) = y,, nous pourrons
tracer un cycle autour de la racine @, et d’une racine de o5 = 0, que nous pouvons
supposer étre b, ce cycle étant équivalent & zéro. Aux équations (2) vient alors
s’en ajouter une nouvelle de la forme

(3) w;+ 2Us —=o,

U; désignant toujours une somme de multiples des cycles fondamentaux. Les
équations (2) et (3) ne peuvent étre satisfaites que par la solution

w1 = (@, b)) =(ay, by) =...= (@, by) =o,
et, par conséquent, tous les cycles de notre surface se réduiront i zéro.

Il en sera évidemment de méme si 'on considére une surface ayant pour équa-

tion
(4) 5= 0y Tanoy,

en supposant, toutefois, que la droite ¢, = o rencontre la courbe ,,_, = 0 en un
point simple, la tangente en ce point & &5,_, n’étant pas la droite ¢,. On peut,
d’ailleurs, admettre que cette condition est toujours vérifiée. En effet, on pourra
d’abord ramener la surface (4) a la forme

=z9(z,¥),
¢ étant irréductible et de degré impair. Posons alors

2L Y . Z
X VX fEXw
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il viendra une surface
2= (X, Y),

¢ étant irréductible. Transportons ’origine en un point simple de la courbe ¢ = o

et soit alors
WX, Y)=aX+bY+... (abso),

aucune asymptote de la courbe n’étant paralléle aux axes. La transformation
X= E’ Y= E_ﬂ
nous conduira a la surface

LP=f[a+bn+E(...)]

la droite £ = o coupant la courbe transformée de ¢ en un point simple
a
E —-=o, n=—-— Z,

la tangente en ce point a cette courbe et la droite £ = o étant différentes.
Tl n’y a plus, maintenant, aucune difficulté & voir que pour une surface

B=f(2,y),

f étant irréductible, 'ordre de connexion linéaire est égal a un, puisque cette
surface, par I'une des transformations précédentes, pourra étre mise sous la

forme
~2
LS5 =0103p—1+

4. Soient les deux courbes

Gm =0, 0p=— 0,

'une de degré m et l'autre de degré n, m et n étant supérieurs & un. Suppo-
sons que ces deux courbes se coupent en un point R qui est simple sur chacune
d’elles, les tangentes en ce point aux deux courbes étant distinctes. La surface

(5) 2= 0,0,

n’admettra, dans ce cas, aucun cycle linéaire fini. Placons, en effet, I'origine en
un point simple de s, et menons les axes de telle sorte que le point R soit en
dehors d’eux et que 'on ait

on=ax + by +... (ab o),

aucune asymptote de o, et de &, n’étant d’ailleurs paralléle a Oz oua Oy.
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L.a transformation
X = X, Yy = XY

nous donnera alors une surface

(6) 5o T102m—192n;

la courbe
Tam—1—0O

coupera la droite 5,= o0 en un point P, et la courbe 53,==0 en un point R,
transformé du point R. Les points P, et R, sont simples sur les courbes qui y
passent el les tangentes en ces points sont, de plus, distinctes.

En raisonnant exactement comme au numéro précédent, on verra que tlous
les cycles de la surface (6) et, par conséquent aussi, ceux de la surface (5) se
réduisent a zéro.

On arrivera a la méme conclusion sil'on suppose que les courbes o, et 5, au
lien de se couper au point R, de coordonnées (a, b), sont tangentes en ce point.

Pour y = b, une racine de s,,— o et une racine de s,= o devicndront égales
a a. Les développements de ces racines, aux environs du point R, seront de la
forme

x=a+c(y—b)+...4+cu(y —b)*+cg(y —b)d+4. ..,
Z=a+c(y—0b)+...4cu(y—b)*+cpg(y —b)f4...,

les coefficients des puissances de y — b inférieures & la puissance (3 étant respec-
tivement égaux dans les deux développements; cg et cg sont différents, et 'on
peut supposer qu’aucun de ces deux coefficients n’est nul.
Posons
Zx—a—ci(y—b)—...—cy(y —b)*=(X—a)(Y — b)b-,
y=Y.
Les courbes ¢, , se transforment en d’autres courbes S,y Tyy qui passeront au

point (@, b), avec des tangentes distinctes. Les développements des racines cor-
respondantes, devenant égales a «, pour ¥ = b, seront

X=a+cg(Y-—b)+...,

X=atch(Ymb)r... (B

et 'on sera ainsi ramené au cas précédemment étudié, de deux courbes se cou-
pant en un point simple R et n’admettant pas la méme tangente en ce point.

5. Elant données les deux courbes

g,, =0, Tp,==0
Fac. de T., 2* S,, 111, 22
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qui se coupent en un point simple sur chacune d’elles, nous venons de voir que
la surface

(5) 52:0}[! a.ll

ne posséde aucun cycle fini. Nous pouvons signaler quelques autres cas lrés
simples ou il en sera encore ainsi.

Supposons que les courbes s, el oy, ayant toutes les deux a l'origine un point
multiple d’ordre pair, ou toutes les deux un point multiple d’ordre impair, ad-
mettent en ce point une tangenle commune simple pour chacune d’elles, que
nous prendrons pour axe des y. L’équation (5) pourra, dés lors, s’écrire

B=[20n(2,¥) + naa(2, ) 4 J[2$a(2, ¥) + Ynaa (2 y)+...],

et, sil’on fait la transformation,

x=XY, r=Y, s=—=1Y 2 |

1l viendra la surface

origine étant maintenant un point simple pour les courbes

! i
o.”l: O’ all: o
transformées des courbes o, et s,.

Soit encore le cas ol 5, admet un point multiple d’ordre impair & I'origine, ce
point étant pour la courbe s, un point d’ordre de multiplicité quelconque. Nous
supposerons, de plus, que, parmi les tangentes de o, al'origine, il y en a au moins
une qui est simple et qui ne coincide pas avec les langentes & oy, en ce point.

Par exemple, Uorigine sera pour s, un point triple, et pour s, un point mul-

plé, p P » €L p . un p

tiple d’ordre quatre. Pour y voisin de zéro, trois racines de o,

Ay, Qg

et qualre racines de s,
by, bsy, by, b,

seront infiniment petites. Désignons par b, la racine de s, qui correspond a la
tangente simple, a l'origine, de cette courbe, tangente distincte des tangentes a
om au méme point, et dont nous avons supposé 'existence.

* Considérons alors, dans le continuum y == const., un cycle entourant la ra-
cine b, et une racine quelconque de o, ou de s,, qui ne soit pas infiniment
petite. Ce cycle C se déformera, si nous faisons décrire a y une petite courbe
fermée autour de l'origine, et, lorsque y sera revenu au point de départ, le cycle C
se sera transformé en un cycle C/, qui est équivalent au cycle primitif C, augmenté
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de deux fois la somme de certains cycles ¢y, ¢a, ..., ¢s (fig. 8). Nous pouvons

donc écrire
ci+cCy+...+ cg=o.

Dans le continuum y = const. considéré, on peut tracer m -+ n —1 cycles
fondamentaux, et ’on peut prendre, pour 'un de ces cycles, le cycle ¢,. Si nous

posons ¢; = v, le nombre des racines infiniment petites @ étant impair, il s’ensuit

que la relation précédente prendra la forme
W+ 2 U= o,

U désignant une somme de multiples des cycles fondamentaux. Cela est suffisant,
aprés ce qui a été dit jusqu'ici, pour pouvoir conclure que tous les cycles de la
surface se réduisent & des cycles nuls.

Nous pouvons remarquer, enfin, que le cas ot les courbes

Om = 0, Gpn=—20

sont I'une et 'autre de degré impair se raméne aisément au précédentl.

Il suffit de supposer, ce qui est évidemment possible au moyen d’une trans-
formation homographique, que la courbe s, rencontre la droite de I'infini en un
point simple a, n’appartenant pas &, la tangente en ce point a s, étant distincte
de la droite de l'infini. '

L’origine étant quelconque et les axes ayant une direction aussi quelconque,
on fera la transformation

1 o
r=xr Y=w
et 'on obtiendra ainsi une surface

= Tam Tans
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. e, . .

Porigine étant pour les courbes o,,, et 5., respectivement un point d’ordre de
. e, y . N . s .

multiplicité m et n. D ailleurs, la tangente a Porigine & ¢5,, qui correspond au

point o, sera simple et distincte des tangentes au méme point & la courbe .,

On sera donc toujours assuré de la réductibilité a zéro de tous les cycles d’une
surface

~2

SI=Om Tpy
m et n étant impairs, quand bien méme on ne saurait rien sur la nature des in-
tersections des courbes s, et 5,.

Observons encore que deux courbes
O‘Ill — 0’ o.". - 0’

les nombres m et 1 n’étant pas tous les deux impairs, peuvent étre transformées
birationnellement en deux courbes de degré pair ¢,,, ¢,, d’une infinité de ma-
ni¢res. Si ces derniéres courbes se rencontrent en un point O qui est pour I'une
et pour I'autre un point d’un ordre de multiplicité impair, on fera une inversion

! I

— = = —

X .y \/

.1 . " 1 A b 2 . 9 . . . \

aprés avoir transporté I'origine en ce point O, et I’on sera ainsi conduit a deux

courbes &, o, loutes d de degré i ir, et : : L, ] it
hes @, o), s deux de degré impair, et, par conséquent, la surface
51= Tm Tn

n’aura, dans ce cas, aucun cycle fini.

6. Passons maintenant a la considération d'une surface générale
(7) 52==G, 0,0, 050 . ..

Si les deux courbes ¢, =0, ¢,== 0 se coupenlen un 'poinL simple sur chacune
d’elles, ou si elles présentent en un de leurs points communs une des particula-
rités dont nous avons parlé, le nombre des cycles distincts de la surface (7) sera
réduit d’une unité. Si p est le nombre des polynomes irréductibles du second
membre de (7), le nombre des cycles distincts non nuls de la surface sera, au
plus, égal & p — 2. On peul dire qu’il existe une liaison, un passage du poly-
nome o, au polynome o,, de telle maniére qu’au point de vue qui nous occupe,
Pensemble &, o, peut étre considéré comme un seul polynome irréductible.

