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’EQUILIBRE DES SYSTEMES ARTICULES,

PAR M. Emexse DELASSUS,

Chargé de Cours a4 I'Université de Toulouse.
o

I. — Géntrarisation p'un tHEorEME pE M. Maunice Levy.

Dans son Mémoire Sur la recherche des tensions dans les systémes de
barres élastiques et sur les systemes qui, a volume égal de maticre, offrent
la plus grande résistance possible ('), M. Maarice Lévy a donné le remar-

quable théoréme suivant (2) :

Lorsqu’'un systéme contenant k lignes surabondantes est tel qi’il puisse
d’une maniére et, par suite, d’une infinité de maniéres, étre édifié en systéme
d’égale résistance, relativement a des forces données agissant sur lui, tl
existe toujours un systéme, sans lignes surabondantes, susceptible de résister
aux mémes forces et tel que la somme des produits des volumes des barres
par leurs coefficients d’élasticité respectifs est la méme dans ce systéme et

dans le systéme donné.

Ce théoréme ne s'applique qu'aux systémes a lignes surabondantes qui sont
d’égale résistance, systémes trés particuliers, et, en outre, est relatif a une fonc-
tion des sections qui est bien déterminée pour chaque systéme, mais varie avec
les coefficients d’élasticité. Enfin, il suppose qu’on néglige, au point de vue des
tensions qu’ils produisent, les poids des barres, c’est-d-dire le poids propre,
lequel est généralement prépondérant dans les grandes constructions qui sont
précisément celles pour lesquelles 'application du théoréme présente un véritable
intérét.

Ainsi ce théoréme ne sera relatif au poids total du systéme que si toutes les
barres ont méme coefficient d’élasticité et résistent également bien a l'allonge-
ment et & la compression, il ne sera relatif au prix total du métal employé que si

(1) Mavrice Livy, La Statique graphique et ses applications aux constructions,
2e éd., b IV. ' ’
(2) Maurice Levy, Statique graphique, »¢ éd., v. IV, p. 261.
Fac. de T.,2¢S., 1. . 29
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les barres résistant également a I'allongement et & la compression, les prix aua kilo-
gramme des différents métaux employés dans le systéme sont proportionnels aux
quotients de leurs coefficients d’élasticité par leurs densités.

Je me propose de démontrer le théoréme suivant qui ne subira aucune des

restrictions que je viens d’énumérer.

Tutorime. — Soit ¢(s,, s, ...) une fonction linéaire et homogéne des
variables s qui est assujettie a l'unique condition d’avoir tous les coefficients
poSitifs.

Etant donné un systéme articulé 3 a lignes surabondantes résistant a
son propre poids et a des forces données ¥, il est toujours possible de trouver
un systeme ¥ strictement indéformable, ayant les mémes neeuds que I, résis-
tant aussi a son propre poids et aux forces ¥ et tel que la fonction p formée
avec les sections des barres ait pour le systéme ¥ une valeur au plus égale
(en général inférieure) a sa valeur pour le systéme X.

Si le systéme T est d’égale résistance, on peut trouver un systéme ¥ satis-
Jaisant aux conditions précédentes et qui soit aussi d’égale résistance.

Pour démontrer ce théoréme dans toule sa généralité, nous supposerons que le
systeme T n’est pas plan et qu’en outre il est soumis & des liaisons surabon-
dantes, c'est-a-dire telles que les réactions ne soient pas déterminables par la
Statique. Ces liaisons seront simplement constituées par le fait que, parmi les
n neeuds du systéme, il y en aura p qui seront fixes, ¢ qui seront assujettis a se
déplacer sur des courbes fixes et 7 assujettis a se déplacer sur des surfaces fixes.
Ces liaisons introduiront un nombre d’inconnues égal a

Jp+2g+r—=6-+£K,

nous les appellerons les inconnues o; leur nombre est au moins égal a 6. Ceci

posé, les équations d’équilibre se divisent en trois catégories.

Equations [. — L’existence de k& barres surabondantes fournit % relations
linéaires et homogénes entre les allongements. Si I'on pose d’une fagon générale

(l) ‘ "::6[’

on aura ainsi £ relations lindaires et homogénes entre les §3;.

Equations 11. — La forme du systéme est déterminée par les longueurs des
barres et sa position par six paramétres, le déplacement d’an nceud aura pour
composantes trois [onctions linéaires et homogénes des allongements des barres
et des accroissements de ces six paramétres. En exprimant qu’il y a des nceuds
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fixes, ou assujettis a se déplacer sur des couches ou des surfaces, on obtiendra
3p+a2qg+r

équations linéaires entre lesquelles il faudra éliminer les accroissements des six
paramétres de position, de sorte que, finalement, on obtiendra ainsi

3p+oq+r—06=~K

équations linéaires entre les ;. Ces équations ne sont pas forcément homo-
geénes.

