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SUR

L’ÉQUILIBRE DES SYSTÈMES ARTICULÉS,
PAR M. ÉTIENNE DELASSUS,

I. - GÉNÉRALISATION D’UN THÉORÈME DE MAURICE LÉVI .

Dans son Mémoire Sur lcc recherche des tensions dans les systèmes de
barres élastiques et stcr les systènaes qui, à volume égal de nicctiéne, 
la plus grande résistance possible (1), M. Maurice Lévy a donné le remar-

quable théorème suivant (2) : :

Lorsqu’un système contenant h ligynes surabondantes est tel qu’il puisse
d’une mccniére et, par suite, cl’une infinité. de manières, être édifié en système
d’égale résistance, relativement à des forces données agissant sur lui, il 

’

existe toujours rcr2 système, sans lignes surabondantes, susceptible de résister
aux mêmes forces et tel que la somme des produits des volumes des barres

par leurs coefficients d’élasticité respectifs est la même clans ce système et
dans le système donné.

Ce théorème ne s’applique qu’aux systèmes à lignes surabondantes qui sont
d’égale résistance, systèmes très particuliers, et, en outre, est relatif à une fonc-
tion des sections qui est bien déterminée pour chaque système, mais varie’ avec
les coefficients d’élasticité. Enfin, il suppose qu’on néglige, au point de vue des
tensions qu’ils produisent, les poids des barres, c’est-à-dire le poids propre,
lequel est généralement prépondérant dans les grandes constructions qui sont
précisément celles pour lesquelles l’application du théorème présente un véritable
intérêt.

Ainsi ce théorème ne sera relatif au poids total l du système que si toutes les
barres ont même coefficient d’élasticité et résistent également bien à l’allonge-
ment et à la compression, il ne sera relatif au prix total du métal employé Que si

(1) MAURICE La Statigice graphique et ses applications aux constructions,
IV.

(2) MAURICE LËBy, Statique graphique, oè éd., t. Iil, p. z61.
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les barres résistant également â l’allongement et à la compression, les prix au kilo-
gramme des différents métaux employés dans le système sont proportionnels aux
quotients de leurs coefficients d’élasticité par leurs densités.

Je me propose de démontrer le théorème suivant qui ne subira aucune des
restrictions que je viens 

Soit 03C6(s1, s2, ... ) ccne fonction linéaire et homogène des
variables s qui est assujettie à l’unique condition d’aVOLj’ tous les coeflicien ts
positifs.

Étant donné un système articulé 03A3 à lignes surabondantes résistant à
son propre poids et à des forces données F, il est toujotcrs possible de tuoccven
icn système 03A3’ strictement indéformable, cçyant les mêmes nceicds que 03A3, résis-
tant aussi à son lmopue poids et aux forces F et tel que la fonction p formée
avec les sections des barres ait pour le système 1’ une valeur au plus égale
( en général inférieure) cc sa valeur pour le système 03A3.

Si le système 03A3 est d’égale résistance, on tnouven Lcn système 03A3’ satis-

,faisan.t aux conditions précédentes et qui soit aussi d’égale résistance.

Pour démontrer cc théorème dans toute sa généralité, nous supposerons que le
.s;ystèrc2e 03A3 n’est pas plan et qu’en outre il est soumis à des liaisons surabon-

dantes, c’est-à-dire telles que les réactions ne soient pas déterminables par la

Statique. Ces liaisons seront simplement constituées par le fait que, parmi les
n noeuds du système, il y en aura p qui seront fixes, j qui seront assujettis à se
déplacer sur des coilrbes fixes et r~ assujettis à se déplacer sur des surfaces fixes.
Ces liaisons introduiront un nombre d’inconnues égal à

nous les appellerons les inconnues p ; leur nombre est au moins égal à 6. Ceci
posé, les équations d’équilibre se divisent en trois catégories.

Équations l. - L’existence de k barres surabondantes fournit k relations

linéaires et homog-ènes entre les allongements. Si l’on pose d’une façon générale

on aura ainsi k relations linéaires et homogènes entre les p~.

Équations ll. - La forme du système est déterminée par les longueurs des
barres et sa position par six paramètres, le déplacement d’un noeud aura pour
composantes trois fonctions linéaires et homogènes des allongements des barres
et des accroissements de ces six paramètres. En exprimant qn’il y a des noeuds



fixes, ou assujettis à se déplacer sur des couches ou des surfaces, on obtiendra

équations linéaires entre lesquelles il faudra éliminer les accroissements des six

paramètres de position, de sorte que, finalement on obtiendra ainsi

équations linéaires entre les Ces équations ne sont pas forcement homo-

gènes.