S’il existe de méme une liaison de cette nature entre ¢, et ¢, ou, ce qui revient
au méme, enlre o, el o,, elc., et ainsi de suite jusqu'au dernier des polynomes
du second membre de (7), on peut étre assuré que la surface (7) n’admet pas de

cycles finis.
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En d’autres termes, pour y = y,, considérons les racines des polynomes
Gm— 0, On=—0, Gr = B

tous les cycles de la surface (7) seront des cycles nuls, si "on peut former un
cycle équivalent a zéro avec une racine de o, et une racine de s,, ... el ainsi de
suite.

Soit, comme application, la surface du quatriéme degré a seize nceuds, ou
surface de Kummer,

Cayley a mis I’équation de cette surface sous la forme (')

/

\/axl <Y,7I/x? — 6/ B”xg_ %) —+ \//61.2 (0('0(”@‘3 o ‘/’Y”xj - %)

les constantes a, 2/, ..., v/, ~" étant liées par les relations
y %y y Vo Y P
a+B+y=o0, A+ +y=o0, a"+f'+y =o0.

Le cone circonscrit a la surface et ayant pour sommel &, = 0, Z,== 0, Z3= 0 se

compose de six plans qui coupent le plan 2, = o suivant les droites suivantes

x,= o, X9 0, Z3= 0,

la surface considérée sera donc représentable sur la surface

-’2_.— ! ",
o= w3000, 015
d’ailleurs, les six droites
)
A e — n
Xyp== 0, Xy = 0, ceey G, == 0

»

sont tangenles & une méme conique enveloppe de la droite

u, v, v salisfaisant & la relation

U+ ¢+ v ==0;

(1) Journal de Crelle, t. 73.
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tous les cycles linéaires tracés sur une surface de Kummer se réduiront done 2
zéro, en vertu de la remarque faite au sujet de la surface (7).

7. Supposons que, dans le second membre de P’équation (7), le nombre des
polynomes irréductibles & soit égal & trois. On aura la surface

(8) 3= OmGnOpr;
nous allons considérer le cas ou les courbes
T == 0, Gp =20, Gpr=0

se coupent au méme point O, ce point étant simple pour chacune des trois
courbes et les tangentes en ce point élant toutes distinctes.

Si nous plagons l'origine au point O, nous voyons que, pour une valeur voi-
sine de zéro, les polynomes en z, s, 5,, ¢, admettront chacun une racine infi-

niment petite. Soient
a, by, ¢

les trois racines infiniment petites et envisageons un cycle C formé autour de la
racine ¢, et d'une autre racine des polynomes s, o,, o, différente de ai, by. Ce
cycle G, quand y aura tourné autour de I'origine dans son plan, se reproduira
lui-méme, augmenté de deux fois un cycle w, entourant les racines @, et

by (fig. 9). Nous pouvons donc écrire
W, == 0.

De méme, si 'on désigne par w, un cycle comprenanl i son intérieur les ra-

Fig. 9.

cines b, et ¢y, ce cycle élant obtenu d’une fagon analogue & celle qui a donné v,,
nous aurons une condition nouvelle s’exprimant par I’équation

Wy == 0

et, par conséquent, la surface (8) n’aura pas de cycles finis. C'est ce qu'on peut
voir encore de la maniére suivante.
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La surface (8) est de la forme
B=(z+ay—+.. ) (z+by+...)(z+cy+...);

les termes non écrits dans chaque parenthése étant de degré supérieur au premier
et les quanlités a, b, c étant toutes différentes. La transformation

x =XY, r=Y, sz =1Y?
nous donnera alors la surface

= Y[X+a+Y( . O [X+b+Y(. ) [X4c+Y(...)L

Les courbes transformées de oy, o, o, coupent la droite Y = o en des points
simples sur ces courbes et tous distincts. Ce sont les points ayant respectivement
pour abscisses — @, — b, — c. 1l suffit alors d’appliquer la remarque du numéro
précédent.

Soit le cas particulier ou les deux courbes o, o, viendrailent a élre tangentes
a lorigine. Un cycle C entourant la racine ¢, et une autre racine non infiniment
petite se sera accru, aprés une révolution de y autour de l'origine, de deux fois
un cycle w, entourant @, et b, ou de deux fois un cycle w; correspondant aux
racines @, et ¢,. Ce dernier cas se présentera si, les points b, et ¢; décrivant res-
pectivement les courbes {3 et y marquées sur la fig. 10, par suite de la variation

Kig. 10.

T SO
B TN

/ ’ \

de y, il arrive que le point b, passe au point m avant que le poinlL ¢, y soit
arrivé. On sera toujours assuré que I'une au moins des deux équations suivantes

@)= 0, W3==0
est vérifiée, et comme la condition

Wy == 0

subsiste évidemment, il s’ensuit que, dans le cas actuel, la connexion linéaire
de la surface (8) sera encore d’ordre un.

Si les courbes oy, 5,, 5, sont tangentes au méme point O, qui est toujours sup-
posé simple sur ces courbes, il pourra encore arriver que tous les cycles de la
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surface (8) soient réductibles & zéro. Supposons, par exemple, que 5, el 5, soient
de degré impair, o, étant de degré pair, et admettons, de plus, qu’aux environs
de 'origine O les racines infiniment petites ay, b,, ¢, déja considérées aient des
développements de la forme

x=a,y*+... pour g,,
x=0by*+... T
x=c i+ .. a,

(a1bycy=0);
posons alors .
xr = XY?, yo=Y, s =171Y?,

nous serons conduits & la surface
L2=[X—a, Y+Y( . ) [X—b+Y(.)][X—c Y+ Y(...)]

qui peul s’écrire encore
ga
/J . o‘l”« O-” O.I'.

Les courbes o/,, &, seront de degré impair; comme nous I'avons vu, cela dimi-
nuera le nombre des cycles effectifs de la surface d'une unité. Enfin, les courbes o,
et o, se coupant en un point simple pour chacune d’elles & l'origine, il s’ensuit
que lous les cycles de la surface seronl équivalents & zéro.

Au contraire, si les développements des racines a4, by, ¢, sont de la forme

X = a1)"5+. ey
x=byy*+ ...,

x=c y+
(arbye £ 0),

la surface (8) pourra admettre des cycles non réductibles a des cycles nuls. Dans
ce cas, un cycle C enlourant la racine ¢, et une autre racine non infiniment
petile, s’accroit, par une révolution de y, de quatre cycles formés autour de a,
et by, et dont la somme est nulle. Celane donne plus, comme précédemment, une
condition ayant pour effet de réduire le nombre des cycles de la surface.

Ainsi, la surface
R (w—a, y)(r —by?) (x—c1)y?)

admet deux cycles finis; elle est, en elfet, représentable sur un cylindre cu-

bique.

8. Nous terminerons ces quelques remarques en revenant un instant a la sur-
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face (5)
(3) 22==G,, Opn.

Si la courbe s, admet un point double & tangentes distinctes a 1'origine, et la
courbe &, un point simple, nous savons que sur la surface (5) tous les cycles
linéaires se réduisent a des cycles nuls. Nous voulons faire voir qu’il en sera
encore ainsi dans le cas ou I'origine serait un point de rebroussement pour ,,;
nous supposons que I'origine est un point simple sur s, et, de plus, que s, n’est
pas tangente a 5, en ce point.

L’équation en x, ¢, = 0, admettra, pour y voisin de zéro, deux racines infini-
ment petites a,, b,. Désignons par ¢, la racine infiniment petite de o, = o. Le
résultat a établir est évident si les deux racines a,, b, n’appartiennent pas a un
méme systéme circulaire. Admettons donc que a, et b, se permutent quand l'ar-
gument de y augmente de 2.

Considérons alors deux cycles C et C,, entourant, le premier, la racine b, et
une racine non infiniment petite; le second, la racine ¢, et une racine aussi non
infiniment petite.

Apres une circulation de y autour de I'origine, C se sera accru de deux fois un
cycle w; correspondant aux racines a, et b,; C,;, en méme temps, se sera repro-
duit, augmenté de deux fois un cycle w,y, correspondant aux mémes racines a,

et by, mais différent de w, ( fig. 11).

D’ailleurs, le cycle formé des chemins marqués par un trait contina ( fig. 11),
(bc), (ca), (ab) ('), cycle qu’'on suppose ne conlenir aucune racine a son inté-
rieur, est évidemment un cycle nul. On aura donc

(be) + (ca) + (ab) =o.
De plus, les conditions

;== 0, Wy == 0,

(') Les points @, b, ¢ sont supposés infiniment voisins respectivement des points ay, by, c;.
Fac. de T., 2° S., I1I. 23



178 H. LACAZE.

que nous pouvons écrire, équivalent aux équations suivantes :

(be) — (ca) =o,
(ab)=o0
et, par conséquent, il viendra

(ab) = (bc) =(ca) =o.

En particulier, la condition
(bc) =0

exprime qu’on peul former un cycle équivalent a zéro, avec une racine de ¢, — o
et une racine de g, = o. Notre proposition est ainsi démontrée : les cycles de la
surface (5), dans le cas qui vient d’étre considéré, sont tous des cycles nuls.

On pouvait encore procéder de la fagon suivante..L’équation de la surface (3)
peut se mettre sous la forme

Z=[(ax+by)+...][dx+by-+...]=acno,

(ab'— ba' = o).

On suppose que les axes des z et des y rencontrent les courbes g, et ,, en
dehors de l'origine, en m -+ n — 3 points simples et tous distincts et que les tan-
gentes a I'origine aux deux courbes ne coincident pas avec les axes.

Effectuons alors la transformation

Il

=X, y
nous serons amenés a considérer la surface
B=xl(ay +b)2y"+a(.. )] [(@dy +b)y"+z(...)]) =z a), .
La droite « = o rencontre la courbe o, = 0 en un point simple

b/
& =22 0, y = — g, )
ce point n’étant pas sur o, = o: Avec la racine # = o et une racine de 5, = o,
on pourra donc former un cycle nul.

. . b . . , .
Si le point (z =0,y =— - ) est un point simple sur ), ou un point double

a tangentes distinctes, la proposition est démontrée. Si, au contraire, ce point
est, sur ¢,,, un point double a tangentes confondues, on transportera I’origine en
ce point, on effectuera sur x, y la transformation homographique la plus géné-
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rale, et 'on recommencera la transformation

| A

x =X, Y =

J

on sait (') qu’aprés un nombre fini d’opérations on arrivera & résoudre la singu-
larité du point double considéré.

9. On verra aisément que les surfaces représentées par I’équation

= fi (=, J’),

ou fi(x,y) désigne un polynome du quatriéme degré en z et y, n’ont pas de
cycles linéaires finis, a '’exception, toutefois, du cas ou f,(z, ) = o se décom-
pose en quatre droites concourantes.