Equations I1I . — Ecrivons que chaque neeud est en équilibre sous l'action
des tensions qui y aboutissent et des forces extérieures qui y sont appliquées, en
y comprenant les forces de liaisons et les moiliés des poids des barres qui y
aboutissent, car nous supposons le poids de chaque barre décomposé en deux
poids égaux appliqués a chacune de ses extrémités.

Nous obtiendrons ainsi 3 2 équations qui seront linéaires par rapport aux len-
sions, aux inconnues 5 et aux composantes des forces et des poids. Mais les com-
posantes des poids étant des fonctions linéaires des sections, nous pouvons dire
que ces 3n équations seront linéaires cntre les ¢;, les p et les s;.

En y remplagant les ¢; par les 3;s; et éliminant les 5, nous obtiendrons finale-

ment
3n—Bp+29+r)y=3n—6—K

équations linéaires entre les s;. Ce sont les équations 111

Les s; sont au nombre de
3n — 6+ k.

Si donc nous considérons les B; comme des constantes vérifiant les équations I
et IT et satisfaisant aux inégalités

(1) R; <8 <R,

dans lesquelles R; et R; sont les charges de sécurité pratique relatives a la com-
pression et ’allongement pour la matiére dont est formée la barre By, les s; seront
assujetis & vérifier les seules équations III dans lesquelles il figure alors

k+ k'

inconnues de plus qu'il n'y a d’équations.

On pourra donc se donner arbitrairement & —+ &’ sections pourvu que les équa-
tions Il donnent, pour toutes les sections, des valeurs positives.

En définitive, les équations III permettront d’exprimer les s comme fonctions
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linéaires de k& -+ A/ paramétres
G5 G2y «-vs  Ghtk'

La fonction ©(s,, s, ...) deviendra une fonction linéaire des paramétres s,
soit

b(oy, a3 o0 )

Soient 7, s7, 5} les valeurs des B, s et & pour le systéme proposé 2. Par hypo-

thése, ce systéme résiste @ son propre poids et aux forces données; donc les

o
2

tous posilifs et vérifient les égalités I11.

vérifient les équations I et Il ainsi que les inégalités (1); de plus, les s7 sont

Nous allons modifier le systéme en laissant fixes les valeurs des {3;.

Supposons d’abord que la fonction ¢ ne soit pas indépendante des &. Prenons
pour ces paramétres des fonctions linéaires d’un autre paramétre 7; alors ¢ de-
viendra une fonction linéaire de = dépendant effectivement de <, et tous les s
deviendront aussi les fonclions lingaires de t.

Faisons varier © a partir de sa valeur initiale 7 dans un sens tel que la fonc-
tion ¢ aille en décroissant; les s vont varier et il y en aura au moins un qui ira en
décroissant, sans quoi la fonction o (s, s3, ...) qui a tous ses coefficients positifs
irait en croissant, ce qui est absurde, puisqu’elle est constamment égale & ¢.

En faisant varier ¢ toujours dans le méme sens, les s partivont de leurs valeurs
initiales positives s?, les uns iront en croissant, les autres en décroissant, et il
arrivera un moment ot 'an des s arrivera a la valeur o; supposons que ce soit s,.

Arrétons-nous & ce moment. Nous avons des sections

qui sonl toutes positives. Dans le systéme T ainsi modifié¢, supprimons la barre B,
qui a une section nulle, nous obtiendrons un systeme X,. Pour ce syst¢me, les
valeurs des B; sont précisément les B! qui, par hypothése, vérifient I, IT et (1); en
plus, les s sont tous positifs et vérifient les égalités III, de sorle que Z, a une barre
de moins que ¥ et résiste a son poids propre et aux forces données. En outre,

pour 3, la fonction ¢ est :
’ ’
Q(O, Sys Syt ')‘,
; by 5s indr (0G0 seri
qui, par hypothése est moindre que ¢(s{, s, ...). On peut donc écrire
(?gl < ?:'

Supposons maintenant que la fonction ¢ soit indépendante des paramétres .
Reprenons le méme raisonnement et faisons varier © a partir de =° dans un sens

que nous choisirons arbitrairement; il y aura certainement des s qui‘iront en dé-
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croissant, sans quoi la fonction ¢ irait en croissant, ce qui est absurde puisqu’elle
reste égale & ¢ qui est une conslante. En vertu du raisonnement précédent, on
arrivera donc au systéme ¥, résistant a son poids et aux forces données, ayant les
mémes nceuds et les mémes 3 que le systéme X, mais avec une barre en moins, et

cette fois on aura
93, = Px.

De toute fagon, nous pouvons dire que nous arrivons stirement au systéme X,
ayant les mémes neuds que X, mais avec. une barre en moins, résistant a son
propre poids et aux forces données, ayant-les mémes valeurs pour les rapports 3,
c’est-a-dire tel que les barres correspondantes, dans les deux systémes, travaillent

au méme taux, et, enfin, tel que

II/\

05,5 s

Sur ¥, nous pouvons reprendre le ‘méme raisonnement et continuer jusqu’au
moment ot kA - &' sera réduit a o.