Équations III . 
- Écrivons que chaque noeud est en équilibre sous l’action

des tensions qui y aboutissent et des forces extérieures qui y sont appliquées, en
y comprenant les forces de liaisons et les moitiés des poids des barres qui y
aboutissent, car nous supposons le poids de chaque barre décomposé en deux
poids égaux appliqués à chacune de ses extrémités.
Nous obtiendrons ainsi 3 n équations qui seront linéaires par rapport aux ten-

sions, aux inconnues , et aux composantes des forces et des poids. Mais les com-
posantes des poids étant des fonctions linéaires des sections, nous pouvons dire
que ces 3 Il, équations seront linéaires entre les ti, les p et les si.
En y remplaçant les ti par lei 03B2isi et éliminant les p, nous obtiendrons finale-

men t

équations linéaires entre les Si. Ce sont les équations III.
Les Si sont au nombre de

Si donc nous considérons les 03B2i comme des constantes vérifiant les équations 1
et II et satisfaisant aux inégalités .

dans lesquelles R; et Ri sont les charges de sécurité pratique relatives à la com-
pression et l’allongement pour la matière dont est formée la barre Bi, les si seront
assujettis à vérifier les seules équations III dans lesquelles il figure alors

inconnues de plus qu’il n’y a d’équations.
. 

On pourra donc se donner arbitrairement A + k’ sections pourvu que les équa-
tions III donnent, pour toutes les sections, des valeurs positives.
En définitive, les équations III permettront d’exprimer les s comme fonctions



linéaires de k + k’ paramètres .

La fonction ...) deviendra une fonction linéaire des paramètres c,
soit t .

sy, ci’ les valeurs des ~3, ~ et s pour le système proposé ~. Par 
thèse, ce système résiste à son propre poids et aux forces données ; donc les

~~° vérifient les équations 1 et Il ainsi que les inégalités (i); de plus, les 52 sont
tous positifs et vérifient les égalités III.
Nous allons modifier le système en laissant fixes les valeurs des ~i.
Supposons d’abord que la fonction? ne soit pas indépendante des e. Prenons

pour ces paramètres des fonctions linéaires d’un autre paramètre ~; alors ’!’ de-
viendra une fonction linéaire de T dépendant effectivement de 03C4, et tous les s

deviendront aussi les fonctions linéaires de T. ’

Faisons varier T à partir de sa valeur initiale 03C40 dans un sens tel que la fonc-

Lion § aille en décroissant; les s vont varier et il y en aura au inoins un qui ira en
décroissante sans quoi la fonction ~(s,, sz, ...) qui a tous ses coefficients positifs
irait en croissant, ce qui est absurde, puisqu’elle est constamment égale à y.
En faisant varier t toujours dans le même sens, les s partiront de leurs valeurs

initiales positives s°, les uns iront en croissant, les autres en décroissant, et il

arrivera un moment ou l’un des s arrivera à la valeur o ; supposons que ce soit s,.
Arrêtons-nous à ce moment. Nous avons des sections

qui sont toutes positives. Dans le système ~ ainsi modifié, supprimons la barre B,
qui a une section nulle, nous obtiendrons uti système ~,. Pour ce système, les
valeurs des i sont précisément les qui, par hypothèse, vérifient I, II et (i); en
plus, les s sont tous positifs et Vérifient les égalités III, de sorte que ~, a une barre
de moins que S et résiste à son poids propre et aux forces données. En outre,
pour S;, la fonction rest 

. , .’. ,

qui, par hypothèse est moindre que c~~s’~, ...). On peut donc écrire

Supposons maintenant que la fonction ~ soit indépcndante des paramètres z.

Reprenons le même raisonnement et faisons varier T à partir de ~~ dans un sens

que nous choisirons arbitrairement ; il y aura certainement des s qui iront en dé-



croissant, sans quoi la fonction y irait en croissant, ce qui est absurde puisqu’elle
reste égale à ~ qui est une constante. En vertu du raisonnement précédent, on
arrivera donc au système ~, résistant à son poids et aux forces données, ayant les
mêmes n0153uds et les mêmes 03B2 que le système 03A3, mais avec une barre en moins, et
cette fois on aura

De toute façon, nous pouvons dire que nous arrivons sûrement au système ~,
ayant les mêmes n0153uds que 03A3, mais avec une barre en 111oins, résistant à son

propre poids et aux forces données, ayant les mêmes valeurs pour les rapports
c’est-à-dire tel que les barres correspondantes, dans les deux systèmes, travaillent
au même taux, et, enfin, tel que

Sur f nous pouvons reprendre le même raisonnement et continuer jusqu’au
moment où k + k’ sera réduit à o.