Disons encore que, pour une surface ayant pour équation

52:‘_“/'(.1), y).

on peut, sans diminuer la généralité, se borner a considérer le cas ou f est de
degré pair. Si, en effet, f est d’ordre impair, on pourra, si 'on veut, effectuer la

transformation
1 Y Z

X r=x D N
2m + 1 désignant le degré de f. On sera conduit alors & une surface

2=Xfi(X,Y)=F(X,Y),
F étant d’ordre pair.

10. On peut citer des surfaces dont ’équation n’est pas de la forme
p q p

#=f(z, y),

et pour lesquelles, cependant, tous les cycles, aprés avoir été amenés dans un
continuum y = const., se réduiront & des contours entourant seulement deux
racines d’une certaine équation en 2

R(xvy>:0’

ou y a la valeur constante considérée.

(1) E. Picarp, Traité d’Analyse, t. II, Chap. XIII.



180 H. LACAZE.

Soit, par exemple, la surface
(7) : Az*+3Bz*+3Cz+D —=o,

A désignant une constante et B, C, D des polynomes en z et y.
Posons
R(z, y) = (AD — BC)? — 4(AC — B2)(BD — (),

U-=(AD —BC)A —2B(AC — B?),
P=1(U—AVR),
Q=1(U+AVR).

-z sera alors donné par la formule

Az=—B—c{/P—e{/Q,

¢ étant une racine cubique quelconque de 'unité. D’ailleurs, les deux radicaux
qui entrent dans cette expression sont liés par la relation

VP VQ =— (AC — B2).

Supposons que U et R, qui sont des polynomes en z et y, n’admettent pas de
facteur commun. Il suffit de considérer les cycles de la surface situés dans I'es-
pace ) =y,. On pourra, d’ailleurs, choisir la valeur y, de telle sorte que les

deux équations
P=o, Q=o,

ne puissent étre satisfaites pour une méme valeur de z. Tout cycle de la surface
correspondra alors & une courbe enveloppant deux racines de ’équation

R(z, y,) =o.

Plusieurs des remarques précédemment faites seront applicables dans le cas
actuel. En particulier, si la courbe

R(x, y)=o

est irréductible, la surface (7) n’aura pas de cycles finis.
Soit encore une surface de la forme

(8) Z:\/f(a%}’)-f‘\/g(fc,}’),

f et g étant des polynomes en z et y. Si ces polynomes sont irréductibles, sur la
surface (8), tous les cycles linéaires se réduiront aussi  zéro.

0O ——
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CHAPITRE 1L

I. — CoNNEXION LINEAIRE DES SURFACES 2= f¢(z,y).

Nous allons considérer, au point de vue de la connexion linéaire, les surfaces

du sixiéme degré de la forme
2=fi(z, y).

Sil’on veut qu'une telle surface puisse admettre des cycles finis, il faudra sup-
poser que la courbe

Sz, ¥y)=o0

se décompose en deux ou plusieurs courbes. Différents cas pourront se pré-

senter.

1. fs se décompose en une quartique et deux droites, ou une quartique et
deux coniques. — Etant donnée une surface ayant pour équation
32=0,,0,0p ...,

la notation
(Tm» o'lz) =0,

voudra signifier que, pour y = y,, les polynomes en z, ¢, et 5, admettant un cer-
tain nombre de racines, on peut, avec une racine de ¢, — o et une racine de
¢, = 0, former un cycle équivalent a zéro sur la surface donnée.

Cela étant, soit la surface

(1) r=0,0,0];

deux des polynomes du second membre étant de degré impair, il s’ensuit (Chap. I,
n° 5) que la surface admettra, au plus, un cycle fini.
Si les droites &4, &, se coupent en un point simple de ¢, on aura évidemment

(04, 1) =0,

et la surface (1) n’admettra aucun cycle fini.
Si les droites @y, ¢, se coupent en un point double de o,, la surface (1) sera
unicursale ().

() M. Neether a démontré que si une surface F est telle qu’une famille de surfaces dépen-
dant linéairement d’un paramétre o la coupent chacune suivant une courbe unicursale, cette
surface F est unicursale. [Ueber Flichen welche Schaaren rationaler Curven besitzen
(Math. Annalen, Bd 3).] M. Picard a repris cette question a un autre point de vue.
(Archiv der Mathematik und Physik, 19o1.)
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Supposons donc que s, ¢, ne se coupent pas sur o, et que la quartique ayant
un point de rebroussement en un point O, &, soit la tangente de¢ rebroussement.

Nous pourrons rejeter ¢, a I'infini et prendre pour équation de la surface
B2=x(x+...)=x0,

les termes non écrits dans la parenthése étant de degré supérieur au second. Si

dans o, existe le terme en y*, la transformation
z=XY, y=Y,
nous conduira & une surface
B=xy(y+...)
qui n’admet pas de cycles finis (Chap. I, n® 7). Si le terme en y*® n’existe pas

dans o,, on remarquera que la quartique ne saurait admettre plus d’un point de
rebroussement de cette nature. On voil ainsi que la surface (1) n’aura jamais de

cycles finis.
Si, au lieu de I'équation (1), on a I’équation (1)

(1) 22 =0, 0y

le seul cas a considérer sera celui ou, ¢, ayant un point de rebroussement, la

conique o, serait tangente & la quartique en ce point.
Si le rebroussement est de premiére espéce, on raisonnera comme plus haut,
lorsqu’on supposait que la droite o, était tangente & 6, en un point de rebrous-

sement du méme genre.
Si le rebroussement est de seconde espéce, nous pourrons, aprés une transfor-

mation homographique, poser,

o= at+ z(ax?+Pay) +a 2+ play +yy +-me+ny +1,

cy=x*—¥;

le point de rebroussement a été rejeté a l'infini sur la droite z = o, la droite de
l’infini étant devenue la tangente de rebroussement.
Dés lors, il suffit d’effectuer la transformation

xz =X, y—ax=Y,
pour étre conduit & une surface déja considérée,
52= 0, T1e

" Tous les cycles d’une surface telle que (1)’ seront donc équivalents azéro. Soit,
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comme application, la surface des centres de la quadrique

.’L‘2 2 z2
—|—‘Zz+——1_o.

Si l’on prend la polaire réciproque de cette surface ('), parrapport a la sphére,
x4+ yr i,
on obtient la surface du quatriéme degré suivante,

2
(2?4 y?+2° 2—( + Zz—i— )(a2x2—}-b2y +c?zt—1)

et, si I'on pose .
x = XZ, y=YZ, z=1,

a la surface précédente on pourra faire correspondre birationnellement la
surface

2 2 2 2
= [(a2x2+ b2y2+c2)<j—2+'—;;—2+c—'>~(x2+y —|—1)]<ac —+ 22 —i—i,)

qui est bien de la forme

*=og,0,

et, par conséquent, 'ordre de connexion linéaire de la surface des centres con-
sidérée sera égal a un.

2. fo se décompose en une cubique, une conique et une droite, ou en une
cubique et trois droites. — La surface

(2) " 2?=030,0,

aura, au plus, un cycle fini, et 'on voit aisément que si la droite o, coupe la
conique ¢, en deux points distincts, tous les cycles se réduiront a des cycles nuls.

Il en sera encore ainsi dans le cas ou la droite o, serait tangente a o,. Le seul
cas ou cela n’apparaisse pas immédiatement est celui ou ’on supposerait que ¢,
et g, sont tangentes & ¢, au méme point. Si l'on rejette o, a 'infini, on pourra,
dans cette hypothése, écrire

O3 =Zo(x 4 ay) + ¢o (@, ) +.

gy =x*— y;

(') SaLmoN, Traité de Géoméirie analytique a trois dimensions (I Partie).
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mais alors la transformation
z=X, y—ar=Y,
nous aménera a considérer une surface ayant pour équation
3 =0, 01

om désignant une courbe du troisitme ou du quatriéme degré.
Si I'on suppose que la conique o, se décompose en deux droites, nous aurons
alors la surface

(2) 3 =030,0, 7).
Nous aurons d’abord la relation (Chap. I, n° B),
(93, 01) + (0, 0}) = o,

et, par conséquent, la surface (2) admettra au plus deux cycles finis. 1l est
y P ’ p y
facile de voir que ces deux cycles eux-mémes se réduiront a zéro. En effet, sup-
y ’

posons que les trois droites o forment un triangle.

Sila cubique o3 a un point double en un sommet du triangle, la surface sera

q P )

unicursale.

Siun sommet du triangle, celui, par exemple, qui se trouve au point de ren-
contre de oy et ¢, est un point simple pour oy, il viendra, dans ce cas,

(03, 01) =0, (o1, a’l):O'

Si aucun sommet du triangle, formé par les droites o, ne se trouve sur la cu-
bique, on pourra évidemment écrire

12 ’ —
(01701):07 (O’,,o"{)_o,
et I’équation toujours vérifiée

(0'39 Ul) -+ (c’u 0'"1 ) =0,
donnera ensuite

(03, 0,) = 0.

Enfin, si les droites o sont concourantes, o, ne passera pas en leur point de
concours, sinon la surface serait unicursale. D’o1 il suit encore

"

(01, 0)) =0, (g, 0)) =o,
et aussi
(g3, 1) =o.
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3. fo se décompose en trois coniques. — La surface
& . = 0y0, 0]

admelttra au plus deux cycles finis.

.- Supposons, par exemple, que les coniques 5, ¢, soient tangentes en un point m
et -se coupent en deux autres points n, p. Si la conique o, passe en 'un des
points n, p, il en résultera

(02’5;):01 (0;7 0'”2):0'

D’ailleurs ces conditions seront encore vérifiées si la conique o, ne passe ni
en n, ni en p, car alors o), rencontrera I'une au moins des coniques o,, ¢, en un
point distinct de m.

On verra aisément, sans qu'il soit nécessaire d’entrer dans plus de détails, que
si les trois coniques ¢ ne sont pas tangentes deux a deux en deux mémes points,
ou surosculatrices deux 4 deux en un méme point, la surface (3) n’admettra pas
de cycles finis.