Sil'on s’arréte au bout de & opérations, on arrivera & un systéme Y’ satisfaisant
aux conditions de I’énoncé du théoréme et qui sera strictement indéformable,
mais soumis a des liaisons surabondantes. ~

Si, au contraire, on ne s’arréte qu'an bout de & -+ A’ opérations, on arrivera a
un systéme qui sera strictement indéformable en vertu des liaisons auxquelles il
est soumis. '

Le théoréme général est donc démontré. Quant a ce qui est relatif aux systémes
d’égale résistance, cela résulte immédiatement de ce que les 3 sont les mémes
pour le systeme initial et le systéme final; si le systéme initial est d’égale r¢-
sistance, tous les {3 sont égaux, le systéme final ayant tous ses 3 égaux entre eux
est aussi d’égale résistance.

La fonction % est une fonction linéaire et homogéne qui est absolument quel-
conque, sauf que tous ses coefficients sont positifs.

Soient a;, d;, p; la longueur de la barre B;, el la densilé et le prix du kilo-
gramme de la mati¢re dont elle est formée. k

Sil'on veut diminuer le poids total en supprimant des barres surabondantes,

on prendra pour ¢ la fonction
Za,-dis,'

qui remplit bien les conditions voulues.

Si c’est le prix total que 'on veut diminuer, on prendra pour ® la fonction
Eaia’,-p,-s[.

Le cas étudié par M. Maurice Levy est celui ou la fonction ¥ est indépendante
des paramétres s et conserve cetle propriété chaque fois qu’on passe d’un systéme
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au suivant. Les seules fonclions ¢ possédant cette propriété ne peuvent évidem-
ment étre que des combinaisons linéaires des premiers membres des équations 111
et, par conséquent, doivent dépendre des {3;. Effectivement, si on modifie la dé-
monstration de M. Maurice Lévy, sans en changer l'idée fondamentale, de fagon
al'appliquer aux systémes qui ne sont plus d’égale résistance, on est conduit a la

fonction
ZaiE,- BZ‘S,‘.

Nous pouvons maintcnant énoncer en loule rigueur le résullat suivant, que le
théoréme de M. Maurice Lévy démontrait dans un cas particulier et rendait trés
probable dans le cas général :

De quelque fagon que Uon construise un systéme articulé a lignes sura-
bondantes, il existe toujours un systéme sans lignes surabondantes, ayant
les mémes nceuds, soumis aux mémes liaisons, résistant & son propre poids et
auzx forces extérieures données et qui soit aw moins aussi économique que le
premier.

Le genre de démonstration que j’ai adopté ici permel bien facilement de géné-
raliser encore les résultats précédents.
Soit un systéme X possédant K lignes surabondantes, c’est-a-dire pour lequel
la statique donne K équations de moins qu’il n’y a d’inconnues.
Considérons alors H fonctions linéaires et homogénes des s,
Ol By ...y Og

et faisons les hypothéses suivantes :
1° On a
H:ZK;
2° Il existe une combinaison linéaire et & coefficients positifs des fonctions o,
q):Z)\[CPj, )‘i>0 (i:I,Q,...,H),
qui est une fonction linéaire et & coefficients positifs des S,

LP::ZA,‘S,’, Ai>0 (i:l,z,...,ﬂl).

Cette condition sera, par exemple, réalisée forcément si, parmi les fonctions o,
il y en a une qui ait tous ses coefficients positifs. Supposons que ce soit v, on
aura la fonclion ¢ en prenant

M=-1, do=hsy=...=o0;

3» Les fonctlions © sont linéairement indépendantes.
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Reprenons notre raisonnement ; les @ seront des fonctions indépendantes des K
sections, qui restent arbitraires d’aprés les équations III. On pourra donc consi-
dérer les s et les © comme des fonctions linéaires de H paramétres o. Comme
les © sont des fonctions indépendantes, on pourra déterminer les quantités p,

telles qu’en posant
o= ity

les fonctions ¢ aillent toutes en décroissant avec ¢; il en sera alors de méme de ¢,
et comme ¢ est une fonction linéaire et a coefficients positifs des s, il faudra né-
cessairement gu’un au moins des s soit une fonction linéaire de ¢ décroissant
avec ¢. .

On voit alors, sans qu’il soit nécessaire d’insister, comment la démonstration

Y

se conlinuera, et I'on arrivera a ce résullat, qu’on peut toujours, en diminuant
simultanément toutes les fonctions ¢, arriver a réduire le nombre des lignes
surabondantes a la valeur H — 1.