Si l’on s’arrête au bout de k opérations, on arrivera à un système 03A3’ satisfaisant
aux conditions de l’énoncé du théorème et qui sera strictement indéformable,
mais soumis à des liaisons surabondantes. .

Si, au contraire, on ne s’arrête qu’au bout de k -~ ~~’ opérations, on arrivera à
un système qui sera strictement indéformable en vertu des liaisons auxquelles il

est soumis. 

Le théorème général est donc démontré. Quant à ce qui est relatif aux systèmes
d’égale résistance, cela résulte immédiatement de ce que les sont les mêmes
pour le système initial et le système final; si le système initial est d’égale ré-
sistance, tous les ~ sont égaux, le système final avant tous ses 3 égaux entre eux
est aussi d’égale résistance.

La fonction? est une fonction linéaire et homogène qui est absolument quel-
conque, sauf que tous ses coefficients sont positifs.

Soient ai, di, ~y la longueur de la barre Bi, et la densité et le prix du kilo-
gramme de la matière dont elle est formée.

Si l’on veut diminuer le poids total en supprimant des barres surabondantes,
on prendra pour c~ la fonction

qui remplit bien les conditions voulues. - 

’

Si c’est le prix total que l’on veut diminuer, on prendra pour c? la fonction

Le cas étudié par M. Maurice LeBy est celui où la fonction 03C8 est indépendante
des paramètres 03C3 et conserve cette propriété chaque fois qu’on passe d’un système



au suivant. Les seules fonctions q possédant cette propriété ne peuvent évidem-
ment être que des combinaisons linéaires des premiers membres des équations III
et, par conséquent, doivent dépendre des i. Effectivement, si on modifie la dé-
monstration de M. Maurice Lévy, sans en changer l’idée fondamental de façon
à l’appliquer aux systèmes qui ne sont plus d’égale résistance, on est conduit à la
fonction .

Nous pouvons maintenant énoncer en toute rigueur le résultat suivant, que le
théorème de M. Maurice Lévy démontrait dans un cas particulier et rendait très
probable dans le cas générât : :

De quelque façon. que l’on construise un système articulé à lignes sura-
bondantes, il existe toujours ici système sans lignes surabondantes, ayant
les mêmes noeuds, soicmis aux mêmes liaisons, résistant u. son propre poids et
aux forces extérieures données et qui soit au moins aussi économique que le

.

Le genre de démonstration que j’ai adopté ici permet bien facilement de géné-
raliser encore les résultats précédents.

Soit un système S possédant K lignes surabondantes, c’est-à-dire pour lequel
la statique donne K équations de moins qu’il n’y a d’inconnues.

Considérons alors H fonctions linéaires et homogènes des s,

et faisons les hypothèses suivantes :
10 On a

20 Il existe une combinaison linéaire et à coefficients positifs des fonctions

qui est une fonction linéaire et à coefficients positifs des S,

Cette condition sera, par exemple, réalisée forcément si, parmi les fonctions ,
il y en a une qui ait tous ses coefficients positifs. Supposons que ce soit ?f, on
aura la fonction 03C8 en prenant

3" Les fonctions sont linéairement indépendantes.



Reprenons notre raisonnement ; les y seront des fonctions indépendantes des K
sections, qui restent arbitraires d’après les équations III. On pourra donc consi-
dérer les s et les p comme des fonctions linéaires de H paramètres cr". Comme

les sont des fonctions indépendantes, on pourra déterminer les quantités pL/
telles qu’en posant

les fonctions o aillent toutes en décroissant avec t; il en sera alors de même de û,
et comme ,§ est une fonction linéaire et à coefficients positifs des s, il faudra né-

cessairement qu’un au moins des s soit une fonction linéaire de t décroissant

avec t.

On voit alors, sans qu’il soit nécessaire d’insister, comment la démonstration
se continuera, et l’on arrivera à ce résultat, qu’on peut toujours, en diminuant
simultanément toutes les fonctions y, arriver à réduire le nombre des lignes
surabondantes à la valeur H 2014 i.

