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: RECHERCHES

SUR QUELQUES

EQUATIONS AUX DERIVEES PARTIELLES

DU SECOND ORDRE

(DEUNIEME MEMOIRE ),

PAR M. E. GOURSAT.

1. Dans le précédent Mémoire (1), j’ai énuméré tous les types d’équations du
second ordre de la forme s = f(z, y, 5, p, q), pour lesquelles les équations diffé-
rentielles de chacun des systémes de caractéristiques admeltent une combinaison
intégrable renfermant les dérivées du second ordre, et j’ai montré qu’on pouvait
obtenir sous forme explicite I'intégrale générale de la plupart de ces formes
types. Je me propose de compléter ces résultats, en intégrant de méme les types 11,
HI, IV (p. 67), laissés de coté dans le précédent Travail.

2. L’équation
m N (e
admet les deux intégrales intermédiaires
(2) rz+1+4 p*=Xs\/1+ p?,
(3) tz+1+@?=Ys\/1+ ¢*;
I'équation (2), par exemple, peut étre considérée comme une équation différen-

tielle ordinaire du second ordre, renfermant une fonction arbitraire X de la

variable indépendante z, et il suffit d’une transformation trés simple pour la

ramener & une équation linéaire. Posons, en effet, « = 3y/1+ p*; équation (2)

(1) Vour page 31-78 de ce Volume.
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eut s’écrire
p
du X LR

2oz = Moz’

il vient en différentiant

2

<

Uy, 9% 2 -
x2_X prs + X (2p*+23r),

2

<

ce qui peut encore s’écrire, en tenant compte de la relation (2),

2u X' du
52X 9 + X[Xu —r1].
La fonction auxiliaire « doit donc satisfaire a I'équation linéaire du second
ordre
Ru X' Ju
4 A Y X2y —_—X-
(4 Jdx? X ox Xru=—X;

inversement, connaissant «, on a, pour déterminer s, I’équation

u2_ -2 ! 3 2__ -2 } 1 0 *
' 4 < Jdz X2 4)£> ’
d’Ofl 170l] tire

' 2 — 42 _I_ d_u :
(5) % —-u'—'X2<0'r>’

et tout se raméne en définitive a I'intégration de £'équation linéaire (4). Comme X
désigne une fonction arbitraire, nous remplacerons, dans la suite des calculs,
X par X'. En prenant d’abord I'équation sans second membre

?u X’ d_u
0z~ X' ox

—X"2u=o,

on a pour l'intégrale générale
u=—oel+ Be ¥,

« et P étant deux constantes arbitraires, et la méthode de la variation des con-
stantes donne pour I'intégrale générale de I'équation compléte

e " e [
u="Cef— CheX— ;fe"‘dx—i- —;fe‘dx.
La formule (5) donne ensuite pour 3, aprés quelques transformations faciles,

(6) ;2:(2(]x ——fe‘-‘dx) <fexdx—2cz>.

La formule (6) représente I'intégrale générale de 'équation (2), ot 'on aurait
p 8 g q )
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remplacé X par X'. Il s’ensuit que toute intégrale de I’équation aux dérivées par-
tielles (1) a une expression de cette forme, ou G, et C, seraient des fonctions de
la seule variable y. On pourrait obtenir la relation qui doit exister entre ces deux
fonctions de y en substituant dans cette équation; mais, si 'on a égard 4 la symé-

trie de celle équation relativement aux deux variables x et y, on peut écrire
immédiatement I'intégrale générale

7) 3‘3:<fexdx—fe—vd)'> <fe"dy—-fe“xdx>,

X désignant une fonction arbitraire de z et Y une fonction arbitraire de y. La
vérification est facile; on tire en effet de la formule précédente

2p::e"<fe‘{dy—fe—xdx>—e"‘(fexdw——fe“'dy>,

et, par suite,

2z\/1-I—,u“:e"(fe"d)'——fe—xdx) —|—e—x<fexdx—-fe—‘{dy>.

On a de méme

zqz:e"(fe‘dx—fe‘-Ydy)—e—Y<fe”dy—fe"xdx>,
2;\/1+q2:eY<fe‘dx—fe—Ydy>+e—Y<erdy—-fe‘xdx>,

et, en combinant ces formules, il vient

2pV1+ 7 +2q\/1 + pr=e¥t — XV,

D’autre part, en différentiant par rapport a y la formule qui donne 2z /1 + p?,
on trouve

2p3s

2gV1+ pP+ \7—_—9 =M — e XV —ap /1 4 g 4 2g /1 + p?,
1+ p?

c’est-a-dire

sa=\/1+ p?\/1+ ¢°.
La formule (1) peut encore s'écrire, en remplagant e* par X et e par Y,

w e frae [4)(fr %)

Fac.de T., 2¢ S., 1.
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ou, en remplacant Y par — %7

e

Pour avoir I'intégrale générale sous forme explicite, il suffira de poser, dans

la formule (7 bis), par exemple, « et B désignant deux variables auxiliaires, o (2)
et 4($) deux fonctions arbitraires,

X=oa, oo’ (a) + ao'(a) —v(a),

Y:B,Ay:@wqm+ﬁ¢@yfwm,

ce qui donpe
fde:f‘[oﬁ"cp’”(a)—i—3a29”(a)]doc = ol o’ (a),
)d‘;c »
f_x_ :][aqo”’(oz)—i—’ ()] da == 2" (2) + 29/ (),
7 3,1, d) ” 1@
/5@:ﬁ¢@% v = BY(B) + 2V (B),

et U'intégrale générale de I'équation (1) est alors représentée par I'ensemble des

trois équations

S x = a2¢’/('a)+1@,(a)“?(a),
(8) y=p(B)+B(B)—d(B), BT ’
st= (ot " () — BY(B) — 24/ (B)] [B* Y (B) - 29" (a) — 29/ (w)].