On voit, avec la méme facilité, que si I'on a H fonctions linéaires et homogeénes
indépendantes parmi lesquelles il y en a £,

Dyy CP*_H ] (PI/’

qu’on veut faire décroitre et ]l/,
o 9’ oy
P10 Pas o0 Ph

qu’on veut faire croitre, et s'il existe, pour les fonctions @, 9, ..., 9, une
fonction ¢ définie comme précédemment, on pourra réduire le nombre des barres
surabondantes a la valeur H — 1, de facon a faire décroitre les fonctions ¢ et

croitre les fonclions ¢/,

1. — SUP\ LES CONDITIONS D’EXISTENCE DES SYSTEMES ARTICULES.

A

Dans ce qui va suivre, nous nous plagons & un point de vue exclusivement
théorique, et, quelles que soient les longueurs des barres que nous aurons a con-
sidérer, nous négligerons leur flexion.

Considérons un systéme articulé placé dans des conditions quelconques et ayant
a résister & son propre poids et a des forces données appliquées en ses nceuds.
Les équations I, TI, III du Chapitre précédent peuvent étre considérées, quand
on se donne les s, comme les équations linéaires donnant les tensions, de sorte
que chacune d’elles sera une fonction lindaire des s,

(1) i =0;(5), S2y -« o5 Sm) (t=1,2,...,m).
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Pour que le systéme résiste, il faut que les s vérifient les 3 m inégalités,

s ,\,@,'(S”Si,, ..
(2) ¢ —Ri: S;

( s;Zo,

X Sm) <
:Ri’

les R et R’ étant les coelficients de sécurité pratique relatifs a I’allongement et
a la compression.

Quand on se donne la forme géométrique du systéme ainsi que les liaisons et
les forces extérieures, les coefficients des fonctions @ sont déterminés; il ne reste
plus qu'a déterminer les s vérifiant les inégalités (2).

Si ces inégalités sont compatibles, nous dirons que le systéme est possible,
sinon qu’il est impossible.

Sauf dans quelques cas trés particuliers et extrémement simples, la résolution
des inégalités (2) est absolument impraticable.

Je me propose de chercher s'il n’existe pas une région définie par les points
d’appui du systéme, et telle que tous les nceuds doivent étre compns dans cette
région pour que le systéme soit possible.

Nous supposerons que le systéme est soumis & son poids propre et que les forces,
variables ou non, qui agissent sur les noeuds ont toujours leurs composantes ver-
ticales dirigées vers le bas.

Ceci posé, supposons que, dans nolre systéme ¥, on isole un systéme ¥', com-
posé d’un seul neceud autre qu’un point d’appui ou composé de plusieurs ncuds
dont aucun n’est un point d’appui, tous ces neeuds étant reliés par des barres con-
sécutives que nous désignerons par B, la lettre B’ désignant les barres de ¥ autres
que les barres B'.

Le systéme ¥/, considéré comme solide, est en équilibre sous I’ acuon des forces
extérieures qui agissent sur lui. Ces forces sont : '

° Les tensions ¢/ des barres B” qui aboul.lssenl a des neeuds de Y';

2° Les demi-poids de ces barres B”;

° Les poids entiers des barres B';

4" Les forces extérieures de ¥ qui sont appliquées en des neuds de ¥’ et qui,
par hypothése, sonl telles que la somme Z de leurs projections sur la verticale
dirigée vers le bas soit positive. ‘

Désignons par la lettre w” les angles que font des tensions ¢ avec la verticale.

En écrivant que la somme des projections sur la verticale des forces qui agissent
sur ¥ est nulle, nous aurons

— a’s d :
Zt”cosw”-k — —i—za's d+7=o,

en désignant par a et d les longueurs et poids spécifiques des barres. Soit u le
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nombre des barres B” qui aboutissent a ¥'. Si I'on pose

H; a’s"d" ~ . .
= — d 2 Za’s’d’—kZ (=1,2,...
i COSO): 2 + ) ( < ’[J')’

H+H,+...+ Hy=1,

on aura

d’ou résulte immédiatement qu’il y aura au moins une des quantités H dont la

, . 1 . ,
valeur absolue sera supérieure a ; Supposons que ce soit H;. La formule

al/s//d// ~
H audr/ Z 2 -+ Zalsld’—FZ
— Iy i
= RIS

o . "
i COSw; 2 S;

I &‘A\:

«

montre alors, puisque lous les termes du crochet sont positifs, que

‘
= >
Si

aid;

(3) o

Soit p la plus grande valeur des rapports % et % pour les différentes matiéres
dont se composent les barres du systéme Z.
Supposons que toutes les barres B” qui aboutissent au systéme ¥’ aient des lon-
gueurs supérieures a 2pp. Pour chacune de ces barres on aura
a'd"

2p

> p d"

et, par suite,
d”d”

2p

>Ry,

R étant le plus grand des deux coefficients de sécurité pratique de la barre. Il y a
certainement une des barres B” pour laquelle on a I'inégalité (3); pour cette barre,
on aura

"

,,|>R';..

[

|

Cette barre ne pourra donc pas supporter sa lension, et le systéme sera impos-
sible. Ainsi,

o~

“

Si toutes les barres de X qui aboutissent & ¥' ont des longueurs supérieures
a 2uo, le systéme T est impossible.