On voit, avec la même facilité, que si l’on a H fonctions linéaires et homogènes
indépendantes parmi lesquelles il y en a Il,

qu’on veut faire décroître et Il’,

qu’on veut faire croître, et s’il existe, pour les fonctions y f, r2, ..., rh, une

fonction définie comme précédemment, un pourra réduire le nombre des barres
surabondantes à la valeur H -- i, de façon à faire décroître les fonctions j et
croître les fonctions ~’.

lI. - SUR LES CONDITIONS D’EXISTENCE DES SYSTÈMES ARTICULÉS. 

Dans ce qui va suivre, nous nous plaçons à un point de vue exclusivement
théorique, et, quelles que soient les longueurs des barres que nous aurons à con-
sidérer, nous négligerons leur flexion.

Considérons un système articulé placé dans des conditions quelconques et ayant
à résister à son propre poids et à des forces données appliquées en ses n0153uds.
Les équations l, TI, III du Chapitre précédent peuvent être considérées, quand
on se donne les s, comme les équations linéaires donnant les tensions, de sorte
que chacune d’elles sera une fonction linéaire des s,



Pour que le système résiste, il faut que les s vérifient les 3 m inégalités,

les R et R’ étant les coefficients de sécurité pratique relatifs à l’allongement et
à la compression.
Quand on se donne la forme géométrique du système ainsi que les liaisons et

les forces extérieures, les coefficients des fonctions e sont détermines; il ne reste
plus qu’à déterminer les s vérifiant les inégalités (2).

’ Si ces inégalités sont compatibles, nous dirons que le système est possible,
sinon qu’il est 
Sauf dans quelques cas très particuliers et extrêmement simples, la résolution

des inégalités (2) est absolument impraticable.
Je me propose de chercher s’il n’existe pas une région définie par les points

d’appui du système, et telle que tous les noeuds doivent être compris dans cette
région pour que le système soit possible.
Nous supposerons que le système est soumis à son poids propre et que les forces,

variables ou non, qui agissent sur les noeuds ont toujours leurs composantes ver-
ticales dirigées vers le bas.

Ceci posé, supposons que, dans notre système ~, on isole un système 1’, coin-
posé d’un seul n0153ud autre qu’un point d’appui ou composé de plusieurs noeuds
dont aucun n’est un point d’appui, tous ces n0153uds étant reliés par des barres con-
sécutives que nous désignerons parB’, la lettre B" désignant les barres de X autres
que les barres B’.

Le système ~’’, considéré comme solide, est en équilibre sous Faction des forces
extérieures qui agissent sur lui. Ces forces sont :. 

’

1° Les tensions des barres B" qui aboutissent à des noeuds de 2/;
20 Les demi-poids de ces barres B";
3ù Les poids entiers des barres B’ ;
y" Les forces extérieures de 03A3 qui sont appliquées en des n0153uds de 03A3’ et qui,

par hypothèse, sont telles que la somme Z de leurs projections sur la verticale
dirigée vers le bas soit positive.

Désignons par la lettre les angles que font des tensions t" avec la verticale.
En écrivant que la somme des projections sur la verticale des forces qui agissent

sur S est nulle, nous aurons .

en désignant par a et d les longueurs et poids spécifiques des barres. Soit  le



nombre des barres B qui aboutissent à ~’. Si l’on pose

on aura

(Toù résulte immédiatement qu’il y aura au moins une des quantités H dont la
valeur absolue sera supérieure à I . . Supposons que ce soit Hi. La formule

montre alors, puisque tous les termes du crochet sont positifs, que

Soit p la plus grande valeur des rapports R d et -y pour les différentes matières
dont se composent les barres du système E.

Supposons que toutes les barres B" qui aboutissent au système ~’ aient des lon-
gueurs supérieures à Pour chacune de ces barres on aura ,

~t, par suite,

R~ étant le plus grand des deux coefficients de sécurité pratique de la barre. Il y a
certainement une des barres Bll pour laquelle on a l’inégalité (3) ; pour cette barre,
on aura

Cette barre ne pourra donc pas supporter sa tension, et le système sera impos-
sible. Ainsi,

Si toutes les barres de 03A3 qui aboutissent à 03A3’ ont des longueurs supérieures
à 2 pp, le système ~ est impossible.

Cette propriété permet facilement de trouver des limites d’étendue de certains
systèmes. Prenons, par exemple, une ferme Polonceau à une seule bielle. Soient D
l’intervalle à franchir et l la longueur des arbalétriers. Au sommet de la ferme
aboutissent quatre barres dont les longueurs sont l ou supérieures à l . . Si donc

2 p 
2



on prend ce point pour 1’, on voit que, si

le système sera Impossible. Comme D  2/, on voit que, si

la ferme ne pourra exister quelles que soient les sections des barres.
On serait arrivé à la même limite en prenant pour il le tirant horizontal de la

ferme.

