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SUR LES

COURBES DE DEFORMATION DES FILS,

PAR M. H. BOUASSE,

Professeur a I’Université de Toulouse.

DEUXIEME PARTIE.

CHAPITRE I

SUR LA DEFINITION DES CONSTANTES DE TRACTION ET DE TORSION.

Le sujet qui va nous occuper renferme de nombreux résultats contradictoires
qu’on doit attribuer au manque de méthode.

1° On ne prend pas la peine de définir les constantes dont on parle. On peut
donner par exemple plusieurs définitions expérimentales distinctes du coefficient
de Poisson : elles conduisent & des nombres qui n’ont aucun rapport entre eux
et représentent des qualités essentiellement différentes de la matiere.

2° On choisit une définition, mais la technique n’y correspond pas. Ainsi les
expériences analogues a celles de Wertheim, pour déterminer le coefficient de
traction, n’onl absolument aucun sens.

3° On prend comme définition le résultat brat et complexe d’une expérience.
Ainsi, Tomlinson appelle coefficient de torsion le couple déduit de la durée des
oscillations, quand on suppose que les forces se réduisent & deux, I'une propor-
tionnelle & I’écart, autre a la vitesse. Sa constante de torsion est une quantité
mal définie et sur la valeur de laquelle on ne peut baser aucun raisonnement.

De ces errements découle une grande confusion : nous chercherons a les éviter
sans crainte de nous appesantir sur des discussions trop subtiles. Il serait préfé-
rable de faire moins d’expériences et de savoir un pen mieux ce qu’on fait. Nous
choisirons les définitions des constantes de torsion et de traction, puis nous cher-
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cherons une expérience telle que la valeur numérique de la quantité définie en
résulte : rien @ priori ne prouve qu’il soit possible d’y parvenir.

Sur un fil, il est seulement possible de faire deux expériences distinctes et, par
conséquent, de déterminer deux constantes caractéristiques.

Soient | la longueur du fil, P sa tension : faisons varier d’une maniére
quelconque P entre les limites P, et P,, ou bien l entre les limites I, et ly; st
toutes les courbes représentatives de L en fonction de P sont une seule et méme
droite, nous appellerons coNsTANTE DE TRACTION le rapport

dap

elle sera ainsi définie entre les limites Py, {, et Py, ;.

Soit o. l’angle de deux diamétres pris sur deux sections droites du fil
distantes de 1°™ et G le couple; faisons varier d’une maniére quelconque C
entre les limites G, et C,, ou bien o entre les limites o, et ay; si toutes les
courbes représentatives de o en fonction de C sont sur une secule et méme
droite, nous appellerons consTANTE DE TORSION le rapport

_dC

T da’

elle sera ainsi définie entre les limites Cy, o, et C,, .

Ces définitions sont parfaitement nettes : elles coincident avec les anciennes,
quand ces derniéres ont un sens. Nous insistons sur ce fait que rien ne prouve
qu’on pourra toujours, et dans toutes conditions, obtenir ce cycle rectiligne
imposé par la définition, et, par conséquent, déterminer par une expérience di-
recte, en tous les points du plan, un coefficient de torsion ou un coefficient de
traction.

Comme ]’expérience montre qu’assurément les conditions imposées par la défi-
nition ne peuvent étre réalisées que pour de trés petits cycles, nous sommes
conduits & en étudier de tels : parmi tous les petits cycles étudiés, si nous en ren-
controns de rectilignes, nous en déduirons immédiatement les valeurs des cons-
tantes correspondantes. Toutes les méthodes propres a étudier de petits cycles
sont propres a déterminer les constantes, pourvu qu’elles nous permettent de
constater s'ils sont réellement rectilignes et quelle est alors leur inclinaison qui
en est la caractéristique.

Il est possible qu’on ne puisse pas décrire de petits cycles rectilignes dans
tout le plan et, par suite, en certains points, déterminer directement la valeur
des constantes. Cela ne prouve pas que les causes auxquelles correspondent
ces conslantes n’existent pas alors; on veut dire simplement par la qu’elles sont
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mélangées a d’autres phénoménes qui les masquent plus ou moins. Nous sommes,
au contraire, sirs que ces causes agissent seules, si le cycle est rectiligne, et c’est
pourquoi nous avons choisi notre définition.

Méme quand le cycle n’est plus rectiligne, I’expérience montre que sur un des
parcours du cycle, et généralement en certains points de ce cycle, les causes aux-
quelles correspondent les constantes sont plus isolées; on peut s’arranger méme
pour que leur action soit absolument prédominante. Mais ce ne peut étre la qu’une
loi secondaire qui n’a de sens que si ’on connait par ailleurs, et sans contestation
possible, la valeur des constantes strictement déterminée.

MéTHODES STATIQUES POUR DETERMINER LES CONSTANTES.

Les méthodes statiques de détermination des constantes reviennent & appliquer
la définition : la technique prend des formes différentes suivaut qu’il s'agit de T
ou de ®@; dans le premier cas, on impose les limites «, et a,; dans le second, les
limites P, et P,.

On doit, d’aprés la définition, pouvoir faire varier P ou C, « ou / d’une maniére
quelconque par rapport au temps. Mais P'expérience prouve que si le cycle est
véritablement rectiligne pour une loi de variation, il I’est encore pour une autre
quelconque. On choisira donc une loi déterminée de variation périodique et,
naturellement, ce sera la loi sinusoidale dans le temps, parce que cest la plus

simple a réaliser et, mathématiquement, la plus facile a traiter.

Détermination de T.