Si les coniques ¢ sont tangentes deux 4 deux en deux mémes points, I'équa-
tion (3) pourra s’écrire

= (ay +a)(zy + b) (zy + ),
azb, bFec, abc # o,

et si nous posons
zy =X, r=Y,

la surface transformée sera le cylindre cubique
st=(x+a)(xz+b)(x+c)

el, par suite, la surface considérée possédera deux cycles finis.
Si les coniques s sont surosculatrices deux 4 deux en un méme point, la sur-
face (3) pourra, dans ce cas, étre ramenée a la forme

zi:(y2+x+a)(y2+x+ b)y(y2+ > +c)

et la transformation
yi+ax=X, ry=Y,

nous conduira encore & un cylindre cubique.

'Si la conique o vient a se décomposer en deux droites, on aura i considérer
la surface

(3) 2=g,0,0 0.
Nous pouvons écrire (Chap. I, n° 3)

(o1,0))=o0,
Fac. de T., 2* 8., I, 24
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c¢’est-a-dire que la surface (3), comme la surface (3), ne saurait admettre plus
de deux cycles finis distincts. Si I'on considére I’ensemble des deux droites &
comme représentant une conique, la discussion sera la méme que pour la sur-
face (3). On ne pourra avoir de cycles finis que lorsque les coniques o5, o, et la
conique formée par 'ensemble des deux droites ¢ seront tangentes deux & deux
en deux mémes points, ou surosculatrices deux a deux en un méme point. Le
premier cas, seul, pourra se présenter : c’est le cas ol 5, et o, étant bitangentes,
les droites s, o', sont les tangentes communes & ces deux coniques. La surface (3)
devient alors, aprés une transformation homographique convenable,

22=axy(xy +a)(x) +b),
a#b, ab o,

il existera deux cycles finis sur cette surface.

k. fo se décompose en une conique et quatre droites. — Considérons une
surface de la forme

/ -2 ’ " Ui
%) ?==0y0,0) 0} 7).
Si les droites ¢ forment un quadrilatére et si la conique o, ne passe par aucun
sommet du quadrilatére, on aura évidemment

m

(G’,,O"‘)-‘—_- o, (a"‘,o'"‘)::o, (0'”1, g,)=0,

et aussi
(7'2’ 0'1) — 0,

puisque la conique o, rencontrera la droite o, en des points qui donnent lieu a
cette relation.

Si la conique &, passe en I'un des points d’intersection des droites g, les équa-
tions précédentes subsisteront encore. Le cas ou trois des quatre droites o se-
raient concourantes ne présente, non plus, aucune difficulté.

5. Les cycles de la surface
2= fs(x,y),

ol fi = o représente six droites, sont tous réductibles & zéro, & moins que les six
droites ne soient concourantes. La surface, dans ce cas, est représentable sur un
cylindre du sixiéme degré.
Ex risumi, les surfaces
= fo(2, ),

qui admettent des cycles finis sont celles pour lesquelles f; se décompose :
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Soit, en trois coniques tangentes deux & deux, en deux mémes points,
U’une de ces coniques pouvant se décomposer en deux droites;

Soit, en trois coniques surosculatrices deux & deux, en un méme point;

Soit, en six droites concourantes.

En d’autres termes, parmi les surfaces considérées, celles dont I'ordre de con-
nexion linéaire n’est pas égal a un sont représentables sur des surfaces coniques.

1I. — APPLICATION AUX SURFACES DU QUATRIEME DEGRE.

1. Etant donnée une surface du quatriéme degré non rationnelle, ni cylin-

drique, ni conique
F(z,y,5)=o,

si cette surface n’admelt aucune singularité, son ordre de connexion linéaire sera
égal 2 un. Nous pouvons donc supposer, pour la question qui nous occupe, que
F a, au moins, un point double. S’il existait un point triple sur F, la surface se-
rait unicursale. -

Soit donc une surface du quatriéme degré ayant, au moins, un point double
que nous supposerons a l'infini sur O z. [’équation d’une telle surface sera de la

forme
(m 229y (2, y) + 23 93(2, y) + @i (2, y) =00

L’équation du cylindre circonscrit a cette surface, parallelement 2 O z, s’obtiendra

en annulant le polynome f(z, y) défini par la formule
Sz, y) = @3 — 929,

La courbe /= o, qui est du sixiéme degré, est la courbe de passage (Uebergangs
Curve) de la surface (1). Cette surface (1) correspond birationnellement i la sur-

face

(2) | 2= f(z, y).

2. Le polynome f pourra étre divisible par le carré d’une expression linéaire u

en z,y
’ S=ud(z,y),

$(z,y) étant du quatriéme degré. Sil'on veut. alors, que la surface (1) admette
des cycles finis, il faudra que §(x,y) = o se décompose en quatre droites con-
courantes.

Si f ne contient aucun facteur linéaire carré, la surface (1) admettra des cycles
finis, lorsque la courbe f= o se décomposera :
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Soit, en trois con:ques tangentes deux & deuz, en deux mémes pomts, Dune
de ces coniques pouvant se décomposer en deuz droites;
Soit, en trois coniques surosculatrices deux a deux en un méme point. -

Si f= o se décomposait en six droiles concourantes, la surface (r ) correspon-
danl;e serait un cylindre ou un céne.

3. Considérons, d’abord, le cas ou ’on aurait
(3) f(x J’)—% 029,== u'a, 7y 7\ Y,

les équations
g,=o, ceey gi=o0
représentant quatre droites concourantes. ‘
Supposons, en premier lieu, que ©; ne soit pas divisible par u. Si w=o0 est
I’équation d’une droile ne passant pas au point dé concours des droites &, nous
pourrons, aprés une transformation homographique convenable, ramener 'iden-
tité (3) a la suivante

(4) 0l — 0,0, = 2 (y +a)(y—+b) (¥ +c) (¥ +d),

©,= 0 sera une conique tangente a chacune des droites 5. Cette conique sera donc
formée de deux droites passant au point al'infini sur Oz, ou d’une droite double.
Cette droite double devra, dailleurs, passer au point de concours des droites o;
car, autrement, les points d’intersection de celte droite avec les droites o seraient
des points doubles pour la courbe f(z,y) = o, ce qui ne saurait éLre.

Mettons l'identité (4) sous la forme

2

(5) oi—2(y+a)(y+b)(y+e)ly+d)
P2 "

et supposons que I'on ait
o= (y+a)(y+B)

« et B désignant deux quantités quelconques, mais différentes. Le numérateur du
premier membre de (5) est une expression en z, telle que tous les coefficients
des différentes puissances de x, dans cette expression, devront étre divisibles par
©,. On en déduit que @, sera du premier degré en z,

4

¢;=Ax -+ B.

La cubique ¢,= o aura un point double & I'infini sur Oz, et il en sera de méme



SUR LA CONNEXION LINEAIRE DE QUELQUES SURFACES ALGEBRIQUES. 189
pour ¢, ¢’est-a-dire qu’on aura
o,=A'z*+ 2Bz + C,

A', B', (! étant des polynomes en y. .
On arrivera au méme résultat si l’on suppose que v, a pour expression

2= (y+ a)?,

a n'étant égal a aucune des quantités a, b, c, d. Il ne pourra, en effet, arriver que
I’on ait pour ©,, par exemple,

Pa— ()"*‘ a)?,

car, alors, le premier membre de (4) serait divisible par (y + )2, et le second
membre, par (¥ + a) seulement.
Sil'on pose 9, = C, I'identité (4) deviendra

(Az +B)—C(A'z*+2B'2+ C) =2y +a)(y+b)(y+c)(y +4d),
avec les conditions
(6) B'—CC'=o0, AB—CB'=o,
et la surface du quatriéme degré correspondante sera
(7) - ) C:z—i—zs(Ax+B)+A’x‘—l—‘2B’x—|—C’:o‘;

cette équalion peut s’écrire, en vertu de la premiére des relations (6),

4

2
C<z+:—‘}> +x(2Azs+ Ao+ 2B') =o;

cette surface serait unicursale, comme on le voit, en posant

z—}—:—f:xZ,

elle ne saurait donc étre représentable sur le cylindre
B=(y+a)(y+b)(y+e)(y+d),

et, par conséquent, si la droite © = o0 ne passe pas au point de concours des
droites @, on ne peut satisfaire a I'identité (3), en supposant que @; n’est pas
divisible par u.

Soit, maintenant, le cas ou I’équation u = o représente une droite passant par
le poin:t de concours des droites o; f(x,y) pourra, alors, se mettre sous la
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forme
(8) S(@,y) =0 — 020 =y (¥ +a) (y+b)(y+c)(y+d).

Admettons que g; ne soit pas divisible par y.
Le polynome en y, ¢,, aura pour expression

Pa=(y +a)(y+B),
ou

992:(}’—'““/)2,

a et (3 étant des quantités quelconques, mais différentes; y peut aussi prendre
toutes les valeurs, sauf les valeurs a, b, ¢, d.
Le polynome ¢; ne contiendra  qu’au premier degré

Q3= Az + B,
et, par suite, o, contiendra z, au second degré seulement,
o,=A'x*+ 2B’z + (),

®p devant diviser I'expression

i —ry (y+a)(y+b)(y+c)(y+d),

il s’ensuit que le polynome A, en y, du second degré, sera divisible par o, ; sil’on

pose ¢;=C, il viendra donc
A=1C,

) étant une constante.
L’identité (8) entraine, d’ailleurs, les conditions suivantes :

A’—CA'=o, AB — CB'=o,

d’ot1 ’on tire
A'=2»C, B'=1B,
et, dés lors, la surface
Czt425(Az+B)+ A2+ 2B+ C=o0
sera un cylindre, car 'équation précédente peut s’écrire
C(s+2rz)2+2B(s+Azx)+ C =o.
‘Ainsi, étant donnée une surface dont 'équation est de la forme

32 0y(@, y) + 23 93(2,0) + @i, ) = o,

si cette surface du quatriéme degré n’est pas rationnelle; si elle n’est ni cylin--
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drique, ni conique, et si, de plus, elle est représentable sur le cylindre
= (y+a)(y+b)(y+e)(y+4d),

u étant une expression linéaire en z et y, on sera assuré que le polynome o; est

divisible par «. On pourra donc écrire

ea(z,y) = uds(2,y).

Si 'on revient a I'identité (3), on voit que le produit ¢, 9, sera divisible par u2. 1
n’est pas admissible que ¢, el ¢; soient, simultanément, divisibles par u; car,
alors, la surface du quatriéme degré se décomposerait.