La ferme à trois bielles conduirait de même à la limite 640. ..
Nous pouvons également en tirer une autre conclusion immédiate :
Soit un système S, et considérons un noeud, autre qu’un point d’appui auquel

aboutissent p barres dont la plus petite longueur est a. Prenons ce point comme
système ~’, et agrandissons homothëtiquement E en respectant la nature de ses

liaisons; À étant le rapport d’agrandissement, le système transformé aura un som-
met où. aboutiront a barres dont la plus petite longueur sera Àa ; donc, si

ou

le système sera impossible. Nous obtenons ainsi le résultat : :

Si l’on agrandit homothétiquement urt système articulé en respectant la
nature de ses liaisons, il arrive certainement un moment à partir duquel le
système devient impossible.

. Les limites que nous trouvons ainsi dépendent non seulement du nombre des
noeuds, mais aussi de la façon dont on les joint. Nous allons maintenant, en par-
tant des résultats précédents, trouver des limites qui, naturellement., seront moins
resserrées, mais qui auront l’avantage de ne dépendre que du nombre des noeuds
et de prendre une forme géométrique extrêmement simple.

Soit Jn le nombre des noeuds du système ; supposons que de chacun de ceux qui
sont des points d’appui on dérive une sphère avec le rayon 2 m2 p, et que le sys-
tème possède des noeuds qui soient extérieurs à toutes ces sphères, c’est-à-dire

des noeuds dont la distance à l’un quelconque des points d’appui soit supérieure
à 2.m2o.

Soit M un tel noeud, adjoignons-lui toutes les barres qui y aboutissent et ont



une longueur inférieure ou égale à 2mp. Opérons sur l’extrémité de chacune de
ces barres, comme nous l’avons fait sur M, et continuons cette opération tant que
nous pourrons.
Comme chaque fois nous prenons de nouvelles barres du système E et que

celles-ci sont en nombre limité, l’opération s’arrêtera forcément, et, à ce moment,
nous aurons constitué un système ~’ composé du noeud M tout seul ou de plu-
sieurs noeuds réunis par des barres consécutives. Toutes les barres de £ qui abou-
tissent à ~’ ont des longueurs supérieures à sans quoi elles auraient été

prises en formant E’. Enfin aucun noeud de il n’est un point d’appui de E ; car,

s’il en était ainsi, on irait du point M à un point d’appui en suivant des barres
dont les longueurs seraient toutes inférieures ou égales à 2 nip et dont le nombre
serait évidemment moindre que m, c’est-à-dire en suivant un chemin dont la lon-

gueur serait inférieure à 2 m2 p, ce qui est absurde d’après l’hypothèse faite sur
la position du point NI par rapport aux sphères. Le système ~’ étant dans les con-
ditions d’application du théorème précédemment démontré et po étant évidem-

ment inférieur à m, on a, pour toutes les barres qui y aboutissent,

a > 2 ]

d’où l’on conclut que le système E est impossible.
Les sphères que nous sommes ainsi amenés à considérer ont un rayon 2 m2 p qui

est d’autant plus grand que le nombre des barres est plus considérable. Pour un
système d’un nombre déterminé de noeuds, il sera d’autant plus grand qu’il y aura
plus de barres surabondantes.

Mais une conséquence Implicite du théorème de M. Maurice Lévy est que, si,
pour une position donnée des noeuds, un système à barres surabondantes est pos-
sible, il y a un système ayant les mêmes n0153uds, sans lignes surabondantes et qui
est possible, de sorte que, si les noeuds sont placés de façon qu’aucun système
sans lignes surabondantes ne soit possible, on sera sûr que tout système à lignes
surabondantes et ayant les mêmes n0153uds sera impossible.
Nous pouvons donc, sans nous préoccuper de savoir si le système a ou n’a pas

~ 

de lignes surabondantes, réduire m à la valeur qu’il doit avoir pour que le système
soit strictement indéformable, en vertu des liaisons, c’est-à-dire, en reprenant les
notations du premier Chapitre, prendre, dans tous les cas,

Donc : o

Un système non plan ayant n noeuds dont p sont .fixes, q se déplacent sur
des courbes, et r sur des sur faces, ou non des lignes sur°abondantes,
est certainement impossible s’il a des noeuds extérieurs à toutes les sphères



ayant pour centres les points d’appui et ayant comme rayon commun

Si le système est plan, les sphères sont remplacées par des cercles ayant
comme rayon comniun 