3. On arrive encore plus simplement au méme résultat par une transformation

de Bicklund. Si I'on pose, en effet,

v=z(p—Vi+p?),

on a

9~ p(p— W+p)+a< -

o > —(P~~\/ITP><P~ V*é )

Vi +p2
et la relation (2) peut encore s’écrire.

(9) g‘——l—\‘—i—xz:o
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L’inconnue auxiliaire ¢ satisfait donc-a I'équation du ‘second ordre

LA
o\ . dz 1) _
b; T—F; =0
ou
0? dv dv av
(10) . P o =o,

dont 1’é quauon (9) est unc intégrale intermédiaire du premier ordre. D’un autre
cHté, on tire de I'expression de ¢, en tenant compte de 1’¢ quauon (1) elle- -méme,

Jdv . A v o p——
oy = 1P — Vi p? )+z< - —:——B——> s = ;(q~\/r+qz),
et la liaison entre les équations (1) et (10) est fournie par les deux relations

_ - " .———_a
v=s(p—vViFp), = la—Vie ),
que l'on peut mettre sous la forme équivalente
2psy=¢*— 3%, .

(1) { dloge  ,/dloge\?
B e Sk

I'élimination de ¢ conduit a 1'équation (1) et celle de z & I’équation (10). L'inté-
gration de D’équation (1) est donc ramenée a celle de 1'é 'quation du premier

ordre (9), qui se fait immédiatement en remplacant X par < - On trouve ainsi

X
Y X
X

X et Y élant toujours des fonctions arbitraires. En remplacant ¢ par cette expres-
sion dans les formules (11) et en posant

2=(X—Y)0,
il vient
00 I 70 1
it GO b

et 'on a, par consequent, _
. _ dy dzx\ -
2=(X— Y)< Y/*‘fx,>

formule qui est équivalente aux précédentes.
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4. On intégre de la méme fagon I'équation plus générale
(12) 55‘*“?(1"1’)4)(}’,‘]):09
ou les fonctions ¢(z,p) et U(y, ¢) vérifient respectivement les deux conditions

do _p I _q
5};'—(_?'_‘_](’ ’_—'_'_'+"K)

(13)
K étant une constante différente de zéro. Remarquons d'abord que I'on peut, sans
diminuer la généralité, supposer que la fonction ¢ est indépendante de 'z et la
fonction ¢ indépendante de y. En effet, si I'on pose ¢ =124p, la premiére des
équations (13) devient

dp - hdhA Y
IR Y

(14)

en laissant d’abord de coté les cas particuliers ot K == 24, désignons par «, §
les deux racines de I’équation

(13) a*+Ka—1=0,

I’équation (14) peut encore s’écrire

dp 1 Bdr  adi Y
T E=\Fp T ixe) T

et on en déduit, en intégrant,

PP+ B)B= (b + a)* f (@),
ou encore, en remplagant A parg,

(16) (¢ +Bp)B=sf(z)(o+ap)*

La fonction ©(z, p) est donc définie par une relation de la forme (16), ot f(x)
peut étre une fonction quelconque de z, et la fonction §(y,g) est définie par

une relation analogue
(17) (Y +BNP=/F(0) (§+ag),

ot f,(y) est une fonction quelconque de y. Si on prend maintenant pour nou-

velles variables indépendantes

/ f(x)Tia ax, 1, <y>¥3{"°‘ dy,
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I’équation proposée (12) prend la forme réduite

(18) sz+9(p)d(g)=o,

les fonctions ¢(p) et §(g) étant définies respectivement par les deux équations
(19) [ (e+ep)=(o-+Bp)F (Y +ap)r=(d+Bg)P

L’équation (18) admet les deux intégrales intermédiaires

(20)

dont chacune peut étre traitée comme une équation différentielle ordinaire du

second ordre et dont l'intégration se raméne encore & celle d’une équation
linéaire. Nous développerons les calculs pour la premiére.