4. Soit d’abord

o= U Y (2, 7);
nous aurons i considérer l'identité
P—gaya=(y +a) (y +0)(y +e€)(y+d)=o(y),
on voit facilement que les équations
©a== 0, Y20

devront représenter des droites passant par le point & linfini sur Oz; ¢, et y,
seront ainsi des polynomes, du second degré, en y. Il en sera de méme pour §,,

et nous aurons, alors, a considérer la surface
22a(y) +2zudy (y) + uty(y)=o.
Si « ne dépend que de y, cette surface sera un cylindre. Sinon, on pourra poser
u=z,

et il viendra alors la surface du quatriéme degré a deux droites doubles non con-

courantes
(D 52 0x(y) + 230 §a(y) + 242 (y) = o
Soit, en second lieu,
CPz‘: u",
I'identité
Y:—o=w(y)

pourra étre satisfaite de deux maniéres différentes, suivant que ’on prendra pour
¥, une fonction de x et y, ou une fonction de y seulement. Dans ce dernier cas,
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©, ne dépendra, non plus, que de y, et nous obtiendrons la surface
B2t 4250 (y) + o (y) =o,

u devra contenir z, et I'on pourra poser encore u = z. La surface qu’on aura
ainsi, )

(1I1) 222’ +azxd,(y) + o (y)=o,

peut étre considérée comme étant la transformée homographique d’une surface

de révolution. ' o
Si, maintenant, on suppose que Y, est fonction de x et )y, ¢, sera alors donné

par la formule ' '

¢ =430 0) —w(y),
ce qui nous conduira a la surface

2w+ 2sud, (v, y)+ Ui (x,)) —w(r)=o.

Si la droite w=o0 passe par le point de concours des droites w(y)=o,
on pourra prendre pour la droite de I'infini cette droite . La surface, correspon-
dant & ce cas, aura pour équation '

(III) s24-asdy (2, v) + Y3 (2, y)—w(y)=o.
Au contraire, si ’on peut poser # = z, il viendra
a4 2sxdy(x, )+ Yi(r, y) —o(y)=o0;

cette surface est une transformée homographique d’une surface de révolution du
quatriéme degré. On peul, en effet, écrire ainsi son équation

[s2 + $a(z, y)P—w(y)=o.
Soit alors
Yz, y)=ax+bry +. ..

et effectuons la transformation
z=X +il,

s+ax =X —I(Z,
il viendra la surface

[Z2+ X2 —2aX — 2B +y]*—w(y)=o,

a et B étant des expressions du premier degré en y. La nouvelle transformation

homographique
1 Z=s5+00,

X=z+a
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nous donnera la surface de révolution
(3*+ 2+ 0)—w(y)=o,

5 élant un polynome du second degré cn 3.
poly g

3. Nous devons maintenant considérer le cas ol 'expression f(z, ) ne serait
divisible par aucun facteur linéaire carré.

Et, d’abord, supposons que f(z, y) se décompose en trois coniques tangentes
deux & deux en deux mémes points. Nous aurons & satisfaire a 'identité

(9) Sz, y)=0el— g, = A(x — ay?)(x — b3?)(x — c)?) = 0,0, 05.

On voit que la conique
©y=—0
devra étre bitangente ou surosculatrice 4 chacune des coniques . On pourra

donc écrire

oo=x —ay’+APP=2 —b)*+pQ?=a —cy?+vR2

Sil’une des quantités A, u, v est infinie, la conique @, se réduira 4 une droite
double. 11 viendra
9= (ax + By +7)*
Si la droite
ar+By+y=o

ne coincide pas avec la corde des contacts des coniques &, ou avec I'une de leurs
tangentes communes, cette droite rencontrera '’ensemble des coniques o, au
moins en quatre points, par lesquels devra passer la cubique $3==0: ce qui est
impossible, ©; ne pouvant étre divisible par oz + By +v.

Siaucune des quantités X, u, v n’est infinie, alors les identités

(a—0)y*+pQ*=21P%,  (a—c)y*+vR:=iP?

montrent que les droites

P=o, Q=o, R—=o0

devronlt coincider avec la corde des contacls des coniques ¢

Y = 0.
Il s’ensuit que 'on aura
CPEZ 1.2,
ou
=%,

Fac. de T., 2 S., IiL
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ou
Q=2 — ay’
Soit
9y=x — 2)";
si, dans I'identité (g), on suppose que x devienne égal & ay?2, il viend‘ra
9;= — Aabcy?,
ce qui suppose que ¢35 est de la forme
9= (2 —Br")y,
de telle sorte que o, sera déterminé par I'identité suivante :
(2 — By — (@ —ay*) 9= (2 — ay*) (@ — by*) (@ — cp),
ou, si I’on rejette & I'infini la droite y = o, par I'identité
(zt—B)— (2t —a)o,= (2t —a)(xt—b)(xt—c),

ce qui donnera
o,=m(xt)*+ n(xt)+p;

la surface du quatriéme degré correspondant & ces expressions de ©., 93, 9, sera

donc
2(xt—a)+25(xt—B)+m(rt) +n(xt)+p=o;

on obtiendra ainsi une transformée homographique d’une surface de révolution.
Il en sera de méme, si I'on suppose que a devienne nul, ou égal & I'une des
quantités a, b, c.
L’hypothése
Pa=y*

n’est'pas admissible, car si, dans I'identité (9), on fait y égal & zéro, il viendrait
pi=Auxd,
Reste donc le cas ot I'on aurait
o .Z’z,
la conique v, étant alors une tangente commune aux coniques &, comptée deux
fois.
Si I'on échange entre elles la droite de I'infini et la droite y = o, I'identité (9)

deviendra

(10) 91— 920,= A2y — @) (ay — b)(xy —¢),
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ou encore
(11) 93— 929, = A(2y)*+ B(xy)*+ Clay) + D,

I’équation
Ap+Bp2+Cu+D=o

ayant ses racines toutes distinctes. ‘
Le polynome 9, étant égal & 22, on voit que les deux termes

Czy, D,

devront provenir de ¢;. Le second membre de (11) peut s’écrire

<2:;5 xy + \/H)z — [:J—Iz)x‘{yg%— Azdys 4 Bay?,
ou bien

<——C—xy+\/l_)\)2— x? [E)'?—Axy:‘—B_y‘-’]

2y/D ) 4D ’

et, si nous posons
Vb=, 2_5_5 —m,
m*— B =}n, A:_/“Z,
I'identité (11) deviendra
03— P29, = (may + ¢)2— hz*(ny*+ uxy?).
On pourra alors déterminer les fonctions ¢ par les équations suivantes :
Q3= mxy + ¥, 0y = 2, Q= ny*+ uxy?,
ce qui donnera la surfac.e
(Iv) 224 s(mxy +v)+ny*+uzxy’=o.

Remarque. — On a identiquement

[may +v+22%(az + By + y)]?
— 42 [ny?+uzy+ 2} (ax + By +y) -+ (ax + By +y) (mary + 0)]

=(mxy + v) =42 [ ny*+ way?],
mais on remarquera que la surface

B2+ s[may + v+ 22 (ax+ By +7)]
+nyttuzry + x*(ax + By + )+ (ax + By +y)(mxy + o) =o,
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est une transformée homographique de la surface (IV). 1l suffit, pour le voir, de
poser
s=l4+ar+By—+7y.

6. Nous avons enfin & chercher les surfaces du quatrieme degré, pour
lesquelles la courbe de passage se décompose en trois coniques surosculatrices
deux a deux en un méme point. Il faudra alors satisfaire a 'identité

(12)  of— o= (ar+ )%+ p)(ax +)* +m)(axr +y + ) = 0,957},

2

La conique ¢, =0 sera une conique véritable surosculatrice a chacune des
coniques ¢; ou bien v, = o représentera la droite de I'infini comptée deux fois.
On aura donc

y=ax -y +a,
ou
9,z const,

Dans le premier cas, ¢, et o, auront pour expressions
oy ax + yi4 B, o= (ax + y*) 4+ m(axr + y*) + n,
et la surface du quatri¢me degré correspondante aura pour équation
sPaxr+ )+ o) +25(axr -y + B) + (ax + ¥+ m(ax + y?) +n = o,
ce qui peut s’écrire sous la forme
(ax + 324 h3?4- ks 4+ 1)2— g,(5) = 03

on lrouve ainsi une transformée homographique de la surface (111).

Supposons, maintenant, que I’on ait
9,z consl.

Si l'on fait la transformation qui consiste a changer x en x + /4, les équations
des coniques ¢ deviendront

ar —+ y*—4 u,+ ah=o, ax + yi—+p,+ah ==o, ax + y*+ p,+ ah = o,

0u7 en POBaﬂt
L -+ (l/l - m
( ’

ax 4 y*—+-m,;=o, ax - )4 m, =o, ax + y'+ niz==0;
I hoisi / de f A avolr
on peut SUPPOSG[‘ (lllC on a choisi1 /i de dCONn a avolr

Iy~ 0ty = M= 0,
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et, dans ce cas, l'identité (12) pourra s'écrire

(13) 03— 00, = (ax + )P+ plax+y*)+r. -

ey

Le second membre de cette identité deviendra, si 'on introduit la variable
d’homogénéité ¢,
(axt--y*)pP+plaxt—4-y?)tt+ rif,

c’est-a-dire, en développant,
(14) @3B+ ySi-k3axtyt+3atx )+ pax P+ py*tt+rif
¢, étant égal 3 ¢2, on voit que les termes
y% 3Baxtyt
devront provenir de ¢;. Multiplions 'expression (14) par 4, ajoutons et retran-
chons la quantité
9a2‘l_-‘2 t?uVQ;
(14) sera alors de la forme
[2y3+3azyt]+ 4 [ada?t + P2y pax O+ py? &+ rit],
et 'on pourra prendre, pour les fonctions o,

=2, o,==2)%+ 3axyt,

—paxl®—py**—rit,
ct, en faisant ¢ = o, il viendra la surface du quatriéme degré

(V) '+ s(2y+ 3axy) —atxt— jats?)' — pax — py —r=o.

Remarque. — On pourrait encore prendre pour ¢
oy=2yd+ 3axyt—+2(axr+ Py +yt),

ce qui donnerait une nouvelle expression pour g, ; mais les surfaces auxquelles
on arriverait ainsi seraient des transformées homographiques des surfaces (V).

7. Dans son Mémoire déja cité, sur les surfaces du quatriéme degré dont
le genre géométrique pg est nul, M. de Franchis a obtenu, par une autre voie,
les surfaces (1), (1I), (IL1), (IV), (V), et il en a fait ensuite I'étude géométrique.