Pour déterminer I', on impose donc au fil une torsion périodique sinusoidale
d’amplitude constante, par un procédé tel que celui qui est décrit dans un Mé-
moire publié dans les Ann. de Chim. et de Phys. pour 1898. Sans revenir sur
les détails de l'installation, qu’il me suffise de rappeler qu’on utilise les propriétés
de I'excentrique. Le fil est attaché a un dynamemétre de torsion dont on déter-
mine les indications extrémes C, et Cp. On est assuré que les conditions spécifiées
dans la définition sont satisfaites :

1° Quand les couples C, et C, restenl invariables;

2° Quand, en diminuant Pamplitude «, — a4, il y a proportionnalité entre cette
amplitude et la différence des couples C, — C,.

La méthode porte avec soi sa vérification ; elle doit étre seule appliguée pour
les matieres trés molles, comme les métaux & température élevée, et ne peut
étre simplifiée sous aucun prétexte; il estabsurde de remplacer la torsion pério-
dique par une torsion unique : on ne peut avoir aucune confiance dans des expé-
riences 4 haute température qui n’auraient pas été failes avec ces précautions.
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Déja, vers 200°, sur du platine, on s’apercoit de la nécessité d’une technique
rigoureuse.

Détermination de ® par traction.

La méthode qui permet de déterminer ® par traction doit étre calquée sur la
précédente. Cette méthode présente tant de difficultés presque insurmontables

et, sous une forme incorrecte, a été si souvent employée, que nous sommes tenus
a une discussion compléte (*).

On impose au fil une charge périodiquement et sinusoidalement variable dans
le temps, entre les limites constantes P, et P;. On détermine la variation corres-

(1) On comparera ce qui est dit dans ce paragraphe au Mémoire de M. Brillouin, Ecarts
a la loi de Hooke (Ann. de Chim. et de Phys., 1898), o il discute savamment les diffi-
cultés inhérentes a Pexpérience.
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pondante de la distance comprise entre deux repéres situés aux extrémités du fil
(généralement les points d’attache). »

On ne fait la mesure que lorsque les conditions suivantes sont réalisées :

1° Les longueurs limites /, et /, sont constantes;

2° Quand on diminue lintervalle P, — P, la différence /,— /, diminue dans
le méme rapport. '

Pour la traction des fils, la seconde condition est toujours réalisée si la premiére
Iest, parce que le cycle est tout entier d’'un méme coté de la traction nulle.

Ici encore, il est absurde de simplifier et, comme nous le verrons plus loin,
méme quand ces conditions sont réalisées, on n’est pas sitr d’avoir une valeur
exacte de la constante de traction.

Occupons-nous d’'abord des procédés qui permettent de faire varier la charge :
le principe est loujours le méme, I'excentrique. On peut réaliser deux dispositifs
qui présentent des avantages spéciaux. Lorsque l'intervalle P, — P, est assez petit,
on utilise le principe d’Archiméde et les vases communiquants sous la forme sui-
vante ( fig. 1). On suspend au fil un flotteur cylindrique qui plonge dans un vase
cylindrique ¢, ot I'on fait varier le niveau de I’eau. Un second vase cylindrique ¢,
communiquant avec le premier, est suspenda & une manivelle MM fixée sur la
roue RR. On obtient le mouvement lent de la roue au moyen d’un petit moteur
par.]’intermédiaire d’un train d’engrenages. Dans nos expériences, on s’arrangeait

pour que le cycle durat trois minutes environ. Ce procédé est trés facilement appli-

Fig. 2.
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cable lorsque l'intervalle P, — P, est inférieur a 1*¢ par exemple; il ne faut pas
oublier cependant que le poids & mouvoir est toujours trés supérieur & P, — P,
et qu’il doit étre soigneusement équilibré si I'on veut que le mouvement rotatoire
de la roue RR soit bien uniforme : on emploiera avantageusement un volant
lourd fixé aux premiéres roues (roues rapides) du train.

Si l'on tient & opérer avec des barres d’énorme section, cette technique est inad-
missible, parce qu’elle conduirait & dépenser en pure perte un travail considé-

Fac.deT., » S, 1. 24
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rable; mais on peut, de-bien des maniéres, tourner la difficulté. Nous n’avons
pas eu & étudier ces procédés; nous ne ferons donc qu’en citer un, pour montrer
que la question n’est pas insoluble. Imaginons (fig. 2) que le fil AB en expérience
supporte le fer 8 T, CADE, chargé en C par un poids P et venanl s’appuyer en D
sur le galet I. Un arrét G, H, empéche les mouvements longitudinaux. 1l suffit
de déplacer périodiquement le chariol K et, par conséquent, le point d’appui I,
pour obtenir une variation périodique de poids qui s’exerce en A; la variation
n’est plus sinusoidale, mais I'inconvénient est minime. On n’a donc pas employé
les variations périodiques de charge parce qu’elles sont difficiles a obtenir, mais
parce qu’on nel’a pas voulu.

Revenons aux fils fins : I'appareil de mesure des allongements est disposé
comme suil :

Le fil est attaché a un bouton B soudé a une plaque P que meut verticalement
entre les guides GG la vis microméirique V. Deux forts ressorts RR la rappellent
vers le bas. Le fil s’enroule sur le cylindre d’acier CC, de 2™ de diamétre, et
enfin il supporte le plateau pp. Le cylindre CC porte un miroir M; il est entaillé’
a ses extrémités et forme deux couteaux qui reposent sur des plans d’agate AA.
On concoit que les changements de longueur du fil se traduiront par une rotation
du miroir qu’on mesure par la méthode de Poggendorff sur une régle de verre
verticale éclairée par transparence. Les couteaux peuvent étre soulevés au-degsus
de leurs plans d’agate par un mécanisme simple qui permet de ramener le cy-
lindre toujours dans la méme orientation.