Remarquons d’abord que I'on a, en tenant compte de la relation ~f =

9 L LK,
op 9

d \ K
75 108(P*— 9"+ Kpg) = o

on peut donc écrire, en prenant convenablement la limite inférieure de I'intégrale,

P
pPP—o*+Kpo=e/ ?,

Cela étant, dans la premiére des équations (20), prenons une inconnue auxi-

liaire

on en tire

Y J9 _ &2 P N
T = ¢ q’[p@+«'<%—K>]——e ‘P[P@+5(X<Po—<?2)],

ou enfin
pd
du -k (2

—_ 3 ?.
dx_Xp e

Une nouvelle différentiation donne

d /1 du -—Kf’v-ll’ p\]__ -k 2r ., y P
cﬁ()_( ch>'—e q’l:1z>2—i—r‘.(1—-Kc;>:|_e ‘P[p‘+(X<pz—cp-)<1—-K5>J

dp dp dp

:chze_Kfa —KXps e—Kf?—l—(pﬁ—cp?—i— Kpcp)e_K v,
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équation qui, d’aprés la remarque faite tout & 'heure, peut s’écrire; -

a’<1 du

o _du
P xa)—x‘f—% o

ou, en développant,

R 2 1 ' .
(21) d“—<x Kx>ﬁ~xm~x

dz? X d

Si I'on remplace dans cette équation X par X/, I'intégrale générale est, comme
on le vérifie aisément,

(22) w=C,e** 4+ C,ebX oc‘ihﬁ <e“x‘fe“°5"dx — efX [9—5‘ d:z),

.

C, et G, étant les deux constantes albltralres
Lonnalssant u,ona pour determmer 3, p, ) le systeme des trms equatlom

I.

9s u R 75 ‘ o " 8.
_ = -+ a = = op)re
p—cp+KpcP kX pr—¢ —|—Kpo ((P ‘ p) (o--3p)
en introduisant 'inconnue auxiliaire A = 12;, on tire de la derniére

% __B
p=0R+a)f-*(h+B) B2,

et des deux premiéres

)\pa ) —")\5 .
prr—AR+Ki) p()x-l-oc)(?\—l—ﬁ)

u—_=

Remplagons p par sa valeur; il vient

R
z:—;‘()\+a)ﬁ—°‘(l+ﬁ) Boa

. ) . X' u: . .
et il n’y a plus qu’a remplacer A par =, buis w et & par leurs expressions pour
avoir z, o
B T o

X'u+ au\B-2 X'u+Bu TB-a
I=— XI<—-_I— o 4

u u

B — o
= X,(X’u—!—au)ﬁ 0‘(X’u—i—ﬁu)(3 *,
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De la valeur de u, on_tire, en observant que a3 =—1,

X’u+aza’:X’ae’?(D1+fe‘“xdx>,
u+(3u ——X/Beﬁ“(D +f B\dx>

en posant, pour abréger, D, = Ci(a—p), Dy =Cuo (P —2). En substituant dans
la valeur de z, on arrive, aprés quelques transformatlons bien simples, a la for-

mule sulvante :

1
A 1 X w
(23) s TF = () <D.2+fe« dw> <Dx +fe‘°‘“’“’>

qui donne Pintégrale généralé de l’équatiori différentielle

Toute intégrale de I'équation aux dérivées partielles (18) est donnée par une
formule de cette espéce, en prenant pour D, et D, des fonctions de y assujetties
a vérifier une relation convenable. Mais, en tenant compte de la forme symétrique
de 1’équation, on peut écrire immédiatement 'intégrale générale sous 'une ou
lautre des formes suivantes : ’

(24) oc'z"l+a1;:—-—(——a)l $</‘ “dx—|—f “dv) e Nda+ e “d>
AL ~ ‘)/
1 1 - , -3
(24 bis)  a?s o (— a)”E(fdeuedey) (fx—a’dm— f\’—wde,
1 ’

'1+—11 . H‘L&' . . R R
(24 ter) o’z “=—(—a) ¢ (‘X——l—'Y)‘(fX’_“ dx+ fY’—“' dy)
On peut aussi obtenir des formule< debarrassees de tout signe de quadrature.

Ainsi, en désignant par @ un parametre auxiliaire et par w(a) une fonction arbi-

traire de ce paramétre, posons, dans la formule (24 ter), -

1
x=oa%ag"(a) —¢'(a), X:al—s‘_’-cp”(a);
il vient
- _4
. dX a *®
1 8A
X'= de — ot

[xmt e = (@) [l n)ag (@) + wtae” (@) da

»

= (a)* o?[a* ¢’ (a) — ay' (a) + 9(a)]+9(a) ~ av' (@)},

et 'on opérera de méme pour l’intégralefY"_‘v?"’ dy.
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5. On arrive encore au méme résultat par une transformation de Bicklund.
Soit ¢ une inconnue auxiliaire

[
p—ao

on vérifie aisément, en lenant compte de I'équation (13) et de la valeur de «, que
I'on a ‘

bl

d
;5MMP—aw=—

6! R

on peut donc écrire
dp
o | —
—=s3e @ )

en prenant convenablement la limite inférieure de 'intégrale, et, en différentiant,

il vient
ap
dy af— az
_— e ¢ —r),
dz @+@»
ou
1 dy P r
- —— o —:
v dx 3 + o’

on peut donc écrire

o 1 /dlogy p ¢ 1 (dlogy p—ao 1 (dlogy 1
+ L= — L)+ E== — L) == — =)
sz a\ dx 3 3 a\ dz z a\ dx v