Nous pouvons remarquer, au sujet de ces surfaces, qu'elles sont toutes repré-
sentables sur un céne cubique; de plus, ce sont les seules surfaces du quatriéme
degré admeltant des intégrales de dillércntielles totales de premiére espéce, et il
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’ : .y . : ‘oA
s'ensuit qu’une surface du quatriéme degré ne peul avoir deux intégrales de

différentielles totales de premiére espéce qui ne soient pas fonction l'une de
Pautre (*).

M ) v . .
Si Pon désigne par = le genre d’une section plane d’une surface conique
et par p, le genre numérique de cette surface, on a

Pn=——m,

et, par conséquent, pour les surfaces considérées, on pourra écrire les relations
suivantes :
Pr—1=2, Pg =0, Pn=—1.

CHAPITRE III.

CONNEXION LINEAIRE DES SURFACES 32= f4(z,y).

Etant donnée une surface du huitiéme degré de la forme
z“’:fa(x, VV)'

I'ordre de connexion linéaire d’une telle surface sera égal & un, si la courbe

Js(z, y)=o0
est irréductible. Nous allons examiner les différents cas de décomposition de cette
courbe.
1. fs se décompose en deux courbes du quatriéme degré. — Soit la surface
(1) 2=g0,0,,

et supposons que l'origine O soit un point de rebroussement pour la quar-
tique 5, =0 et un point simple pour la quartique ¢, = o, la courbe &) étant, de
plus, tangente en ce point a .
Si lorigine est un point de rebroussement de premiére espéce sur o, nous
aurons la surface
= (2t i ) (e Ryt L),

(1) E. PicArp, Théorie des fonctions algébriques de deux variables indépendantes,
t. I, p. 131.
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et la transformation
(U) z=XY, y=Y
nous conduira & une autre surface

B2=Y(Y+..)(X+A2Y-+...),

qui n’admet pas de cycles finis.
Si l'origine est un point de rebroussement de seconde espéce, I’équation (1)
pourra s’écrire
2= (... +2Bxy .. ) (e hyr ).

Soit d’abord,
h—2hf +1=0;

on effectuera alors la transformation
) z=XY:, y=Y,

et nous obtiendrons la surface

5*=(a3) (73),

en désignant par le symbole (s,) la courbe transformée de o,; (s,) = o rencon-
trera, en général, la droite y = o en deux points simples m, n, ce dernier point
étant aussi un point simple de (o). Il pourra encore arriver que m vienne a
coincider avec n et alors la droite y = o deviendra tangente & () en n ou bien
(s4) admettra un point double en n. Si ce point double est un point de rebrous-
sement pour (o), nous allons voir que ce sera un point de rebroussement de
premiére espéce.
En effet, I’équation développée de o, peut s’écrire

oo=axr+ 202y +2Bxy*+ axt + bty + cxly? +dxy?+ yt=o,

sil’on fait disparaitre le terme en 23 par un choix convenable de 'axe des z.
La transformation (V) nous fera passer a la courbe (s,)

(o) =2+ 202y + 2Bx + azx*yt+ bady’ + cx’y*+dxry +1=0.

Si I’expression
2+ 2 & +1

n’est pas un carré parfait, (¢,) rencontrera la droite » = o en deux points simples
metn ( fig. 12). Dans le cas contraire, nous pouvons prendre 3 = — 1 et, sinous
transportons 'origine aa point (x =1, ¥ = 0), il viendra '

()=(2a+d)y +z2*+ (ba +d)xy +~cy*+ 2axy + by’ +~2cxy?+...=o0.
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Si 20 4-d 7% o, le point m est venu coincider avec n, et la droile y = o est
tangente & (s,) en n. Si 20+ d = o, le point n est un point double sur (s,). Le

Fig. 12,

)
Y=o
©,
point double sera & tangentes confondues si I’expression
z*+ 202y + Ccy*
est un carré parfait; alors ¢ = a2 et () devient
(e)=(z+ay)+2ax’y + by’ + 20’2y +...=o0.
Coupons cette courbe par la droite
x4+ ay =o;
pour cela, remplacons « par — a)- dans 'équation de (s,), on obtiendra
by3+...=o,

les termes non écrits étant de degré supérieur a trois. Si la tangente de
rebroussement en n rencontre (s,) en quatre points confondus en n, on devra
avoir

b=o

’
mais alors la courbe o, aurait pour équation
(x—y*+axy)+azxt=o,

et, par conséquent, ne serait pas indécomposable. Il s’ensuit que si le point n
considéré est un point de rebroussement sur (s,), ce ne peut étre qu’un point de
rebroussement de premiére espéce.

Suapposons, en second lieu, que I’on ait

h*—aBh + 15740,

inégalité qui sera certainement vérifiée si o = o, c’est-a-dire si 'origine est un
point d'inflexion pour ¢,. Dans le cas actuel, quatre seulement des points d’inter-
section de o, et ¢, seront confondus au point O. Les deux quartiques se rencon-
treront donc, au moins, en un autre point O,. Si ce point est un point double pour
les deux courbes, on transporteral’origine en O, on rejettera a l'infini la tangente
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de rebroussement en O, et I'on prendra pour axe des « la droite OO ; aprés quoi
on effectuera la transformation

X
(W) r—= <, Y= o

qui donnera une surface du sixi¢me degré déja étudiée

2= fi(z, y).

Si le point O, est double sur o, seulement, ce ne sera pas pour cette courbe un
point de rebroussement de seconde espéce.

Enfin, si le point O, est un point de rebroussement de seconde espéce sur o, et
un point simple sur s, et que, de plus, les deux courbes se rencontrent, en ce
point, en quatre points seulement confondus avec O,, les deux quartiques devront
alors se couper en un troisiéme point O;; d’ailleurs, ce point O, ne pourra étre
un point de rebroussement de seconde espéce, ni pour s, ni pour .

Nous voyons ainsi que, si les courbes s, ¢, se coupent en un point O qui est
un point double pour I'une de ces courbes et un point simple pour l'autre, la
surface (1) correspondante n’aura pas de cycles finis.

Il en sera de méme si, en un point O, les deux quartiques ¢, o, admettent,
I'une un point double a tangentes confondues, I'autre un point double avec deux
branches distinctes, I'une de ces branches étant, au point O, tangente a &;. Dés
lors, on pourra poser

o, =a%+...,

g,=a(x+y)+...,

les termes non écrits étant de degré supérieur au second.

Pour voir que, dans cette hypothése, tous les cycles de la surface (1) se rédui-
ront & des cycles nuls, on effectuera une transformation (U) si le terme en y?
entre dans o, ou si ce terme ne se trouve ni dans o, ni dans ¢, ; on fera une
transformation (V) si le terme en y3 existe dans &, et non dans &,.

Nous examinerons encore le cas ou o, et o, auraient un point de rebroussement
en un point O, les deux tangentes de rebroussement en ce point étant con-
fondues.

Si le point O est un point de rebroussement de premiére espéce pour les deux
quartiques, ou pour l'une d’elles seulement, on aura recours a une transforma-
tion (U).

Sile point O est un point de rebroussement de seconde espéce pour o, etd’,
on rejettera a l'infini la tangente commune de rebroussement en O; on prendra
pour origine l'un des points de contact O, de s, avec une tangente a celte courbe
menée du point O. L'axe des  étant la droite OO, les équations des deux quar-

Fac. de T., 2* S., IIL 26
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tiques seront alors
a=hy'+y*(ax + by) +x*+maxy +ny’+y =o,
ag,=Rhyt -y adx+by)+x*+mzy +n'y +a'x+ By +y =o.

Effectuons sur ces deux courbes une transformation (W), il viendra deux autres
courbes (a,), (o))

(00) =y + 2+ may +ny*+ax+ by + h—o,

(@) =yy'+(dz+fy)y+2>+may+ny*+aax+by+h=o,

et ’on sera ramené a considérer la surface
(1) z*=(a,)(d,).

Il est aisé de voir que, parmi les points d’intersection des courbes (s, ) et (),
il y en aura quatre seulement confondus au point a l'infini sur Oz. Les deux
courbes (), (o,) se couperont donc, au moins, en un autre point O, qui devra
étre un point double sur I'une de ces courbes si I'on veut que la surface (1) puisse
admettre des cycles qui ne soient pas tous nuls. D’ailleurs, si I’on place l'origine
au point O,, 'axe O,z étant la droite OO,, et qu’on transforme la surface (1’)
par les formules (W), on obtiendra une surface du sixi¢me degré

2= f(z, ¥)-

Il pourrait arriver que, du point O, on ne pit mener a o, el &, aucune tan-

gente distincte de la tangente de rebroussement. Soit, alors,

o, = hy*+ y*(azx + by) +x*+ mxy + ny*+ ax + Py;
on aura, par hypothése,

(ay*+ my 4+ a)*— 4(hy*+ by*+ ny*+ By) = const.,
et il s’ensuit que I’équation de o, pourra s’écrire

o= (Vhy*+x +Vny)' + ez +py =o;
de méme, pour ', on aura
o=y +z+yn'y)+az+py+y=o,

et, si l'on pose B B
Vey'+a+yVny =X, y=Y,
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a la surface (1) correspondra birationnellement une surface

2=fo(2, ).

Les remarques qui viennent d'étre faites sur la surface (1) nous permettent d’af-
firmer qu’une telle surface ne posséde aucun cycle fini.

2. fs se décompose en une courbe du sixiéme degré et deux droites. -— Nous
allons considérer la surface

(2) B2=o, 0,0,

et examiner, d’abord, le cas ou les droites &, &, ne se coupent pas sur la
courbe ¢4 = o.

Supposons que la droite ¢, soit tangente a ¢ en un point O, qui est pour cette
courbe un point de rebroussement de seconde espéce. Si la droite o, rencontre o4
en quatre points ou en cinq points confondus avec le point O, o, devra encore
couper o en un point simple, ou en un point double auquel elle ne sera pas tan-
gente 4 la courbe o¢; et, par conséquent, la surface n’admettra pas de cycles finis.