. Sous le plateau pp s'accroche le flotteur F lesté avec du mercure et donl nous
avons décrit le role précédemment. Les deux vases commu'niqvuent par un gros
tube de caoutchouc; les échanges d’eau se font instantanément et sans secousse.
L’appareil, tel que nous ’avons employé, permet d’obtenir un cycle d’une cen-
taine de grammes, & partir d’un poids arbitraire placé sur le plateau pp. Le fil
étudié a1™ de long; ’échelle sur laquelle on lit est a 1™,50. Un allongement de
1™ de fil se traduit donc par un déplacement a 30 du point de I'échelle visé.
Comme on lit le ; de millimétre, on peut donc mesurer le § de . La vis micro-
métrique V sert & ramener le point visé dans la partie choisie de I'échelle. Le
miroir M est mounté sur un bout de tube dans lequel le cylindve CC entre & frotte-
ment doux, il est équilibré par derriere. Le cylindre CC est noirci sur la surface
sur laquelle s’enroule le fil, pour que I'adhérence soit plus grande. L’appareil a
été constrait fort habilement par M. Pellin.

Détermination de ® par flexion.

La méthode se présente avec deux techniques qui la rapprochent soit de la dé-
termination de I', soit de la détermination de ® par traction.



SUR LES COURBES DE DEFORMATION DES FILS. 183

A. Méthode du spiral. — On enroule le fil en un spiral dont on détermine la
constante de torsion : la méthode est identique avec celle qui permet de déter-
miner les constantes de torsion : on impose le cycle en azimuts, et I'on déter-
mine les couples extrémes & l'aide d’'un dynamomeétre de torsion. Nous aurons

l'occasion de revenir plus tard sur cette méthode.

B. Méthode de la verge. — Une verge est encastrée par un des bouts, on fait
agiv sur 'autre un poids périodiquement variable : on détermine le cycle par-
couru, en mesurant la fléche, c’est-d-dire le déplacement linéaire de I'extrémité
de la verge.

Ces méthodes présentent un inconvénient : la déformation n’est pas homogéne;
mais d’énormes avantages, qui les rendent incomparablement préférables dans le
cas des petits cycles, sous les réserves qui seront formulées plus loin.

1° Le fil ou la verge n’a pas besoin d’étre rectifi¢ : sa forme initiale n’inter-
vient pas : on n’a & tenir compte que des variations de courbure. On évite du
coup les causes d’incertitude que nous allons discuter ci-dessous;

2° On peut opérer au voisinage de la déformation nulle, et le couple peut étre
4 cheval sur 'axe des allongements;

3° Elles sont applicables a de gros fils et a des barres de diamétres tels, qu’il
faut des poids énormes pour les allonger sensiblement;

4° Elles sont trés sensibles : des déplacements énormes correspondent i des
déformalions insignifiantes;

5° La matiére occupe un volume petit (méthode du spiral) : on peutla chauffer

aisément.

Discussion plus compléte de la méthode de détermination
de ® par traction.

Pour déterminer ®, on doit faire parcourir au fil des cycles de traction trés
petits, déterminés par la différence des charges AP =P,— P, et la charge

P,+P

moyenne P — 2. On ne peut évidemment pas, comme pour la torsion, sa-

. . .. . , . R , . . AP
tisfaire a la condition P=o : P doit nécessairement étre supérieur a - Le cycle

est caractérisé au point de vue des allongements par la variation Al =/,—/, de
la distance comprise entre les repéres.

Il s’agit donc de chercher dans quels cas on obtient un A/ constant par les répé-
titions du cycle AP, et quel peut étre I'effet sur cette limite de la position du
cycle caractérisée par la valeur moyenne P. Nous nous limitons ici au cas ou les
déformations permanentes sont toujours trés petites; nous ne cherchons d’ail-

. AP . .
leurs pas sous quelles influences la constante ® = l—A—l peut varier d’une maniére
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permanente, mais simplement quelle est la valenr de la méthode et si les résultats
qu’elle semble donner ont véritablement le sens qu’on leur atiribuerait & premiére
vue.

L’expérience conduit avec une netteté parfaite aux résultats suivants :

Lorsque P est suffisamment petit, le cycle tend vers la forme rectiligne ; ce qu’on
reconnait aux deux caractéres suivants : 1° les extrémités sont fixes; 2° le maxi-
mum /, et le minimum /, de la longueur se produisent au moment ou la charge
passe par son maximum et son minimum. La variation Al dépend de la charge
moyenne P et diminue quand cette charge augmente ; d’otul’on conclurait a pre-
miére vue que le coefficient ® croit avec la charge moyenne P.

Lorsque P croit au-dessus d’une certaine valeur, le cycle n’est plus rectiligne ;
on le reconnait a ce que les extrémités ne sont plus fixes; le cycle rampe vers la
droite, 1l y a retard des maximum et minimum de longueur sur les maximum et
minimum de charge. Le coefficient @ ne peut plus se déterminer par expérience
directe.

Voici a titre d’exemple et en unités arbitraires pour un fil de 150% d’argent raide
et un cycle invariable d’une cinquantaine de grammes, la valeur A/ pour des
charges moyennes P variant de 508" en 508" :

50 100 150 200 230 300
44 932 929 930 926 925

Au dela, le cycle n’est plus rectiligne et ne le devient pas par la répétition.