’

De ce qui précède résulte que, lorsqu’on donne le nombre des noeuds et les points
d’appui, l’étendue d’un système possible est limitée. ’

Ces propriétés font également voir les raisons mécaniques pour lesquelles il est
nécessaire, lorsqu’on veut augmenter l’étendue d’un Ouvrage, d’augmenter le
nombre des points d’appui en introduisant des points intermédiaires et aussi

d’augmenter le nombre des barres, ainsi que celui des noeuds sans introduire de
barres surabondantes.

Elles font aussi comprendre géométriquement pourquoi l’agrandissement homo-
thétique arrive à rendre le système impossible. En effet, les distances d’un noeud
quelconque aux différents points d’appui sont proportionnelles au rapport d’agran-
dissement X. Les rayons des sphères en sont indépendants, de sorte qu’en faisant
croître ~, il arrivera un moment où le noeud considéré viendra à l’extérieur de

toutes les sphères, et, À continuant à croître, il restera toujours à leur extérieur,
de sorte que le système deviendra et restera impossible.

III. - SUR LA MÉTHODE DES FIGURES RÉCIPROQUES POUR LA DÉTERMINATION

DES TENSIONS.

Je me propose de résoudre la question suivante : :

Déterminer tous les systèmes plans strictement indéformables tels qice,

quelles que soient les forces en équilibre appliquées en ses nceuds, on puisse
déterminer de proche en proche toutes ses tensions en construisant unique-
ment des polygones de forces et sans jamais construire deux fois le même

segment.

Comme le polygone des forces ne permet de décomposer une force que suivant
deux directions, il faut d’abord, pour pouvoir obtenir toutes les tensions de proche
en proche, rien qu’en traçant des polygones de forces, que les noeuds puissent se
mettre dans un ordre

Sh ... , ~~?

tel que chaque noeud ne soit lié aux suivants que par deux barres.



A chaque noeud Si correspond un polygone de forces que je désigne par Pi et
dont un côté fi est équipollent à la force Fi appliquée à Si, les autres b étant

parallèles aux barres B qui aboutissent en ce noeud. 
’

Pour qu’un système possède la propriété indiquée, il faut que les polygones Pi
puissent se placer, de telle façon que deux polygones qui correspondent à deux
sommets liés par une barre aient en commun le côté parallèle à cette barre.

Considérons un polygone quelconque Pal et parcourons-le dans son sens à partir
de l’origine de à la suite de fal, nous parcourons un côté b, qui sera commun
à un autre polygone et qui, considéré comme appartenantà P a3 aura pour extré-
mité l’extrémité A de Considérons l’autre côté de issu de A et ayant A pour

origine, si ce n’est pas fx: ce sera un côté b de P (1.3 et, par suite, aussi un côté b
d’un autre polygone P cx3. Continuons ainsi en tournant toujours autour de A, nous
arriverons fatalement à trouver un nouveau côté/’; sinon, comme le nombre des
côtés b est limité, on retomberait sur un de ceux qui ont été trouvés. Si alors on
ne retombait pas sur un des polygones déjà trouvés, le côté considéré serait

commun à trois polygones, ce qui est impossible d’après les hypothèses. On ne

peut également pas retomber sur un des polygones considérés, car un polygone
déterminé n’est adjacent suivant un côté déterminé qu’à un seul polygone. Si

donc on revenait en sens inverse, on devrait retrouver mais on retrouverait en

réalité, en sens inverse, les polygones qui forment le cycle; donc, P (Xl serait un de
ces polygones et, par conséquent, n’aurait pas de côté f aboutissant en A.
Nous arriverons donc à un côté f~~ ayant pour origine A et extrémité B. Nous

raisonnerons sur comme sur fal et nous pourrons continuer ainsi tant que
l’extrémité du dernier segment f ne coïncidera pas avec l’origine du premier.
Comme leur nombre est limité, cela arrivera nécessairement. Comme, d’autre ..

part, la disposition cherchée des polygones P doit exister, quelles que soient les
forces F, assujetties uniquement à être en équilibre, c’est-à-dire que les segments f
équipollents aux F sont assujettis uniquement à former un polygone fermé, nous
arriverons à en conclure que les côtés f des polygones P constituent le polygone
des forces F.