,
@
La premiére des équations (20) devient alors

dloge 1
dz v o%

et, par suite, I'inconnue auxiliaire ¢ vérifie I'équation du second ordre

5 Do v dv ;v
(29) Y9xdy " dway oy @

qui ne différe de I’équation (10) que par le changement de ¢ en — ¢. D’aulre

part, on a
.(k—q(p—acp)—z[l—a<%+K>]s’
dy — (p—a9)?

et, en rempl — ¥, 51 vient

, placant s par > il vien
do _ g —oad
Iy p—ag’

et la liaison entre les deux équations (18) et (25) est exprimée par les deux
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relations

<

9
dy

<t

(26) p—ap=75  g—ap=
On peut résoudre ces deux équations par rapport a p et a g. De la formule

(9 +ap)*= (¢ + pp)k,

ol af = — 1, on tire, en effet,
1 1

et, par suile,
s 1+ 2 T
(27) Grap=2—(-a""(2) "

et 'on a, de méme,

ﬂ_(_ a)1+%<z 0v> @

(28) (1+a%)g = > ¥

<l

les équations (26) peuvent alors étre remplacées par les équations (27) et (28).
Si lace, d dernié alear Y qui a déja éue
i I'on remplace, dans ces derniéres, ¢ par sa valeur —7—, qui a déja éLé

1 1

obtenue, et qu'on pose 5 = (X 4+ Y)*0, il vient

1

1
1 1
= () (V)

on a donc finalement
14 L 1L L _L ~L
a?s P =—(—a) “’(X—FY)“’(/X’ “’dx+fY’ “’dy),

formule qui est évidemment équivalente & la formule (24 ter) trouvée plus haut.

6. Dans le cas parliculier ot K === 2/, les méthodes précédentes exigent
quelques modifications de détail; nous indiquerons rapidement la marche a
suivre en employant une transformation de Bicklund. Remarquons d’abord qu’on
peut se borner au cas oit K = 27; car si I'on change ¢ en —¢, ¢ en —{, I'équa-
tion aux dérivées partielles ne change pas, tandis que K se change en — K.
D’autre part, on peut écrire ’équation proposée

s3=(i9)(iY),

Fac. deT., 2* S., 1. 58



450 E. GOURSAT.

et les équations de condition (13)

dlio) __p Ay _ g

dp io dy i

si, en modifiant un peu les notations, on remplace i¢ et 74 par ¢ et ¢ respecti-
vement, on est ramené a intégrer I’équation

(29) ss =091,

® et ¢ étant assujetties a vérifier les équations

(30) dﬁ:—ﬁ— ﬂ:-——q-—2

dp oV 4 Y
On démontre, comme plus haut (n° 4), que I'on peut supposer ¢ indépendant
de x, et Y indépendant de y, les deux fonctions ¢ (p) et 4(q) étant définies par les

deux équations
? Y
(31) o+p=—e?tr, g =e¥ti;

les intégrales intermédiaires de I’équation (29) sont alors

r o

‘ a —_ -’: =X.

(32)

? ¢ Y
T T T — \.
d 5

Cela étant, prenons l'inconnue auxiliaire ¢ = ———; on a
Pte

_ar(i =L
Jv _P(P"‘(P) 57 <I @ 2)_ = <I‘ _B)
= 2

— 3 — — 4+
dx (p+opy P+9\¢
ou
dlogy _ 1
or o 3
et, par suite,
Jlogv 17 _%_x
dr v o 5

ce qui conduit encore & I'équation

d*e dv dv av __

(33) “Oxdy "oz dy Tay T @

d l,' I3 l ’ I3 l t 11 . X + Y .
ont l'intégrale generale est, comme on l'a vu, ¢ = X7
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D’autre part, on a

f/(p+0)—5<1—£—2 $
9y __ - ? _q+y

ay (p+o) Tp+o

et la liaison entre les deux équations (29) et (33) résulte des deux relations

(34) Pro=2  q+¢=:

En tenant compte des formules (31), qui déterminent ¢ et ¥, on peut remplacer
ces relations par les suivantes :

(33)

! . —_SXI L IO(T :XV \
P=X¥Y °X+Y)’
(36) ,
Y. sY
q“X+Y( BXFY)

En posant, dans ces derniéres, s = (X 4 Y)0 et prenant ensuite logh pour
inconnue, on obtient facilement I'intégrale générale

S X logX dr+ [Y'logY' dy

(37) s=(X+Y)e Y

Pour faire disparaitre les quadratures, il saffira de poser, en désignant par «

et B deux paramétres variables, par ¢(a) et ¢ (3) deux fonctions arbitraires de ces
parametres,
x=a¢"(a) +9'(a), X=a¢"(a),

y=BY @) +y(B),  Y=p¢(B),

ce qui donne
X f— —CE = a,
fX’ logX' dz = f alogala9”(a) + 2 ¢"(a)] da = a®loge ¢" (o) — ot ¢’ () + ¢ (a),

et 'on a, de méme,

U/YﬂogWJy:B2MgBW%ﬁ%—B¢%ﬁ)+¢(m-
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7. L'équation
(38) ssinzg =Vi1+ p*\i+ ¢