A quelle cause devons-nous attribuer cette croissance apparente du coeffi-
cient @, et aussi les conditions dans lesquelles le cycle se ferme pour de petites
valeurs de P, alors qu’il semblait qu’il ddt atteindre immédialement une position
fixe dans le plan? La réponse a ces questions nous éclairera sur la valeur de la
méthode. ‘

* La cause de la croissance de @ parait due 4 la rectification du fil : celui-ci semble
d’abord s’allonger plus qu’il ne devrait, parce qu’une part de son allongement est
due a cette rectification. Sous ce mot : rectification, nous entendons toul ce qui
tend, non seulement a amener le fil & la forme rectiligne, mais a assurer la bonne
définition des points entre lesquels on mesure lalongueur, par exemple des points
d’attache. Le probleme expérimental actuel est done identique a celut que M. Bril-
louin s’était posé.

imaginons quau début le fil présente une forme irréguliére : quand on le tend,
il se rectifie. Il est d’abord évident que, s’il ne ’allonge pas d’une facon per-
manente, la rectification ne peut étre compléte que pour une charge_infinie.
Imaginons que la courbe qu’il présente en un point soit un cercle de rayon g,
et soit P la torsion; elle produit, en un point dont la distance au fil supposé rec-



SUR LES COURBES DE DEFORMATION DES FILS. 185

tifié est y, un couple Py. La rectification entraine un changement de courbure;

. . 1 1
si o est le nouveau rayon, le couple di au changement est proportionnel & — — —.
y I e} PO P
. .. I 1 .. ..
A mesure que le fil se rectifie, Py diminue et — — - augmente: la position d’équi-
0 p

libre ne correspond certainement pas a y = o, puisque P est fini.

Mais, si le fil n’est pas rectiligne, la tension ne s’exerce plus uniformément sur
toute la section : on peut atteindre une charge de déformation permanente pour
certains points, quand la charge moyenne serait incapable d'un tel effet. On
s'explique ainsi que, pour de telles charges, le cycle ne se ferme pas immédiate-
ment et s’allonge sensiblement.

Laissons, cependant, agir un poids faible quelque temps; comme il y a néces-
sairement de petits cyc]es de température parcourus, comme on ne peut pas em-
pécher Pappareil de vibrer, ce qui produit de petits cycles de tension, peu & peu
le fil se rectifie, les points d’attache se déterminent, et la constante ® semble
croitre, en méme temps que le cycle se ferme par la répétition. L'effet n’est pas
di a une modification permanente de l’ensemble de la matiére du fil; car, si
on le réinstalle, tout est & recommencer; mais bien a une modification du sys-
teme formé par le fil et ses points d’attache.

On s’explique aussi que les phénoménes soient différents suivant que le fil a é1é
préalablement tendu par des poids grands, étant en place, c’est-a-dire disposé
dans ’appareil méme ou 'on mesure @, ou s’il I'a é1é en dehors de P'appareil.
Dans ce dernier cas, la constante ® semble beaucoup plus variable que dans le
premier.

On s’explique enfin comment des allongements insignifiants modifient beaucoup,
en apparence, la constante ®, tandis que des allongements plus considérables,
mais effectués au préalable, la modifient relativement peu.

Ceci posé, que devons-nous prendre pour vraie valeur de ®?

Le ® apparent pour de faibles charges moyennes est trop petit; quand le cycle
n’est plus rectiligne, Uexpérience ne fournit plus de valeur pour ® d’aprés la défi-
nition méme de cette quantité. Faut-il prendre la derniére valeur de @ pourlaquelle
le cycle est encore rectiligne? Pour préciser, le AP ayant été choisi aussi petit que
possible, pour que, cependant, les mesures conservent une précision suffisante,

faut-il prendre pour calculer @ le Zs{Z qui correspond a la plus grande valeur

moyenne P pour laquelle le cycle est encore rectiligne? A priori, nous n’en sa-
vons absolument rien. Cela pourra dépendre du mode d’attache, de la perfection
du fil, de sa raideur, etc., conditions qu’il est bien difficile de préciser.

La mesure de ® par traction ne présente donc aucune sécurité; le résulial
de cette analyse est curieux, si l'on veut se rappeler que cette méthode a été gé-
néralement suivie, dans sa forme la plus incorrecte.
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ivite-t-on ces difficultés en prenant des barres rigides? C’est fort douteux.

Ist-il, d’ailleurs, étonnant qu’on n’ait pas signalé déja bien des fois ces causes
d’erreur? Quand Wertheim, sur un fil d’argent de 1™, 77 de diamétre, trouvait
dans deux déterminations successives 6649 et 8229, il ne pouvait guére lenir
comple de ces perturbations qui ne sont que de quelques unités pour 100. Avec
notre méthode, les erreurs deviennent manifestes.

Mais ne pourrait-on pas conclure que la valeur réelle de ® dépend de la position
du petit cycle employé pour la déterminer? La réponse risque d’étre un cercle
vicieux ; car aucune méthode directe ne permet de tenir compte de la rectification.
Cependant la mani¢re méme dont se produisent ces variations semble permettre
la conclusion suivante sur laquelle, d’ailleurs, nous reviendrons : la constante de
traction @ serait indépendante de la position du cycle ou de la charge moyenne P,
si 'on pouvait tenir compte de la rectification du fil.

Nous sommes maintenant en état de juger les expériences faites, d'ailleurs in-
correctement, par cette méthode. Elles consistent & mesurer la longueur d’un
cté d’un cycle qu’on ne décrit méme pas une seule fois en entier. La soi-
disant conslante ainsi déterminée ne signifie absolument rien; elle dépend d’une
foule de conditions dont la vraie constante est totalement indépendante, comme
le prouve I'expérience. On a mélangé des phénoménes qui n’ont aucun rapport
entre eux, au lieu de dégager le phénoméne purement élastique qu’on se pro-
posait d’étudier.