Cette propriété permet facilement de trouver des limites d’étendue de certains
systemes. Prenons, par exemple, une ferme Polonceau a une seule bielle. Soient D
I'intervalle a franchir et / la longueur des arbalétriers. Au sommet de la ferme

. l . l .
aboutissent quatre barres dont les longueurs sont 5 ou supérieures 4 —- Si donc
2

Fac. de T., 2*S., 1. 30
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on prend ce point pour ¥, on voit que, si
)
; >2 X 4,09

le systéme sera impossible. Comme D << 2/, on voit que, si
D> 320,

la ferme ne pourra exister quelles que soient les sections des barres.

On serait arrivé a la méme limite en prenant pour ¥ le tirant horizontal de la
ferme.

La ferme a trois bielles conduirait de méme a la limite 640.

Nous pouvons également en tirer une autre conclusion immédiate :

Soit un systéme I, et considérons un neeud, autre qu’un point d’appui auquel
aboutissent p barres dont la plus petite longueur est . Prenons ce point comme
systéme ¥, et agrandissons homothéliquement X en respectant la nature de ses
liaisons; A étant le rapport d’agrandissement, le systéme transformé aura un som-
met ot aboutiront w barres dont la plus petite longueur sera ha; done, si

ha>apup
ou

)\>2ﬂ7
a

le systéme sera impossible. Nous obtenons ainsi le résultat :

Si Uon agrandit homothétiquement un systéme articulé en respectant la
nature de ses liaisons, il arrive certainement un moment & partir duquel le
systeme deyient impossible.

Les limites que nous trouvons ainsi dépendent non seulement du nombre des
nceuds, mais aussi de la fagon dont on les joint. Nous allons maintenant, en par-
tant des résultats précédents, trouver des limites qui, naturellement, seront moins
resserrées, mais qui auront I'avantage de ne dépendre que du nombre des nceuds
et de prendre une forme géométrique extrémement simple.

Soit m le nombre des neeuds du systéme ; supposons que de chacun de ceux qui
sont des points d’appui on dérive une sphére avec le rayon 2m?p, et que le sys-
téme posséde des neeuds qui soient extérieurs a toutes ces sphéres, c’est-a-dire
des nceuds dont la distance a 'un quelconque des points d’appui soit supérieure
aam?p.

Soit M un tel nceud, adjoignons-lui toutes les barres qui y aboutissent et ont
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une longueur inférieure ou égale & 2mp. Opérons sur extrémité de chacune de
ces barres, comme nous ’avons fait sur M, et continuons cette opération tant que
nous pourrons.

Comme chaque fois nous prenons de nouvelles barres du systéme I et que
celles-ci sont en nombre limité, 'opération s’arrétera forcément, et, a ce moment,
nous aurons constitué un systéme ¥’ composé du nceud M tout seul ou de plu-
sieurs nceuds réunis par des barres consécutives. Toutes les barres de X qui abou-
tissent & X' ont des longueurs supérieures & 2mp, sans quoi elles auraient été
prises en formant ¥'. Enfin aucun neeud de ¥’ n’est un point d’appui de X; car,
s'il en était ainsi, on irait du point M a un point d’appui en suivant des barres
dont les longueurs seraient toutes inférieures ou égales & 2mp et dont le nombre
serait évidemment moindre que m, c’est-a-dire en suivant un chemin dont la lon-
gueur serait inférieure a 2m?p, ce qui est absurde d’aprés I'hypothése faite sur
la position du point M par rapport aux sphéres. Le systéme ¥’ étant dans les con-
ditions d’application du théoréme précédemment démontré et p étant évidem-
ment inférieur 4 m, on a, pour toutes les barres qui y aboatissent,

a>app;

d’ou 'on conclut que le systéme I est impossible.

Les sphéres que nous sommes ainsi amenés a considérer ont unrayon 2m?p qui
est d’autant plus grand que le nombre des barres est plus considérable. Pour un
systéme d’un nombre déterminé de nceuds, il sera d’autant plus grand qu’il y aura
plus de barres surabondantes.

Mais une conséquence implicite du théoréme de M. Maurice Lévy est que, si,
pour une position donnée des nceuds, un systéme a barres surabondantes est pos-
sible, il y a un systéme ayant les mémes nceuds, sans lignes surabondantes et qui
est possible, de sorte que, siles nceuds sont placés de fagcon qu’aucun systéme
sans lignes surabondantes ne soit possible, on sera stir que tout systéme a lignes
surabondantes et ayant les mémes nceuds sera impossible.