admet les deux intégrales intermédiaires

r
(39) Vit TVt =X,
¢ S
(40) —— +\V1+ ¢ cotz =Y,
Vi—+gq

dont I'intégration offre une application intéressante de la théorie des systémes
linéaires, identiques & leur adjoint.
Pour intégrer 'équation (39), par exemple, posons
a=sinz\ 1+ p? B =ipsins, Y = C085;
on déduit de cette équation

do . d, , . .
(41) —x:——tXB, a%:tXa——ly, - =1if,

c’est-a-dire un systéme de la forme ()

do d 4
2z = TB—av gf;:py—w, L=qa—pp,
oup=—1i,qg=o0, r=—1X. Ona, de plus, la relation a* 4 32 4-y2 = 1. Con-
formément & la méthode générale, nous poserons
1= N A tp
(42) OC—‘)\—_—H7 @_l)\_y-7 }’—)»_p-:
A et w étant deux inconnues auxiliaires qui doivent satisfaire & I'équation de
Riccaui
dos 1
4 e e _ Xg Yt
(43) dr — Xg |“2(O' I);

dont l'intégration se raméne encore a celle de 'équation linéaire

, d*u du u
(44) det  Ndz T

=o,

u /. , . , du
en posant ¢ = peti étant la dérivée T

(1) Voir Darsoux, Legons sur la théorie générale des surfaces, t. I, Chap. II.
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Soient u,, u, deux inlégrales distinctes de cette équation; on a, pour A et p,
des expressions de la forme

uy+ Cyu, 1w+ Cyu,

_z(u'l—r-C‘u;)’ P‘z(u’,—i—Cw’z)’

C, et C, étant des constantes, et la formule qui donne l'intégrale générale de

I’équation (39) peut s’écrire

2t u—fl‘ + (G + Cz)('u_l + fl_f) +2C, G,

(45) y=coss = —2 "2 B2 .
ltl o ﬂ
(Cy— C’)<u_’2 u2>

En observant la symétrie de I'équation aux dérivées partielles (38) par rapport
aux variables x et y, on peut en déduire immédiatement I'intégrale générale de

! I r !

U, u oy O\ | U oy ¥
2———,l+ — -+ - —_—t— )+ 2=
u, u, A T vy ¥
7 7 >

(f’_: — .V_1> (h _ 1)
! !
v, v \uh Uy

¢, et v, étant deux fonctions de la seule variable y qui vérifient une méme équa-

cette équation,

(46) CcOSs =

tion linéaire
47) d?y y de v __ o

7 dy  Cdy 47
ot Y est une fonction arbitraire de y, et ¢}, ¢, leurs dérivées. .
On peut aussi obtenir, pour représenter I'intégrale générale, des formules ren-
fermant explicitement les deux fonctions arbitraires, sans aucun signe de qua-
drature. Soit, en effet,
u,

X, =~ Xo= 1) Y, = — Y, = };
YT, T, YT 0, P

des équations (44) et (47) on déduit immédiatement que l'on a

dX, dX . .
(48) ——d;vl _(—i.z‘j +(X;— X;)?=o,
dY, dY,
(49) b —— = +(Y;—Y,)*=o.

dy dy
La formule (46) peut donc s’écrire

2 X X, + (X +X,) (Y + Y,) +2Y, Y,

(o e cosz = (Y, = V1) (X, — X,)
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X, et X, élant deux fonctions de x assujetties a vérifier la relation (48), et Y,,
Y, deux fonctions de y vérifiant la relation toute pareille (49). Il suffira donc,
pour obtenir des formules explicites, d’intégrer I’équation de Monge

hdrdy + (x — y)*ds*=o,

ce qui revient, d’aprés la méthode générale, a intégrer I'équation aux dérivées
partielles pg (& — »)*+ 1 = o; laméthode de Lagrange donne sans difficulté une
tégrale compléte

r+\/a2(x—.mv'>ﬂ+l].

JE— Y e (2 — V)2 41 — log
s=a(z+y)+b+ya* (x—y)+1 loo[ z—7

Le lecteur en déduira aisément, s’il le désire, les formules définitives.

Remarque. — Des formules (42) on tire inversement

(p=Vi+p),

[SHIRA

= tang

et, puisque p vérifie I'équation (43), il s’ensuit qu’en prenant pour inconnue
auxiliaire v = langg (p —/1+ p*), on sera conduit & une équation du second

ordre admettant 'intégrale intermédiaire

Jdu I, ., .

— — - (u*—1)=Xu;

dr 2 ( ) ’
cette équation rentre donc dans une catégorie que nous avons étudiée déja (loc.
cit., n° 16). En appliquant la méthode indiquée, on retrouvera sans peine les
résultats précédents.

8. L’étude que nous venons de faire conduit & une remarque intéressante.
Chacune des intégrales intermédiaires qui ont été rencontrées, considérée comme
une équation différentielle ordinaire du second ordre, peut étre intégrée par des
quadratures ou se raméne &4 une équation de Riccali. Cette propriété appartient
aussi aux intégrales intermédiaires des deux équations aux dérivées partielles
intégrées dans le Mémoire précédent, comme nous allons le montrer rapidement.

L’équation

(50) (x+x)s=o(p)¥(q),

od 'on a
o(p) =1--er=3r,  Ylg)=1-e? ¥,
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admet les deux intégrales intermédiaires

¢ x, ! Y .