Ce manque de précision dans la définition de ce qu’elles mesurent est particu-
licrement déplorable quand par elles-mémes les expériences inspireraient con-
fiance. Cest le cas de celles de Tomlinson (Phil. Trans., p. 1; 1833). Tout ce
qu'elles annoncent doit étre vrai : je laisse a de plus habiles le soin de discerner
ce qui, dans les résultats, se rapporte a la constante de traction telle que nous
I'avons définie. Il y a de tout dans les phénoménes observés, mais en partie seu-
lement des phénoménes purement élastiques.

METHODES DYNAMIQUES POUR DETERMINER LES CONSTANTES.
Détermination de T.

Les méthodes dynamiques basées sur la mesure de la durée des petites oscilla-
tions sont d'une application commode, mais d’une interprétation délicate.

Pour déterminer T', on suspend librement au fil un corps admettant au repos
ce fil pour un des axes de l'ellipsoide d’inertie. Soient M le moment d’inertie
correspondant & cet axe; L la longueur du fil; T la durée d’oscillation; on a, en
admettant que les couples sont proportionnels aux angles

T=omy
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La méthode, théoriquement imparfaite (parce qu'une erreur relative sur T én-
traine une erreur relative double sur T'), est trés pratique : M peut étre déterminée
une fois pour toules, on peul installer 'appareil de maniére que L ait une valeur
connue el méme automatiquement constante; il suffit de déterminer T pour
avoir T'.

La formule permet de déterminer I', non pas comme le fait Tomlinson par défi-
nition, mais seulement si l'on est certain d’ailleurs que les conditions de la défi-
nition de I sont satisfaites, ou au moins si les choses se passent comme si elles
Pétaient. Tachons donc de préciser les données du probléme.

D’une maniére générale, I'équation du mouvement est de la forme

Iﬂdza r (‘ n m @. .tiz_g — 0
7 VR GO R I 75 7 R i

A la seule condition que les exposants n, m, ... de o dans la fonction
inconnue G soient posilifs et > 1, on vevt trouver la valeur de T' par la dé-
termination de la limite vers laquelle tend la durée d’oscillation lorsque

Uamplitude tend vers zéro.

Mais, pour qu’il en soit ainsi, il y a toute une série de conditions a réaliser.

: - . d*a .
1° Tant pour supprimer les lermes en i dans la fonction G que pour rendre

négligeables les causes d’irrégularités provenant des courants d’air inévitables, il
faut donner a P'oscillateur, aussi rigoureusement que possible, une forme de révo-
lution. Or, sous prétexte de pouvoir changer et mesurer facilement son moment
d’inertie, tous les physiciens 'ont formé d’un fléau sur lequel glissent des masses;
c’est une disposition déplorable. En imposant la forme de révolution :

.o , . do. da\? . .
a. On diminue l'action des termes en —, ([ —— ..+, qui produisent 'amor-
dt ) di ) > q P :

tissement.

2

. o . y .
0. On supprime les termes en — 4w changent le moment d’inertie.

c¢. On ne donne aucune prise aux courants d’air que produisent inévitablement
les moindres variations de température dans I'enceinte o est Poscillatear : ce
qui est une condition essentielle pour que la durée des oscillations de faible am-
plitude conserve une signification.

2° Pour qu’on puisse admettre que I’équation différentielle ci-dessus est celle
du mouvement, déterminer la limite de la durée des oscillations, quand ampli-
tade tend vers zéro et lui conserver sa signification, il faut que le milieu de 'oscil-
lation ne se déplace pas sensiblement, sinon on ne peut pratiquement pas mesurer
la durée et d’ailleurs cette durée n’a plus aucun sens précis.

On s’assure que cetle condition est satisfaite, .en déterminant trois azimuts
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(1‘,—{—1’212()32) doit

étre invariable. Si Pazimut 2 n’est pas invariable, on ne sait plus a partir da

conséculifs d’arrét de loscillateur, z,, x,, x;; l'azimut

passage de quel point déterminer la durée d’oscillation.

On pourrait théoriquement la compter a partir des temps de vilesse nulle, mais,
oulre que pratiquement la mesure est peu précise, il n’y a plus aucun rapport
enltre la durée T ainsi mesurée et la durée T de la formule

an /ML
=927 T

On mesure un effet complexe et plus du tout la constante de torsion.

C’est donc par une étrange méprise que Tomlinson, aprés avoir ainsi procédé
dans un cas ot le milieu de Poscillation se déplace (il s’agit d’un fil qui vient de
subir une torsion permanente considérable), croit avoir déterminé la constante
de torsion. Que penserait-on d’un physicien qui mesurerait la constante de la
gravité avec un pendule dont I'axe d’oscillation se déplacerait suivant une loi
inconnue?

11 est donc nécessaire de connailre a chaque instant 'azimut z, ce qui entraine
’emploi, soit d'un cercle solidaire de I'oscillateur; soit d’un miroir fixé sur 1'oscil-
lateur et d’une échelle. On peut & la rigueur se passer de repéres continus et
vérifier la fixité de I'azimut 2 en appliquant la remarque suivante : Les passages
sur le réticule dans les deux sens de l'azimut x doivent étre équidistants dans
le temps, sila condition ici étudiée est satisfaite. Cette méthode pour déterminer
'azimut 2 est peu précise et n’est pas a recommander.

3% Non seulement le milieu de I'oscillation ne doit pas se déplacer, mais il faut
déterminer les durées a partir des passages sous le réticule de ce milieu qui cor-
respond a la position d’équilibre statique. Toutefois, I’erreur qui provient de ce
quon ne prend pas cette précaution est généralement négligeable, tandis que
Perreur qui provient du déplacement de la position d’équilibre ne 'est générale-
ment pas.

Soit o.= Ae * sinw¢ la loi de P'oscillation. Cherchons les temps de passage sur
le réticule d'un repére distant de —+ ¢ de la position d’équilibre, ¢ étant petit.