Pour aller plus loin, nous allons considérer un polygone fermé, formé par les
barres et tel que deux sommets qui ne sont pas consécutifs sur le périmètre ne
soient jamais réunis par une harre.
Remarquons que, le système étant donné géométriquement, on peut se donner

arbitrairement les grandeurs de toutes les tensions, les forces F seront déter-

minées par la condition de faire équilibre en chaque sommet à toutes les tensions

qui y aboutissent.
Considérons alors les tensions et forces qui agissent sur notre polygone.

Soient ..., les projections sur un axe des tensions qui agissent sur
les côtés; 1N2, , ... les projections des autres et X~, X2, ..., XIl celles des



forces F. Nous remarquons que, d’après l’hypothèse faite sur le polygone, les
quantités x, , ~12, ... sont distinctes.

Les sommets du polygone étant en équilibre, on a

l’indice supérieur des indiquant le sommet auquel sont appliquées les tensions.
De là on tire évidemment

relation évidente Supposons que les tensions et les forces F qui agissent
sur le polygone puissent se décomposer en plusieurs systèmes partiels en équi-
libre, et cela quelles que soient les conditions dans lesquelles se trouve le système.
On aurait une relation

les X et po étant égaux à o ou 1 à condition de ne pas être tous égaux à o ou tous

égaux, à 1. ,

Cette relation prendrait la forme

et elle devrait être vérifiée quelles que fussent les valeurs des x, et~’ qui peuvent
être, d’après une remarque faite, considérées comme des variables Indépendantes.

Les variables montrent que l’on devrait avoir

la relation se réduirait à

et devant être une identité par rapport aux ~‘~, elle montrerait que l’on a

Donc tous les À et  seraient égaux à + i, ce qui est contraire à l’hypothèse.
Donc il est démontré que les forces et tensions extérieures agissant sur les

. sommets du polygone ne peuvent pas, d’une façon générale, se grouper en sys-
tèmes partiels en équilibre.



Faisons le tour d’un polygone Q tel que celui que nous venons de considérer,
nous parcourons les sommets dans un certain ordre; considérons les polygones P

correspondants. Ils on t évidemment les propriétés suivantes : ces polygones -

forment un cycle fermé, chacun d’eux a un côté b commun avec le précédent et
un côté b commun avec le suivant; en outre, deux polygones quelconques du

cycle, qui ne sont pas consécutifs dans ce cycle, n’ont aucun côté b co.mmun.
Soient P,, P2, ..., Pk les polygones du cycle; b,, b2, ..., bk les côtés qui

leur sont communs. Désignons par A,, A2, ..., Ak, B,, B2, ..., Bk les origines
et extrémités des côtés b en considérant b, comme appartenant à P,, b2 à P2, ....

Les côtés b que nous considérons représentent les tensions cl du calcul pré-
cédent., les autres côtés représentent les tensions cl et les forces X. Les deux

polygones A, A2 .. Ak, B, B2 ... Bk sont les polygones des forces oex et X décom-

posées en deux groupes; comme ils sont fermés tous deux, nous sommes en
contradiction avec ce que nous venons de démontrer à moins que l’un des groupes
contienne toutes les forces ~ et X et l’autre rien.

Pour cela, il faut et il suffit que tous les points A soient confondus ou que tous
les points B le soient. On peut l’exprimer géométriquement comme il suit : :

Lorsque des barres dic système forment un polygone Q tel que deux

sommets non consécutifs de ce polygone ne soient jamais reliés par une barre,
les polygones P relatif’s à ces sommets rayonnent autour d’ccn sommet

commun en se réunissant par les côtés b qui sont parallèles aux côtés B dic

polygone (~.

De là on déduit immédiatement que, dans le système, il n’est jamais possible
de trouver trois polygones Q ayant un côté commun B.

Soit, en effet, b la ligne homologue de B dans le diagramme. Chacun des po-
lygones Q donnerait une série de polygones P rayonnant autour d’une extrémité
de b, et cela est absurde puisque b n’a que deux extrémités et que la série de

polygones P rayonnant autour d’une extrémité de b et commençant par ce côté,
est déterminée d’une façon unique.