- ’

z + v x4y

r
Q
v

Considérons, par exemple, I'équation différentielle du second ordre

. r ¢ _
1) B_w—i—y_x’

ol 'on regarde y comme un paramétre. Celle équation ne contenant pas 3, il est
clair qu’en prenant p pour inconnue, on est conduit & une équation du premier
ordre. Pour avoir un résultat plus simple, posons

. rx+y .
i—g(p)’
. , . . do 1
il vient, en ayant égard a la relation -~ =1 — —,
dp v
du 1 x+yr
dx  1—¢ 1— 0 cp’
et I'équation (51) devient
- u )
32 . — 4+ Xu=—r1.
(92) dx +

L’intégration de 'équation linéaire (52) donnera p, et I'on aura ensuite 5 par
une nouvelle quadrature.

La méme méthode donne sans peine 'intégrale générale de I'équation aux dé-

"

rivées partielles (50). Remplagons, en effet, la fonction arbitraire X par T

, . . +C .
dans ’équation (52); on en tire u = i—)?—> puis

_ (z+) X
e(p)=1= "o

e i 4 X 4y iy
p=1—X X+{,+log<‘{+f1>+log(~}\),

et, enfin,

Pour que cette valeur de s vérifie 'équation (50), C et C, doivent étre des
fonctions de y, satisfaisant & une certaine relation; en tenant compte de la symé-
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trie, il est évident qu’on doit prendre
C=Y, ¢, :flog(— Y') dy,
Y étant la seconde fonction arbitraire.
9. Prenons enfin 'équation

(53) s=e\xpi+p

qui admet les deux intégrales intermédiaires

(54) r=p*+2X\p*z +p,
2 23

(55) l:q*—i—xe——l—Y;
2 2

nous examinerons successivement chacune de ces deux équations. Il est évident
qu’on peut ramener ’équation (54) & une équation da premier ordre, en prenant
p pour inconnue; on a vu dans le premier Mémoire (n° 15) qu’en posant

p= » on est conduit, pour déterminer A, 4 une équation de Riccati
)\2__ @ ? ?

(56) g—i:X(P—x).

L’intégration de cette équation donnera p, et il résulte du calcul fait an numéro
cité que lon pourra en déduire z sans aucune quadrature. Soit, en effet,
A= f(z, CG) Vintégrale générale de I'équation (56), C désignant la constante
d’intégration; il suffit de vérifier que la valeur de z déduite de la relation

JA
aC

N—x

—_2

(57) I
est une intégrale particuliere de 1'équation (54), ou que 'on a

2r ., 7)) oA
_Zd—Cd.‘]ﬁ()\ ——x)-&—zm<27\d—x—1>

(= 2)?

ep=

. 1 , o, ;.
en remplacant e? par Pexpression (57) et p par Pt L’égalité & vérifier

9% JdL Odh

2___ P | — e
dzac M2 =22 52 56

est une conséquence immédiate de I'équation (56).
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L’équation différentielle du second ordre (55)

ol 'on regarde maintenant # comme une constante, peut a son tour s’écrire

dv o2
(38) ~ — ==Y,

ay 2
en posant ¢ =g — \/ze?. On aura donc ¢ par l'intégration de 1'équation de
Riccati (58); connaissant ¢, on aura ensuite s par l'intégration de I'équation

linéaire
(59) g—‘f—,—i—vG:—-'\/.},
obtenue en posant e~z = 0.
o
oy
On peut encore obtenir un résultat plus précis. Si 'on pose p—=— Hy’ on est
ramené & ’équation linéaire .
o’p Y
(60) oy + 5 k=03

cetle équation étant supposée intégrée, I'équation (59) devient

'09 29@_}1_—\/;

oy @Iy
— [d
Oz—pz\/x‘f%-

Or, p étant une intégrale de I'équation linéaire (60), il en est de méme du

et 'on en tire

produit y.f%, de sorte que e~* est de la forme /z U, U étant le produit de

deux intégrales particuliéres de I'équation linéaire (60). Il est facile de le vérifier;

si 'on pose, en effet, e=2 = \/z U dans I’équation (55), elle devient

1 (dU\? ) VI .
et I'on en déduit, en différentiant et divisant par U, I'équation linéaire du troi-
siéme ordre
23U ou

——— —_— ! j—
(62) 7 +2Y Iy +YU=o,

dont I'intégrale générale est

(63) U=C,pi+ Copj + Cypry s,
Fac.de T., 2 S., 1. 5()

<
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1, 2 désignant deux intégrales particuliéres distinctes de P’équation (60). Cetle
intégrale dépend de trois constantes arbitraires, tandis que l'intégrale générale
de I’équation (61) ne doit dépendre que de deux constantes. Pour savoir a quelle
condition on doit assujettir les constantes C,, Cy, C; qui figurent dans la for-
mule (63) pour avoir une intégrale de I'équation (61), désignons par y, une
valeur particuliére de y pour laquelle Y soit holomorphe, et par w,, u,, les deux
inlégrales particuliéres, holomorphes pour y = 3+, déterminées par les conditions
initiales
(P1)o=0, (B )o=1, ()e=1, (p3)=o0.