Mais il pourra arriver que la droite o, soit tangente a o; en un point de
rebroussement O, et ne rencontre cette courbe qu’au point O, et que, de méme,
la droite &, soit tangente & &5 en un autre point de rebroussement O’, et ne ren-
contre la courbe qu’en ce point. Rejetons ¢ a 'infini et prenons OO’ pour axe
des z et &, pour axe des y. L’équation (2) pourra s’écrire

2 -

3= 20y
faisons la transformation simplement rationnelle

x = X2, y=Y;
il viendra une surface
F=/f(X, Y),
JSn désignant un polynome en X, Y qui sera irréductible, si toutefois I'équation
de la courbe o ne peut pas étre mise sous la forme

Loz, 7)) —2[$(2, y)]'=o;
mais alors, nous aurons

e(z, y)=y*+...,

les termes non écrits étant de degré inférieur au troisiéme. D’ailleurs, ¢ (z, ¥)
devra étre du premier degré en x. Il s’ensuit que la transformation # = X2 nous
fera, dans ce cas, passer de la surface (2) &4 une surface déja rencontrée

3= 0,0
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On raisonnera exactement de la méme facon dans I'’hypothése o les droites s,
o, se coupent en un point double de o et sont, de plus, tangentes : la premiére
en un point O, la seconde en un point O’ de 54, ces deux points O et O’ étant sur
la courbe 4 des points de rebroussement de seconde espéce.

Supposons encore que ¢y, o, se coupent en un point triple O de'oy. Si 'une
des droites o n’est pas tangente en O a o, la surface (2) n’aura cerlainement pas
de cycles finis (Chap. I, n° 5).

Chacune des droites o devant étre tangente & o au point triple considéré, I'une
de ces droites sera une tangente simple pour cette courbe, nous la prendrons
pour axe des ». Nous pourrons écrire ainsi I'équation (2)

B=zyl[xy(az +by)+...], b*o
et, aprés une transformation (U), il viendra la surface
B=zy(bx +...)
dont 'ordre de connexion linéaire est égal a un.
3. fs se décompose en une courbe du sizicme degré et une conique. — Si

la courbe du sixiéme degré o ne rencontre la conique 5, qu’en un point w, nous
pourrons poser

n=x—y% = (x—y) e, y)+k

et il suffira d’examiner le cas ou le point » serait un point de rebroussement de
seconde espéce pour g, la tangenle de rebroussement étant la tangente a 5, en ce
point, et aussi le cas ol &, aurait un point multiple d’ordre quatre en w.
D’ailleurs, il n’y a pas non plus alors de difficulté, car la transformation

z—y=X, y=Y
nous conduira de la surface
(3) 2= 0403

a une autre surface déja étudiée.

Si les courbes o4 et o, se rencontrent en deux points w et O, on placera I’ori-
gine au point O, on prendra pour axe des z la droite O o et pour droite de l'in-
fini la tangente en w 4 o,, et 'on effectuera une transformation (W).

4. fs se décompose en une courbe du cinquicme degré et trois droites. — La
surface

(4) 5?=g030,0,0
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étant donnée, supposons que les droites ¢ forment un triangle, et que deux des
sommets O’, O" dc ce triangle ( fig. 13) ne se trouvent pas sur la courbe o;. Nous

aurons alors
(o1,07)=o0, (¢}, 07)=0;

d’ailleurs, la condition suivante

(95,01) + (9}, 0)) =o,

Fig. 13.

qui est toujours vérifiée, nous donnera, en outre,
(o5, 01) = o.

Si la courbe o5 admet un point simple en un sommet O" du triangle des

droites o, il viendra
(o5, 01) =0, (o1,07)=0

et, par conséquent, aussi
(01, 07) =o.

Pour que la surface (4) puisse avoir des cycles finis, il faudra donc supposer
que, la courbe o5 passant en deux sommets au moins, O’, 0", du triangle consi-
déré, ces sommets sont pour o5 des points doubles ou des points multiples d'un
ordre plus élevé. On rejettera, alors, o', a I'infini, et prenant pour axes les droites

¢4, o,, on fera une inversion

X = g Yy = %
et 'on seraramené a une surface, sur laquelle tous les cycles se réduisent a des
cycles nuls.

Si les droites o sont concourantes et si la courbe o5 ne passe pas par leur point
de concours, tous les cycles de la surface se réduiront encore a zéro.

Si le point O (fig. 14) est un point simple sur 55, la tangente en ce point a la
courbe étant distincte de o, et &, il s’ensuivra que &; rencontrera &,, au moins

en un auatre point a, et ¢, au moins en un autre point 3. Ces deux points «, § ne



206 H. LACAZE.

sauraient étre simples sur o, car autrement nous pOllI‘[‘iOl’]S écrire
— ry ’
(55>°'l)"—0’ (05901)—07 (0'1,0';,):0.

Admettons que o soit un point double sur oy, et § un point simple; af étant la

transforme la surface
P=zxy(x+ay)os
en une surface

I

z2

Y(Y + aX)o,

Sapposons maintenant que le point O soit un point double sur la courbe o;.
Si deux droites s, &', ne sont pas tangentes a ¢, au point O, on raisonnera comme
dans le cas précédent. Si, au contraire, &, o, sont les tangentes au point double O
de o5, 'équation de la surface (4) pourra se mettre sous la forme

B=y(az +by)(adx+by)[(ax+by)(adx+by)+...],
ce qui nous donnera, aprés une transformation (V), la surface
s=y(az+b)(a'z+b)[(az + b)(a'x+b)+y(...)]

sur laquelle un cycle linéaire quelconque sera équivalent & zéro.
Enfin, si la courbe &5 a un point triple en O, la surface (4) sera unicursale.

5. fs se décompose en une quartique, une cubique et une droite. — La
condition

(03, o)) =0

étant toujours vérifiée, tous les cycles de la surface

(5) 32=0,0;0,
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seront réductibles a un seul d’entre eux, qui, lui-méme, nous allons le voir, sera
réductible a zéro. .

Supposons que la quartique s, coupe la droite &, en un point simple O, et ne lui
soit pas tangente en ce point, si la cubique o; ne passe pas en O, ou si elle
y admet un point simple, ou un point double, s, étant tangente & o3 en ce point
double, il est évident que la surface (5) n’aura pas de cycles finis.

Si la cubique &3 ayant un point double en O, s, n’est pas tangente en ce point
a @3, origine étant transportée en O, nous aurons, pour y voisin de zéro,
quatre racines infiniment petites : I'une @, donnée par ¢,= o, l'autre b, par
o= o et enfin deux autres ¢, et ¢, données par o3 = o.

Sil'on considére un cycle C entourant b, et une racine non infiniment petite,

ce cycle, aprés une révolution de y, s’accroitra de deux fois la somme de deux
cycles y et vy (fig. 15), de telle sorte que I'on pourra écrire

(0'5’ O’l):O‘

Considérons le cas ol o4 est tangente 4 ¢, en un point O, et rencontre encore
cette droite en un point O’, qui est double sur la quartique; o3 devra étre tan-
gente en O a ¢, et passer en O'.

Siles courbes o4, o3 se coupent en dehors de s, en un point O, et que ce point
soit double sur les deux courbes, on fera une inversion

00/, 00" étant les axes et O'O" la droite de l'infini. Si le point O” est un point
de rebroussement de seconde espéce pour o, o5 étant tangente a la quartique en
ce point, on fera uue transformation (W), aprés avoir transporté l'origine au
point O et avoir pris, pour axe des z, la droite O'O". On sera conduit ainsi &

des surfaces de la forme
2= fi(x, ¥).

Il reste a supposer que o3 et o4 ne se coupent qu’aux points O et O'. Si
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la cubique &; rencontre o, en plus de deux points confondus avec le point O,
I'équation (5) pourra s’écrire

B=z[r—ayr+... ][z —ay’+...] = z0y0,,

ce qui deviendra, aprés une transformation (V),

2]

‘=zl —a+y(..)][z—a+y(...)]

Si la cubique ¢; est tangente en O' i o, et rencontre cette courbe en plus de
six points confondus avec O'; si, de plus, le point O’ est pour la quartique

un point de rebroussement de seconde espéce, on fera encore une lransforma-
tion (V), sur la surface (5),

(V) «f:XYz, }/:Y,

I'origine ayant été placée en O/, 'axe des x coincidant avec &, et I'axe des ¥y avec
la tangente de rebroussement. 11 pourra arriver que la courbe transformée (047)
admette un point double ou un point de rebroussement de premiére espéce en un
point O, de y =o. Mais, alors, la courbe (o) qui passera en ce point y sera tan-
gente a (o). L’origine étant supposée en Oy, il suffira d’effectuer une transfor-
mation (U) pour passer de la surface

2=y (a,)(as)

A une surface n’ayant aucun cycle fini.

Soit encore le cas ou &, rencontre la droite ¢, en deux points O et O’ qui sont
doubles pour la quartique; 3 devra passer en O et O'. Si ’on rejette ¢ a Pinfini
et qu’on prenne une origine quelconque, les axes passant d’ailleurs, I'un en O,
V'autre en O, on sera, aprés la transformation

=G> VY =

X STY?
ramendé a considérer une surface de la forme

2 4

80 = GLUA'

Enfin, nous supposerons que &, rencontre &, en un point triple O; o; devra
passer en ce point, de telle sorte qu’on pourra écrire, en rejetant ¢, a l'infini,

o =¢3(y)x + 0, (y),
a5 = ¢ (y) 2*+ sz(y)«T+ $s ()3

si les courbes o, et o3 ne se coupent pas a distance finie, le résultat de 1’élimina-
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tion de x entre les équations

g,= o0, g3 =0

4

se réduira a une constante 4. Il viendra ainsi
() Loa ()P — $2(0) @3() 9u () + Y5 () [0s ()2 = £.

Dés lors, si 'on pose
o)z +o(y)=X, r=Y,

et que 'on tienne compte de la condition précédente, on sera conduit a une sur-

face de la forme
32=g,0,0.

6. 75 se décompose en une cubique, deux conigues et une droite. — Soit la
)
surface
(6) 32=030,0, 0y,

et examinons le cas ou les coniques o3, o, se coupent en quatre points distincts.
Si la droite o, ne passe en aucun des points communs a 3, o, la surface (6) n’aura
pas de cycles finis.

La condition
(g3,00) =0

sera, d’abord, toujours vérifiée. On peut écrire encore
’ —_—
(02, 05) =0,

et, enfin, la droite &, rencontrera chacune des deux coniques &, au moins en un
point : cela donnera deux points a, B. La cubique o3 ne pourra avoir un point
double en chacun de ces points, niétre tangente en « et $ 4 o;. D’ou une troisieéme
condition
(og,01) =0 ou (c,0,)=o.
1l en sera de méme si la droite o, rencontre les coniques s,, ¢, en un de leurs
points communs @ et les coupe en deux autres points o, {3.
Supposons que la droite &, passant toujours au poinl a soit langente en ce
point a &), et coupe o, en un autre point « (fig. 6). Si la cubique o3 ne passe pas

en ¢, nous aurons
(62"71):0’ (0290',2):0

et aussi
(g3, 0,) =o.