Nous pouvons donc, sans nous préoccuper de savoir si le systéme a ou n’a pas
de lignes surabondantes, réduire m ala valeur qu’il doit avoir pour que le systéme
soit strictement indéformable, en vertu des liaisons, ¢’est-a-dire, en reprenant les
notations du premier Chapitre, prendre, dans tous les cas,

m=3n—(3p+2q-+r).
Donc :

Un systéme non plan ayant n nceuds dont p sont fixes, q se déplacent sur
des courbes, et r sur des surfaces, ayant ou non des lignes surabondantes,
est certainement impossible s'il a des noeuds extérieurs a toutes les sphéres
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ayant pour centres les points d’appui et ayant comme rayon commun
2[3n — (3p + 2q + r)]?p.

St le systeme est plan, les sphéres sont remplacées par des cercles ayant

comme rayon commun
af2n— (2p + q)]%p.

De ce qui précéde résulte que, lorsqu’on donne le nombre des nceuds et les points
d’appui, I'étendue d’un systéme possible est limitée.

Ces propriétés font également voir les raisons mécaniques pour lesquelles il est
nécessaire, lorsqu’on veut augmenter I'étendue d’un Ouvrage, d’augmenter le
nombre des points d’appui en introduisant des points intermédiaires el aussi
d’augmenter le nombre des barres, ainsi que celui des nceuds sans introduire de
barres surabondantes.

Elles font aussi comprendre géométriquement pourquoi l'agrandissement homo-
thétique arrive a rendre le systéme impossible. En effet, les distances d'un nceud
quelconque aux différents points d’appui sont proportionnelles au rapport d’agran-
dissement A. Les rayons des sphéres en sont indépendants, de sorte qu’en faisant
croitre A, il arrivera un moment ot le nceud considéré viendra a 'extérieur de
toutes les sphéres, et, A continuant a croilre, il restera toujours a leur extérieur,

de sorte que le systéme deviendra et restera impossible.

III. — Sur LA METHODE DES FIGURES RECIPROQUES POUR LA DETERMINATION

DES TENSIONS.

Je me propose de résoudre la question suivante :

Déterminer tous les systemes plans strictement indéformables tels que,
quelles que soient les forces en équilibre appliguées en ses neeuds, on puisse
déterminer de proche en proche toutes ses tensions en construisant unique-
ment des polygones de forces et sans jamais construire deux fois le méme

segment.

Comme le polygone des forces ne permet de décomposer une force que suivant
deux directions, il faut d’abord, pour pouvoir obtenir toutes les tensions de proche
en proche, rien qu’en tragant des polygones de forces, que les neeuds puissent se

mettre dans un ordre
Sl’ S'Z’ AR ] SIl—]’ Sﬂ’

tel que chaque nceud ne soit lié aux suivants que par deux barres.



SUR L’EQUILIBRE DES SYSTEMES ARTICULES. 233

A chaque nceud S; correspond un polygone de forces que je désigne par P; et
dont un c6té f; est équipollent a la force F; appliquée a S;, les autres b étant
paralléles aux barres B qui aboutissent en ce nceeud. '

Pour qu’un systéme posséde la propriété indiquée, il faut que les polygones P;
puissent se placer, de telle facon que deux polygones qui correspondent & deux
sommets liés par une barre aient en commun le coté paralléle & cette barre.

Considérons un polygone quelconque P, et parcourons-le dans son sens & partir
de lorigine de f,, ; a la suite de f, , nous parcourons un cdté b, qui sera commun
a un autre polygone P, et qui, considéré comme appartenanta P,, aura pour extré-
mité Pextrémité A de f, . Considérons I'autre c6té de P, issu de A et ayant A pour
origine, si ce n’est pas f,, ce sera un cbté b de P, et, par suite, aussi un coté b
d’un autre polygone P, . Continuons ainsi en tournant toujours autour de A, nous
arriverons fatalement 3 trouver un nouveau cbté f; sinon, comme le nombre des
cOtés b est limité, on retomberait sur un de ceux qui ont été trouvés. Si alors on
ne retombait pas sur un des polygones déja trouvés, le coté considéré serait
commun & Lrois polygones, ce qui est impossible d’aprés les hypothéses. On ne
peut également pas retomber sur un des polygones considérés, car un polygone
déterminé n’est adjacent suivant un coté déterminé qu’a un seul polygone. Si
donc on revenait en sens inverse, on devrait retrouver P, , mais on retrouverait en
réalité, en sens inverse, les polygones qui forment le cycle; donc, P, serait un de
ces polygones et, par conséquent, n’aurait pas de c6té f aboutissant en A.

Nous arriverons donc & un cdté fg ayant pour origine A et extrémité B. Nous
raisonnerons sur fg comme sur f, et nous pourrons conlinuer ainsi lant que
Iextrémité du dernier segment f ne coincidera pas avec l'origine du premier.
Comme leur nombre est limité, cela arrivera nécessairement. Comme, d’autre
part, la disposition cherchée des polygones P doit exister, quelles que soient les
forces F, assujetties uniquement a étre en équilibre, c’est-a-dire que les segments f
équipollents aux F sont assujettis uniquement a former un polygone fermé, nous
arriverons a en conclure que les cotés f des polygones P constiluent le polygone
des forces F.