On aura ensuite

0

n n Y
(1) =0, (”2)0:——?’

et les valeurs initiales de U, U/, U" seront les suivantes
(U)e =0y, (U’)o:C;, (U")y=12C,— G, Y3

en écrivant que ces valeurs initiales satisfont & la relation (61), on obtient la
condition C; — 4C,C,=1 que doivent vérifier les constantes C,, C,, C3. On
voit donc, en résumé, que 'on obtient sans aucune quadrature 'intégrale géné-
rale de I’équation (55) dés qu’on a intégré I’équation linéaire (60).

10. On pourrait aussi se servir de I'intégrale intermédiaire (55) pour obtenir
I'intégrale générale de 'équation aux dérivées partielles (53). Le calcul qui vient
d’étre fait montre, en effel, qu’en posant ¢ = g — \/ze*, on est conduit & I'équa-
tion bien connue

Jd%y dv
A —_— e ) — —
(63) Jdx dy "o - &

et la liaison entre les deux équations est obtenue par les formules
<dv + e’ >2
93 .
(65) p:—%gf——a g=Vaze+ v,
2\/.re=——
X
qui deviennent, en posant e~* =0,
—dv 90 av 1 \?2
20

5; -+ ‘)6:—\/;.

(66)
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Remplacons, dans la derniére de ces équations (66), ¢ par I'intégrale générale
de I'équation (64)

‘7// 2Yl
SV TXEY
on en lire
X—l—Y 2 ; .
o=532 <X.\/+Y+X'>’

X, désignant une nouvelle fonction de z. En substituant cetle valeur de § dans la
premiére des équations (66), on trouve que X et X, doivent éire lices par la
relation

(67) <2x,x'+ -‘-)":wzxrx;.

a\/x
Cette équation de Monge devient, en remplagant & par 22, X par y, X, par 3,
(2zdy +dx)* =4z dyds,

et Pemploi de la méthode classique conduit a chercher une intégrale compléte de
I'équation aux dérivées partielles du premier ordre

p’r—+qg—a2ps=o.
En appliquant la méthode de Lagrange, on trouve I'intégrale complete

o b =z
T yray y+a

el 'on en déduirait aisément les expressions générales de z, X, X, en fonction
d’un paramétre variable.

11. Dans ce Mémoire et dans le précédent, j'ai fait I'étude compléte des cas ou
une équation de la forme s=f(z,y,5, p,q) admet deux inlégrales intermé-
diaires distinctes du second ordre; mais ce n’est Ja qu'un premier pas vers la
solution de ce probléme plus général : Trouver tous les cas ot une équation de
cette forme admet, pour chacun des systémes de caractéristiques, une inté-
grale intermédiaire, dont Uordre peut étre quelconque. Je vais indiquer en
terminant quelques résultats intéressants, quoique trés incomplets, sur cette ques-
tion générale.

Nous poserons, pour plus de symétrie,

.0
ql:;y, (]22@5, ce ey {/":W’ ceey
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de sorte que I'équation proposée s'écrira
(68) s=J (2,7, 5 pi,q1)-

On peut, au moyen de cette relation et de celles qu’on en déduit par des diffé-
rentiations successives, exprimer toute fonction de z et de ses dérivées partielles
au moyen de z, y, z et des dérivées p; et ¢; seulement; nous désignerons par

drf P \ . , r gt .
<(Tr7;> la dérivée ni*me de f(z, y, 5, pi, qi) par rapport & z aprés qu’on n’a laissé

dans son expression que les dérivées py, pa, ..., Py, ¢,- Ainsi l'on a

ar\ _df  df a5 af
('_) —5“‘*‘(‘)‘51714‘ /72+5,]—1f,

dx x ap,
YN _0f 0 S OO,
(7) 0xt 20zl T s ()qf' dg, 0371 g
Ko 2/ e o, LA
9z 0p; op, Prp2 5;70)— f()p o7, ! Pam gl dpy 0y, 2 ()pf/}"'
*f ’f a9
+ 2 dxd(]lf d(/ f -+ f+ ()[) [)J’
, , anf ) . e
d’une facon générale ~on ) €st une fonclion entic¢re de ps, py, ..., Puyi, €t ne
conlient qu’un terme en p,y, qui est == p,.,.

ap,
Cela posé, supposons que 'équation (68) admelte une intégrale intermédiaire
de la forme

(69) ?(*r’.)" 3, PraPrs o3 Pu) = X,

X étant une fonction arbitraire de 2 ; la fonction ¢ doit satisfaire aux deux équa-

tions linéaires

Jdo  do do do [df , dr1f

7+ E g v ()t o () =o
(70)

Jdo o

dq, ’

et-ce systéme, abstraction faite de la solution évidente ¢ = x, n’admet qu’une
intégrale distincte si, comme nous le supposons, 1'équation proposée (68)
n’admet aucune intégrale intermédiaire d’ordre inférieur a n, pour ce systéme de
caractéristiques. Nous savons aussi que 'on peut supposer la fonction ¢ de la
forme Ap, -+ B (voir loc. cit., p. 35), A et B ne dépendant pas de p,. En sub-
stituant cette expression de ¢ dans la premiére des équations (7o), et égalant a
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zéro le coefficient de p,, 1l vient