D’ailleurs, si la cubique o3 passe en @ et admet un point double en o, tous les
Fac. de T., 2¢ S., III. 27
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cycles se réduiront encore a zéro; car, la droite o, n’étant pas tangente en o i o3,

il viendra
(g, 01) =0

avec les deux autres conditions

(0'270'/2):0; (o3,0,)=0o.

Fig. 16.

On raisonnera d’une fagon tout & fait analogue dans le cas ou les coniques o,
o, ne se couperaient pas en quatre points distincts, et I'on sera toujours conduit
au méme résultat.

On verra également, sans aucune difficulté, que pour une surface de la forme
(6" 2= g;0,0,0, 0,

I'ordre de connexion linéaire est encore égal & un.

1. fs se décompose en quatre coniques. — Nous allons d’abord faire une re-
marque au sujet d’une surface ayant pour équation

no_m

(7) 2= 0, 0y Oy Gy

Supposons qu’en un point m ( fig. 17) de la conique o, par exemple, les coni-
ques &, 5, solent tangentes entre elles et tangentes a ¢, ; le point m ne se trou-

Fig. 17.

»
6y

6y

G’

vant pas sur ;. Nous prendrons pour origine un point ¢ commun a o, 5, et pour
axe des x la droite am, la tangente en m, & g, étant la droite de I'infini. Nous
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effectuerons une transformation (W)

X
(W) z =g ‘)':%;

et nous obtiendrons, alors, une surface pouvant se ramener & l'une des trois

formes suivantes
2= 03 0,0, 0y,

9 o
—0302010,0,,

3]

P v,
—03010,0,;

W

la surface (7), dans I’hypothése qui a été faite, n’aura donc pas de cycles finis.
11 s’ensuit que, si les coniques s, o) rencontrent o5, ou o, en dehors des points
communs a ces derniéres coniques, on n’aura pas & considérer le cas ou les co-
niques s, o, seraient tangenles 4 5, ou a ¢, en un méme point m.

Cela étant, soit, d’abord, le cas ou les coniques s, &, se coupent en quatre
points distincts a, b, ¢, d.

Si les coniques o}, o rencontrent 'une des coniques s,, o, en dehors des

points a, b, ¢, d (fig. 18), il viendra, en vertu de la remarque précédente,

(0y,03) =0 ou (0 05) =o,

(¢h,o) =0 ou  (d%,0))=o.

Drailleurs, il est bien évident que o), oy ne passeront pas, a la fois, par tous les

Fig. 18.

points a, b, ¢, d, et, par conséquent, une troisiéme condition viendra s’ajouter
aux deux premiéres, savoir :
!
(0.2, 0-2) - 0?

tous les cycles de la surface seront réductibles & zéro,

Nous devons donc supposer que o), par exemple, ne rencontre pas c,, &, en
dehors des points communs & ces deux coniques. On peut tirer de la que o), passera
en deux, au moins, des points «, b, ¢, d; soient ¢ et d ces deux points.

Si les points ¢, d ne se trouvenl pas sur &, nous pourrons écrire

(09, 05) =0, (0gy05) =o0.
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La conique & pourra passer en l'un des points @, b, au point a, par exemple.

Si ce point a n’est pas sur ¢}, on aura
(3 02) = 03

cetle condition subsistera si, toules les coniques s passantau point @, 'une d’elles
n’est pas tangente & 'une des trois autres, puisque la condition

m

) i

(9% @) + (0%, 02) =0,

qui est alors vérifiée, se réduit, dans le cas actuel, a
(g}, g2) =o0.

On pourra encore écrire celle équation si, le point @ étant toujours commun aux
q )y lep

quatre coniques s, o, est tangent en ce point & o, et o, & ¢, comme on le voit,

en faisant une transformation (V), d’origine a. .

Enfin, si la conique & rencontre s, ou &}, en dehors des points a, b, ¢, d,’'une,

au moins, des deux équations

(a5, 02) =0, (9% a;):O
sera cerlainement salisfaite, et tous les cycles de la surface (7) seront encore des
cycles nuls.

En raisonnant de laméme facon, on verra que, les points ¢ et d étant communs
aux trois coniques 6y, o, 65, il faudra que & passe en ces deux points, si I'on
veul que la surface (7) puisse admeltre des cycles non tous réductibles a zéro.

Des lors, si l’on prend pour axes les droites ac, ad, la droite de l'infini étant

la droite ¢d, et, si’on effectue une inversion,

1

x:LX_’ )/’:‘:Yy

on obtiendra des surfaces déja étudiées, et I'on montrera aisément que la sur-
face (7) n'aura des cycles finis que dans le cas ou les quatre coniques o passeront
par les points a, b, ¢, d. Ces coniques appartiendront alors & un méme faisceau
linéaire. L’équation de la surface (77) pourra étre ramenée a la forme

52

(¢ +a) (¢ +BY) (¢ + ) (¢ + oY)

et sera représentable sur un cylindre du quatriéme degré ou sur un céne cu-

bique.

Supposons maintenant que les coniques o, &, soient bitangentes, et soient @, b

les deux points de contact.
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;
L’une des coniques &, 5,, o, par exemple, ne devra pas rencontrer o, 5, €n
. . .
dehors des points a, b; o} sera donc tangente en @, b aux coniques o2, 5,.

Si la conique o) ne passe ni en « ni en b, il viendra

(O’;I,O'Q)ZO, (a’;’ gy) =0, (o-,g’a;):o;
. . o " .
il faudra donc supposer que 'un au moins des points a, b se trouve sur g,. Si
. . ;.
cette conique passe en @, par exemple, on fera une transformation (W), d’ori-
gine a, l'axe des z ¢étant la droite ab, et la droite de U'infini la tangente, en 0,

Ay, o,

La surface (7) admettra des cycles finis dans le cas seulement ou les quatre
coniques & seronl tangentes deux a deux en deux mémes points.

Si les coniques g, o, sont tangenl‘es en un point, ou osculatrices, ou suroscu-
latrices, la conclusion sera toujours la méme : on pourra tracer deux cycles non
équivalents a zévo sur une surface
T= 050,050,
lorsque les coniques ¢ appartiendront & un méme faisceau linéaire. Dans tous les

autres cas, I’ordre de connexion linéaire de la surface sera égal & un.

8. Js se décompose en trois coniques et deux droites. — Si les co-
niques ¢, o), sont tangentes a la droite ¢, en un point m non situé sur s, et dis-
tinct du point w de rencontre des droites s,, &, on verra, comme au numéro

I

précédent, que la surface
(8) 52 =0,0,0,0,0)

n’aura que des cycles nuls.

Considérons alors le cas particulier suivant : o, coupe les droites &, &, en
quatre points distincts. ‘

Si le point © de rencontre des droites s,, &, se trouve sur o, et o}, tous les
cycles de la surface (8) correspondante seront réductibles a zéro. En effet, la

condition
(o,07)=0

sera Loujours vérifiée; ensuile, si, au point w, &, esl tangente a o, et 5, 4 5,, on

pourra écrire
(6, 01) =0, (a},0})=0;

de plus, nous aurons aussi
(o9, 01) =o0.

Si maintenant, au point w, 'une des droites ¢ n’est tangenle & aucune des
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coniques s, o, il viendra I'équation
’ ’
(04, 03) + (o1, 0}) = o,

qui, dans le cas actuel, se réduit a

(Glz’ 0'12, ) =o,
on aura encore
(a3, cy) =o,

et enfin o, ni ¢, ne devront rencontrer 5, en dehors des points a, b, ¢, d, sans
quoi il s’ensuivrait une condition de la forme

(02 05) =0 ou (04, 05) =03

supposons alors que &, passe aux points ¢ et d. Si 'un de ces deux points ne se
trouve pas sur o., I’équation
p 29 1 €q
’
(o2y0,)=0

sera satisfaite. Reste donc & considérer le cas ou o}, o), passent en ¢ et d; on fera
une inversion d’origine a, les axes étant ac et ad, et la droite de l'infini, la
droite cd. On montrera ainsi que la surface (8) ne peut admettre aucun cycle fini.

Si aucune des coniques o), ¢ ne passe au point v, on raisonnera exactement
comme au numéro précédent et I'on arrivera a ce résultat, que la surface (8)
considérée admettra deux cycles finis lorsque les coniques ¢ et 'ensemble des
droites o, o, considéré comme une conique, appartiennent a un méme faisceau
linéaire. Dans tous les autres cas, la surface (8) ne posséde que des cycles nuls.

La conclusion sera la méme si Uon suppose que 'une des droites = ou toutes

les deux soient tangentes a s,.

9. Nous n’envisagerons pas les autres cas de décomposition de la courbe

Js(z,y) =o0;

ils peuvent, en effet, étre traités aussi simplement que ceux déja considérés.
Nous donnerons seulement le résultat de la discussion compléte, qui peut
s’énoncer ainsi : '

La surface
" "

532 = 0,0, 0,0,
admet deux cycles finis lorsque les coniques
"

’
gy =0, gy =0, gy =0, g, =0

appartiennent & un méme faisceau linéaire. Il en est de méme si une, deux ou
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trois de ces coniques venant & se décomposer en un systéme de deux droites dis-
tinctes, ces systémes considérés comme des coniques font partie, avec les autres
coniques véritables, d’'un méme faisceau linéaire.

Si les quatre coniques & se décomposent chacune en deux droites distinctes, la

surface correspondante
3*=o0y0,0;...0}"

admettra des cycles finis, qui seront au nombre de six, lorsque les huit droites

g, =o, ¢, =o, oy =o, Cey oi"=o
seront concourantes en un méme point.
Toutes les autres surfaces du huitiéme degré ayant pour équation

2= fy (2, ¥)

ont un ordre de connexion linéaire égal & un.
En d’autres termes, les seules surfaces du huitiéme degré de la forme consi-

dérée, qui posseédent des cycles non tous nuls, sont représentables sur des cones.

Remarque. — On déduit de ce qui précéde qu'une surface du cinquieme degré
ayant un point triple et admettant des cycles finis sera représentable sur un cone

cubique ou sur un cone du sixiéme degré.