Pour aller plus loin, nous allons considérer un polygone fermé, formé par les
barres et tel que deux sommets qui ne sont pas consécutifs sur le périmetre ne
soient jamais réunis par une barre.

Remarquons que, le systéme étant donné géométriquement, on peut se donner
arbitrairement les grandeurs de toutes les tensions, les forces F seront déter-
minées par la condition de faire équilibre en chaque sommet a toutes les tensions
qui y aboutissent.

Considérons alors les tensions et forces qui agissent sur notre polygone.
Soient X', &), ..., X, les projections sur un axe des tensions qui agissent sur
les cotés; &y, %Xq, ... les projections des autres el X,, Xy, ..., X, celles des
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forces F. Nous remarquons que, d’aprés I’hypotheése faite sur le polygone, les
quantités X, X, ... sont distinctes.

Les sommets du polygone étant en équilibre, on a

Ny — &, + INW 4 X, =o,

Ny — N, 4+ Zx® X, =o,

N, — Xy, + I+ X, =o,

Uindice supérieur des . indiquant le sommet auquel sont appliquées les tensions.

Dela on tire évidemment
IX+2X=o,

relation évidente @ priori. Supposons que les tensions et les forces I qui agissent
sur le polygone puissenl se décomposer en plusieurs systémes partiels en équi-

libre, et cela quelles que soient les conditions dans lesquelles se trouve le systéme.
On aurait une relation
IAX + ZpX =o,

les A et p élant égaux & o ou 1 a condition de ne pas étre tous égaux a o ou tous
égaux.a I. i
Cette relation prendrait la forme
(N — X)) - R (X — ) o+ A (X, — X))
+ 2 EN + A 2@ do R I — S = o,

et elle devrait étre vérifiée quelles que fussent les valeurs des & et X/ qui peuvent
étre, d’aprés une remarque faite, considérées comme des variables indépendantes.
Les variables X/ montrent que ’on devrait avoir

M=ly=...=d,=~+1,
la relation se réduirait a
N —2pX =o,

et devant étre une identité par rapport aux . elle montrerait que I'on a
k= =...=+1,

Donc tous les ) et p seraient égaux & + 1, ce qui est contraire & 'hypothése.

Donc il est démontré que les forces et tensions extérieures agissant sur les
sommets du polygone ne peuvent pas, d’une facon générale, se grouper en sys-
témes partiels en équilibre.
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Faisons le tour d’'un polygone Q tel que celui que nous venons de considérer,
nous parcourons les sommets dans un certain ordre; considérons les polygones P
correspondants. Ils ont évidemment les propriétés suivantes : ces polygones
forment un cycle fermé, chacun d’eux a un c6té b commun avec le précédent et
un c¢b6té b commun avec le suivant; en oulre, deux polygones quelconques du
cycle, qui ne sont pas consécutifs dans ce cycle, n’ont aucun c6té b commun.

Soient Py, P, ..., Py les polygones du cycle; &y, bs, ..., bx les cOtés b qui
leur sont communs. Désignons par Ay, A, ..., A, By, By, ..., Bi les origines
et extrémités des cotés b en considérant b, comme appartenant a Py, b, a P,, .. ..

Les cotés b que nous considérons représentent les tensions ' du calcul pré-
cédent, les autres c6tés représentent les tensions % et les forces X. Les deux
polygones AyA,... A, B,B,...Bs sont les polygones des forces . et X décom-
posées en deux groupes; comme ils sont fermés tous deux, nous sommes cn
contradiction avec ce que nous venons de démontrer & moins que I'un des groupes
contienne toutes les forces & et X et ’autre rien.

Pour cela, il faut et il suffit que tous les points A soient confondus ou que tous
les points B le soient. On peut 'exprimer géométriquement comme il suit :

Lorsque des barres du systéme forment un polygone Q tel que deux
sommets non consécutifs de ce polygone ne soient jamais reliés par une barre,
les polygones P relatifs a ces sommets rayonnent autour d’un sommet
commun en se réunissant par les cdtés b qui sont paralléles aux cétés B du

polygone Q.

De la on déduit immédiatement que, dans le systéme, il n’est jamais possible
de trouver trois polygones Q ayant un c6té commun B.

Soit, en effet, b la ligne homologue de B dans le diagramme. Chacun des po-
lygones Q donnerait une série de polygones P rayonnant autour d’une extrémité
de b, et cela est absurde puisque b n’a que deux extrémités et que la série de
polygones P rayonnant autour d’une extrémité de b et commencant par ce coté,
est déterminée d’une facon unique.

1l en résulte aussi que tous les polygones Q du sysiéme sont des triangles.
Considérons deux sommets Si, Sk qui ne sont pas liés par une barre.