La vitesse au voisinage de o. = o0 est ¢o= w ¢, en appelant & 'amplitude ac-

tuelle.

€ €
Posons = o =" Les passages se font aux temps
o »& '

.

3]

T ) T 3T
T - — T T —_—
1y 2 2 3y 9

Il y a donc deux sortes de durées.
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a. La position d’équilibre vraie passe sur le réticule avant le repére : la durée
entre deux passages est T+ (t,,2— 7,.); elle est plus grande que la durée vraie.

b. La position d’équilibre vraie passe sur le véticule aprés le repére; la durée
entre deux passages est T — (7,0 — 1,) : elle est plus petite que la durée vraie.

Evaluons la parenthése. Appelons &, et &, deux amplitudes comptées a partir
de la position d’équilibre et da méme c6té, ¢ leur moyenne.

On a

. . W e pa e LT
On peut s’arranger aisément pour que - soit trés inférieur & — : 'erreur est
§
2TC 100

donc certainement négligeable quand ’amortissement n’est pas trés grand.

La formule précédente permet toujours de se faire une idée de la grandeur de
I'erreur a redouter. On peut aussi 'évaluer par I'expérience en déterminant les
temps de passage du repére quand I'échelle, dans son déplacement apparent dans
la lunette, marche d’abord dans un sens, puis dans l'autre. La moyenne des nom-
bres trouvés pour les durées est le nombre vrai, leur différence donne le double
de l'erreur.

Si la position d’équilibre se déplace de ¢ pendant une oscillation, I'erreur est
de I'ordre de 7 et non plus de Ax.

4° Si la condition énoncée au 3° est satisfaite, ce qu’il est facile de constater,
'expérience montre que la durée tend effectivement vers une limite, c’est-a-dire
que les paramétres m, n, ... de I'équation différentielle sont >1. 1l n’y a plus
de difficultés lorsque les coefficients des termes a™, o” sont petits, car la durée
devient pratiquement constante pour des amplitudes relativement grandes. 1l
n’en est plus de méme quand les coefficients sont grands, c’est-a-dire quand le fil
est mou; car alors on n’atteint jamais pratiquement une amplitude assez petite
pour que la durée soit indépendante de 'amplitude. On est bien forcé de chercher
par extrapolation quelle serait la durée pour une oscillation infiniment petite.

Nous avons étudié théoriquement (Annales de la Faculté des Sciences de
Toulouse, p. ¥.33; 1897) un cas simple se rapprochant beaucoup du cas réel
dans notre Mémoire sur les oscillations & peu prés sinusoidales. Nous avons
montré qu'en appelant u 'amortissement, 3 une constante, & 'amplitude, &, la
durée limite, & la durée correspondante a 'amplitude &, on peut poser pour les
petites amplitudes

G:€O<I+'37F>, pw=pB¢<.

Fac.de T., > S., L. 25
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La quantité p. est d’ailleurs définie aux p. 17 et 19 de ce Mémoire.
On ne peut évidemment pas calculer d’aprés 'amortissement la valeur de 3,

Pair intervient dans I . al -d do ., .
car l'air intervient dans I'amorlissement total, et par des termes en 7 quin agissent

as sur ladurée. Mais 'expérience montre que la formule
p
& =8,(1+kC),

olt k est une constante, s'applique parfaitement. Elle rend possible I’extrapolation
nécessaire.

Partant de la, voici comment l'on procéde :

On détermine les azimuts d’arrét x, et x, immédiatement avanl et aprés le
passage sous le réticule de I'azimut z, au moment ou 'on commence & compter
les durées, puis les azimuts d’arrét x| et x, avant et aprés le passage du méme
azimutx, au moment ot I'on finit la mesure des durées. Soient ¢ le temps trouvé,

. . t . . .
n le nombre d’oscillations; —est la durée moyenne correspondante & 'amplitude

7 ’
Zy— z, —x . . . .
(22 -~ ) + (2 - 1), On peut ainsi construire une courbe qui est sensiblement

une droite : 'intersection de cette droite avec I’axe des durées donne la durée de
Voscillation pour une amplitude nulle. En toute rigueur, cette courbe doit s’in-
fléchir pour les amplitudes petites et aboutir normalement & I'axe des durées;
mais, pratiquement, cela ne change rien a la valeur limite de la durée dans tous
les cas ou le fil est assez mou pour que la construction précédente soit néces-
saire.

5° La durée d’oscillation ne doit pas étre trop grande. La vitesse moyenne en
chaque point est inversement proportionnelle a la durée. Si elle est trop grande,
les moindres souffles d’air auront des vitesses comparables a celle de P'oscillateur
et pourront modifier la loi de l'oscillation. 1l vaut mieux faire la mesuare sur
1o oscillations de 30°, que sur une seule de 3o0. La durée ne doit pas étre trop
courle, car : (@) on ne pourrait plus faire les lectures dont nous venons de montrer
I'importance, (b) comme le nombre d’oscillations utiles est sensiblement le méme
quelle que soit la durée, on réduirait la précision des mesures.

Il ne faut pas que le déplacement angulaire de I'oscillateur soit trop petit pour
des raisons analogues; le fil doit donc éire assez long; mais c’est une géne inutile
que de lui donner plusieurs métres, comme I'ont fait cerlains expérimentateurs.
Il devient difficile & manier, et I'on perd d’un c6té ce qu'on gagne de I'autre.