OA OA - OA 0A <d"-"f> o _
xlt—‘

e [+
())’ d3 7 0[71 f dpn 1
ce qui peut s’écrire, en posant logA = u,

_% = % -+ ﬁt_ —+ ou dn-z‘f = o0
Jdy = 03 71 dp1f+"' Opn_y \dz"? ()p1

Soit pn la dérivée de l'ordre le plus élevé qui figure dans u (25m=n —1);
I'équation précédente est, en n’écrivant pas les termes identiquement nuls,

- Jdu  du du , du [dm-f of
(71) dy+d_z(]'+;);1:f+ +0[7m< dzm— '>+0p,—0’
différentions de nouveau celte equallon par rapport a pm, et posons lob () =,
il vient
dv  dv 99 o0 [dmf aif
(72) 54_&71-{_0[71/'_‘_ d/)m (dxm l>+5—13;_0’

et, en retranchant les équations (71) et (72) membre & membre,

9(v — u) (d’""f> .

d(v—u) Jd(v—u) d(v—u)
-+ ([ -+ dl)m dxlll—l

ay ds YU apy —ap

4

v, . Yo N . . \
L’équation précédente, en y remplacant ¢ — u par ¢, est identique a celle
qui déterminerait les intégrales intermédiaires d’ordre m; dans I’hypothése ou
nous nous placons, cette équation n’admet pas d’autre intégrale qu’une fonc-
tion de la seule variable #. On doit donc avoir ¢ —u = f(z), ou encore

]Ogdd— — u=log(— X); on en tire

ot du _
. oPm
et, par suite,

e 4= X[Pm-i—‘-l'(x»)’, Sy Pry oo '7[71'1—1)]-

Comme on peut toujours multiplier A par une fonction arbitraire de la seule
variable z, on voit qu’on peut supposer A de la forme

I

Pm—+ kl-'(»’b‘,}’, S P1y - - "Pm—i)’

A=

et la relation (71) devient

LI) ('p dq) d'"‘—zf dm.—lf . 0f '
y (]1 I Prm-1 <d$""2> -+ <dx”“'> = (')7]—1([),,,4— $),
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condition qui exprime que les deux équations
Szf(.l‘,)’, Sy Py (]l)’ Pm""qJ:O

forment un systéme en involution. Si nous faisons une hypothése de plus, en
supposant que I'équalion proposée s = f ne forme un systéme en involution avec
aucune équation d’ordre inférieur & n, nous voyons que le coefficient A ne doit

1 . .
renfermer que x, y, 3, py, et, en posant A = =, on doil avoir

)\

a0 of
35 0 el o=

(73) = o.
En reprenant les mémes raisonnements pour la seconde famille de caracléris-

tiques, on démontrera de la méme facon que I'équation

N o L
(74) oz T ost f_ 0q

doit admettre une intégrale indépendante de p,. Ces équations (73) et (74) sont
identiques aux équations (E'), (E}) du premier Mémoire (p. 36-37). Toutes les
conclusions déduites uniquement de ces deux équations subsistent donc ici, et,

par conséquent, l’équation proposée peut étre ramenée a l'une des formes

suivantes :
. 9 *y
— ' o g !
s=H(z,y,3)0(z, p)b(y,9), ol opt # o, a7 # o,
_ : . 99
s=q9(z,¥,5p), ou ap* Zo,
s=9(z,¥,5,p),
S:II(‘T’]',;')P(]'
Remarque. — 1l peut se faire que les équations différentielles d'un des sys-

temes de caractéristiques de 1’équation s = f(z, y, 5, p, ¢) n’admeltent aucune
combinaison intégrable d’ordre inférieur & n, et que cependant il existe une
équation isolée d’ordre inférieur & n, formant avec s =f un systeme en involu-
tion. En voici un exemple emprunté aux équations de M. Moutard. Soit

s+ap +bg+cz=o
une équation linéaire intégrable par la méthode de Laplace, et soit
Aopu+ A]Pn—) +...+ A5 =X,

une intégrale intermédiaire d’ordre n, Ay, A,, ..., A, étant des fonctions de z
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. 0y S . .
et de Y en posant z = ¢’ puis —— = u, on est conduit & une nouvelle equalion

ox

en u, qui admet une intégrale intermédiaire d’ovdre n. On peut écrire, en effet,

I'intégrale intermédiaire précédente

e"(A oo —+—> =X;

0 dxh

()n+l ¢ ,
v —
e <A°—_0;c"+' “+.. ) =X/,

eun n’écrivant que les dérivées de 'ordre le plus élevé; et, en divisant membre a

on en tire

membre, il vient

\ ()n+l 0 dn 17]
£ O—M‘_l oo 0 '———d(vn -+... X, N
duv - A or—u — X — "
Y oxn T 0 Dpn—1 +

Cette derniere équation forme, avec 'équation du second ordre en u, un sys-
téme en involution, quelle que soit la fonction arbitraire Xi. Cette derniére
est, en général, d’ordre n, mais, pour X.=oo, elle se réduit i une équation
d’ordre n — 1.