En modifiant les tensions qui aboutissent a S, sans changer aucune des autres,
nous ne touchons a aucune tension aboutissant a S; de sorte que le polygone P,
reste invariable en forme et position. Allons de S; & Si par une suite de sommets
tels que le dernier S;_, soit le premier qui soit lié & Sy par une barre. Les poly-
gones P; (, ..., Px_, sont fixes comme P;; quant a Px_,, il a deux cotés va-
riables, son coté f et son c6té b qui est commun avec Px. En tous cas, ce coté b a
un de ses bouts qui est fixe. Partons de ce bout et marchons sur le polygone Py pour
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atteindre un de ses sommets donné & 'avance dans un sens tel que I'on ne ren-
contre pas de coté f de P;. On ne parcourra ainsi que des c6tés b représentant des
tensions aboutissant & S;. Le sommet considéré de P, est donc I'extrémité d’une
ligne brisée dont I'origine est fixe, et dont les ctés ont des directions invariables,
mais des grandeurs arbitraires, de sorte que ce sommet de P; ne peut étre fixe.

En paiticulier, il est impossible qu'il y ait un sommet de P; qui reste toujours
en coincidence avec un sommet de P;.

Ceci posé, supposons qu’un polygone Q ait plus de trois cotés; on pourrait
trouver sur lui deux sommets S;, Sz non réunis par une barre et, puisque les po-
lygones P relatifs aux sommets de Q doivent rayonner autour d’un méme sommet,
P; et Py, en particulier, auraient toujours un sommet commun.

Il est donc démontré que tous les polygones Q sont des triangles et, en outre,
comme nous l’avons vu, il n’y a jamais trois triangles ayant un c6té commun.

Jusqu’a présent nous n’avons pas utilisé le fait que les tensions pouvaient se
trouver de proche en proche, nous avons simplement supposé I'existence d’un
diagramme réciproque, de sorte que nous pouvons dire :

Les seuls systéemes pouvant posséder des diagrammes réciproques sont les
systémes triangulés.

Supposons, maintenant, qu’on veuille chercher les systémes pour lesquels on
peut déterminer les tensions de proche en proche par un diagramme réciproque.

Revenons a ce que nous avons dit au début du Chapitre et considérons les
sommets dans 'ordre

Sm Sn—h Sn—2’ R S2- sl-

Sy Su_iy Sp_s forment un triangle que j’appelle T,_s. S,_; forme, avec deux de
ces trois sommets, un nouveau triangle T,_;, ensuite S,_; est fourni, d’aprés les
propriétés que nous venons de démontrer, comme sommet d’un triangle ayant
pour base un c6té de T,,_3 ou de T,,_, & '’exclusion du ¢6té commun; soit T,,_; ce
nouveau triangle.

Continuons ainsi, nous aurons les triangles
Tn_2’ T'l—3’ MR ] T'Z’ Tl'

tels que chacun d’eux ait des cOtés communs avec deux des précédents et qu'il
n’y ait jamais de c6té commun A trois triangles.

Considérons les triangles qui ont deux cotés libres : le sommet a 'intersection
de ces deux c6tés est évidemment celui d’indice le moins élevé; les deux tensions
correspondantes sont déterminées immédiatement.

Supprimons tous les sommets qui se trouvent dans ces conditions, ce qui re-



SUR L'EQUILIBRE DES SYSTEMES ARTICULES. 237

vient a considérer les tensions correspondantes comme des forces extérieures
connues.

Le systtme devra se retrouver dans les mémes conditions, il y aura encore
au moins un triangle ayant deux c6tés libres. On recommencera le méme raison-
nement que précédemment et I'on continuera toujours. Il est évident qu’en opé-
rant ainsi on arrivera a épuiser le systéme, c’est-a-dire & un ou plusieurs triangles
ayant leurs trois c6tés libres.

On voit que, réciproquement, les systémes ayant la propriété demandée se
conslitueront de la facon suivante :

On partira d’un ou plusieurs triangles ayant chacun leurs trois c6tés libres. On
leur accolera des triangles ayant deux cotés libres; au systéme ainsi obtenu on
accolera de nouveau des triangles ayant deux c6tés libres, et ainsi de suite.

On voit, d’ailleurs, que deux de ces triangles, ayant pour points de départ deux
des triangles primitifs isolés, ne pourront se rejoindre, car celui des deux que
J'aurais tracé en dernier n’aurait eu qu'un c61é libre, de sorte que j’aurai autant

de systémes séparés que J’avais de triangles primitifs.

La conclusion est donc que les systémes les plus générauz pour lesquels il
est possible de construire les tensions de proche en proche sont les systémes
ramifiés simplement triangulés.

En entendant par la des systémes dont les branches ne forment pas de contours
fermés, chacune d’elles étant constituée par un systéme simplement triangulé
ordinaire, deux branches se réunissant par un triangle qui n’a aucun c6té libre.

On voit, d’ailleurs, avec la plus grande facilité, que la méthode s’applique effec-
tivement a ces systémes.

Fac.de T., » S., 1. 31