Il semble que le fil doive étre d’autant plus long qu'il est plus gros. Si une
longueur donne de bons résultats pour un diamétre donné, quelle longueur faut-il
prendre pour un fil d'un autre diamétre? L’expérience montre qu’on peut aussi
bien prendre la méme; et, en effet, si, d’'une part, les amplitudes doivent étre
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plus petites, d’autre part, le mouvement reste encore régulier avec de gros fils
pour ces petites amplitudes, parce que le couple mis en ceuvre est plus grand. On
doit seulement augmenter le pouvoir grossissant des appareils de lecture, a
mesure que le fil devient plus gros.

6° 1l semble enfin que la méthode des oscillations soit moins générale que la
méthode statique, puisque le couple doit étre toujours voisin de zéro. Le petit

Fig. 3.

cycle que 'on décrit est & cheval sur 'axe des couples nuls et symétrique par
rapport & cet axe; mais elle peut se généraliser et permetire d’étudier de petits
cycles dans une portion quelconque du plan.

Il saffit d’imaginer que l'oscillateur est entre deux fils : I'un, auquel il est
suspendu, préalablement étudié et pratiquement d’une élasticité parfaite pour les

Fig. 4.

o

couples entre lesquels on opére; I'autre qui y est attaché et dont on détermine les
propriétés. On peut ainsi obtenir des oscillations dont le milieu ne corresponde
plus au couple nul. On peut de plus, sans changer le moment d’inertie, tendre
plus ou moins les fils et répondre a des questions qui ont été jusqu’a présent
passablement maltraitées. La méthode ainsi appliquée est moins sensible, puisque
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le fil en expérience ne produit plus qu’une partie du couple; mais ses avanlages
compensent largement cette infériorité.

Pour réaliser ces conditions, nous avons appliqué la technique suivante qui ne
semble pas pouvoir étre simplifiée. Il faut attacher les fils : tant qu’ils sont fins,
on emploie les procédés qui nous ont si souvent servi; s'ils sont plus gros {o™™,3
a 1™ de diamétre) on doit recourir a des pinces dont la fig. 4 donne suffisamment
la description; elles se fixent avec la vis V sur les tiges qui doivent les supporter;
la fente ff que serre I’écrou E est proportionnée au diamétre du fil étudié.

La fig. 3 montre 'appareil de lancement. Le cylindre C repose sur le disque P
dans lequel il tourne. Deux anneaux A peuvent en étre rendus solidaires a I'aide
des vis V et portent des bras @, @; qui buttent contre la pi¢ce B fixée au disque P.
On limite ainsi arbitrairement la course angulaire du cylindre C. Le cylindre
renferme axialement la tige ¢£ qu’on peut fixer & une hauteur convenable et sur
laquelle s’adapte une des pinces ci-dessus décrites.

L’oscillateur proprement dit est une tige de laiton sur laquelle est soudé équa-
torialement un petit disque. On enfile sur la tige des disques d’aluminium. Un
bout de tube, entrant a froltement, porte un miroir plan de 2°™ >< 2°™. Les pinces
s’adaptent aux deux bouts de la tige. Si I'on opére avec un seul fil, la pince infé-
rieure porle une aiguille qui plonge dans du mercure au moment du lancement :
on abaisse la coupelle de mercure quand les oscillations latérales sont amorties.
Silon opére avec deux fils, la pince inférieure fixe 'extrémité supérieure du
second fil : Pexpérience montre que les oscillations latérales s’amortissent alors
d’elles-mémes rapidement.

L’oscillateur est dans une caisse en bois d’'un métre cube, placée sur une table
percée, et portant en son milieu au-dessus et au-dessous des cheminées verticales
qui protégent les fils contre les courants d’air; la cheminée supérieure est fermée
el porte sur son fond percé d'un trou 'appareil de lancement; elle s'ouvre latéra-
lement par unc porte nécessaire pour I'installation du fil supérieur.

La fig. 5 représente 'équateur de cette caisse ou se trouve le disque de l'oscil-
lateur C et son miroir M;. L’échelle en verre AA, placée dans une ouverlure mé-
nagée sur le c61é de la caisse, est éclairée par la lampe I'y & travers une lame de
verre mobile BB. Cette lame est recouverte de papier ordinaire, excepté suivant
une fente fine verticale D. Quand appareil oscille on voit donc passer dans la lu-
nette L les traits de Péchelle, faiblement mais uniformément éclairés, et la fente
lumineuse D.

Un autre miroir M,, formé d’une glace sans tain, permet de voir simultanément
I'image d’une fente fixe fine et courte E, qu’on fait coincider avec le réticule. Une
partie de ce réticule est donc rendue lumineuse. Voici maintenant comment on
procede.

On lance Voscillateur de maniére que les oscillations se fassent symétriquement
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par rapport a Uéchelle. Dés qu’elles sont assez petites, on détermine I'azimut z et
'on constate s’il est invariable. S’il I’est, on améne la fente lumineuse D a coin-
cider avec lui. Pour cela on éteint les lampes IV, et F, et Pon allume la lampe F
qui, & travers la glace GH, donne sur le papier BB une ombre portée de I'échelle.
On déplace cette glace BB jusqu’a faire coincider la fente D avec l'azimut z, ce
qu'on obtient facilement au 4 de millimétre. On éteint F; et 'on rallume F,
et Fy. Les mesures de temps se font donc a partir du moment ou les fentes lumi-

Fig. 5.
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neuses, 'une fixe, 'autre mobile, coincident. 1l est alors extrémement facile de
déterminer les durées au ;5 de seconde prés, ce qu’on ne pourrait pas faire si ’on
essayail de suivre les divisions de I’échelle et de déterminer direclement le pas-
sage de 'azimut 2.

’échelle est cependant toujours assez éclairée pour qu’on puisse lire les

azimuls extrémes, ce qui est nécessaire pour I'extrapolation étudiée au 4°.