Il en résulte aussi que tous les polygones Q du système sont des triangles.
Considérons deux sommets Si, Sk qui ne sont pas liés par une barre.
En modifiant les tensions qui aboutissent à Sk, sans changer aucune des autres,

nous ne touchons à aucune tension aboutissant à Si de sorte que le polygone Pi
reste invariable en forme et position. Allons de Si à Sk par une suite de sommets
tels que le dernier Sk_, t soit le premier qui soit lié à Sk par une barre. Les poly-
gones Pi+,, ..., Pk_2 sont fixes comme Pi; quant à Pk_,, il a deux côtés va-

riables, son côté f et son côté b qui est commun avec Pk. En tous cas, ce côté b a
un de ses bouts qui est fixe. Partons de ce bout et marchons sur le polygone Pk pour



atteindre un de ses sommets donné à l’avance dans un sens tel que l’on ne ren-

contre pas de côté f de Pk. On ne parcourra ainsi que des côtés b représentant des
tensions aboutissant à Sk. Le sommet considéré de Pk est donc l’extrémité d’une

ligne brisée dont l’origine est fixe, et dont les côtés ont des directions invariables,
mais des grandeurs arbitraires, de sorte que ce sommet de Pk ne peut être fixe.
En particulier, il est impossible qu’il y ait un sommet de Pk qui reste toujours

en coïncidence avec un sommet de Pi.
Ceci posé, supposons qu’un polygone Q ait plus de trois côtés ; on pourrait

trouver sur lui deux sommets Si, Sk non réunis par une barre et, puisque les po-
lygones P relatifs aux sommets de Q doivent rayonner autour d’un même sommet,
Pi et Pk, en particulier, auraient toujours un sommet commun.

Il est donc démontré que tous les polygones Q sont des triangles et, en outre,
comme nous l’avons vu, il n’y a jamais trois triangles ayant un côté commun.

Jusqu’à présent nous n’avons pas utilisé le fait que les tensions pouvaient se
trouver de proche en proche, nous avons simplement supposé l’existence d’un

diagramme réciproque, de sorte que nous pouvons dire : :

Les seuls systèmes pouvant posséder des diagrammes réciproques sont les
systèmes triangulés.

Supposons, maintenant, qu’on veuille chercher les systèmes pour lesquels on
peut déterminer les tensions de proche en proche par un diagramme réciproque.

Revenons à ce que nous avons dit au début du Chapitre et considérons les

sommets dans l’ordre

SIl-i, SIl-2 forment un triangle que j’appelle Tn_2. SIl-:1 forme, avec deux de
ces trois sommets, un nouveau triangle Tn-3, ensuite est fourni, d’après les

propriétés que nous venons de démontrer, comme sommet d’un triangle ayant
pour base un côté de ou de T n-2 à l’exclusion du côté commun ; soit ce

nouveau triangle.
Continuons ainsi, nous aurons les triangles

tels que chacun d’eux ait des côtés communs avec deux des précédents et qu’il
n’y ait jamais de côté commun à trois triangles.

Considérons les triangles qui ont deux côtés libres : le sommet à l’intersection
de ces deux côtés est évidemment celui d’indice le moins élevé; les deux tensions

correspondantes sont déterminées immédiatement.
Supprimons tous les sommets qui se trouvent dans ces conditions, ce qui re-



vient à considérer les tensions correspondantes comme des forces extérieures
connues.

Le système devra se retrouver dans les mêmes conditions, il y aura encore

au moins un triangle ayant deux côtés libres. On recommencera le même raison-
nement que précédemment et l’on continuera toujours. Il est évident qu’en opé-
rant ainsi on arrivera à épuiser le système, c’est-à-dire à un ou plusieurs triangles
ayant leurs trois côtés libres.
On voit que, réciproquement, les systèmes ayant la propriété demandée se

constitueront de la façon suivante :
On partira d’un ou plusieurs triangles ayant chacun leurs trois côtés libres. On 

,

leur accolera des triangles ayant deux côtés libres; au système ainsi obtenu on
accolera de nouveau des triangles ayant deux côtés libres, et ainsi de suite.
On voit, d’ailleurs, que deux de ces triangles, ayant pour points de départ deux

des triangles primitifs isolés, ne pourront se rejoindre, car celui des deux que
j’aurais tracé en dernier n’aurait eu qu’un côté libre, de sorte que j’aurai autant
de systèmes séparés que j’avais de triangles primitifs.

La conclusion est donc que les systèmes les plus généraux pour lesquels il
est possible de construire les tensions de proche en proche sont les systèmes
ramifiés simplement triangulés.

En entendant par là des systèmes dont les branches ne forment pas de contours
fermés, chacune d’elles étant constituée par un système simplement triangulé
ordinaire, deux branches se réunissant par un triangle qui n’a aucun côté libre.
On voit, d’ailleurs, avec la plus grande facilité, que la méthode s’applique effec-

tivement à ces systèmes.