Détermination de ® pa’r (raction.

On peut utiliser la méthode des petites oscillations pour déterminer ®. Suppo-
sons en effet le fil tendu par un corps de masse M libre de se mouvoir vertica-
lement; allongeonsle fil, puis lachons-le. La masse M se met a osciller et la durée
d’oscillation est donnée par la formule
ML

T=omn <D

Elle est indépendante, au moins en apparence, du poids tenseur Mg et de I'am-

plitude.
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Telle quelle, P'expérience est difficilement réalisable. On peut tourner les diffi-
cultés.

Soit un bloc de fonte de masse M pesant une quarantaine de kilogrammes,
supporté par un fil d’acier d’une dizaine de métres. Attachons les extrémités du
fil fin a étudier, 'une en un point A du corps M, I'autre en un point fixe B, de
sorte que la ligne AB soit horizonlale. En déplagant le point B, nous pourrons
tendre convenablement le fil fin. En choisissant le point A, nous pourrons faire
en sorte que le fil AB passe par le centre de percussion correspondant a I'axe de
suspension du pendule formé par le bloc M et son fil de suspension.

Ces conditions réalisées (et elles le sont aisément), la masse M peut osciller
sous I'influence de I'élasticité longitudinale du fil AB, comme si elle était libre
dans V'espace. Le fil AB n’est tendu que par une petite fraction du poids Mg du
bloc, fraction qu’on peut faire varier a volonté.

Clest la une trés jolie expérience de cours; il est curieux de voir une masse de
plusieurs dizaines de kilogrammes osciller, par exemple, sous I'influence d’un fil
de 100 u de diamétre avec une légéreté apparente; d’autre part, en disposant sur
le fil des cavaliers de papier, il est trés amusant de suivre les allongements de ce fil,
qui semble étre en caoutchouc. En prenant le fil de 3™ ou 4™ de longueur, on peut
facilement donner 5™® & 6™™ d’amplitude totale a I'oscillation.

Ce n’est qu’une expérience de cours. Il n’y a pas a songer a entretenir électrique-
ment un pareil systéme, non que ce soit difficile, mais I'entretien change beau-
coup la durée, parce que les conditions théoriques sont & peu prés impossibles
a réaliser pour des oscillations d’aussi faible amplitude. Ce ne serait pas un incon-
vénient bien grand, puisque, avec des masses M assez lourdes, on peut compter
plusieurs centaines d’oscillations ; malheureusement, il est impossible de faire les
corrections d’amortissement d’une maniére suffisante, et toutes les difficultés qui
proviennent de la rectification du fil se rencontrent ici tout comme dans la mé-
thode statique.

Détermination de ® par flexion.

On peut faire 'expérience de deux maniéres, comme dans la méthode statique,
soit avec des verges, soit avec un spiral. Cette derniére forme est seule vraiment
pratique. Elle est due & M. Phillips et consiste a transformer le fil en un ressort
spiral cylindrique dont on détermine la constante de traction par une méthode
d’oscillation.

Pour cela, l'oscillateur est supporté par un fil aussi fin que possible, qu’on
puisse regarder comme parfaitement ¢lastique dans les limites d’amplitude entre
lesquelles on 'emploie et dont on détermine préalablement la constante. A lex-
trémité inférieure de la tige verticale de l'oscillateur s’adapte un petit disque hori-
zontal auquel on fixe une des extrémités du spiral ; I'autre est fixée a un support
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disposé sous l'oscillateur, support qu'on éléve ou abaisse et généralement qu’on
déplace, de maniére que le spiral cylindrique soit centré et que les spires soient
aussi voisines les unes des autres que possible, sans se toucher.

Le spiral s’obtient en enroulant soigneusement le fil autour d’un cylindre de
verre de 3°™ ou 4°™ de diamétre. On le maintient cylindrique jusqu’au bout; on
ne gagnerait rien & chercher a construire les courbes terminales théoriques. Il ne
s'agit pas, en effet, d’appliquer le spiral a la régulation des chronométres, mais
de mettre en évidence des effets hors de proportion avec les causes d’erreurs dues
a la forme du spiral.

Posons ® = =R2E. Soient L la longueur du spiral développé, C le couple pro-
duit, I le moment d’inertie de la section droite du fil par rapport & un diamétre,

on a
aEl = CL.

Le rayon des spires n’intervient pas; il ne doit pas étre Lrop petit.
Remplacant les quantités par leurs valeurs, il vient

ER
L

A,

EE

La mesure du couple se fail pour le spiral comme pour le fil rectiligne.

Cetle méthode est fort élégante mais ne présente aucune garantie d’exactitude,
et ses erreurs systématiques font le plus clair de son intérét. Opérons, par
exemple, sur un fil d’argent raide qui a subi un allongement de 100 pour 100 &
la filiere; en 'enroulant pour en faire un spiral, il est impossible qu’on ne mo-
difie pas notablement sa structure. La différence des longueurs des fibres inté-
rieures et extérieures d’un cylindre de rayon R enroulé sur un cylindre de
diamétre D est 4R, & la seule condition qu’on admette que le fil ne s’aplatisse
pas, ou que la section diamétrale du lore qu’il forme reste une circonférence. Si
maintenant on admet que la fibre centrale ne change pas de longueur, les fibres

exlérieures et intérieures ont subi, 'une un allongement de a=R, l'autre une

. i . . . 2R . .
contraclion égale, soit un allongement ou une contraction relative de o Soit,

par exemple, un fil de o™, 5 de diamétre enroulé sur un cylindre de 3°™ de dia-
métre ; 'allongement de la fibre extérieure et la contraction de la fibre intérieure
sontde 1,7 pour 100, résultat parfaitement absurde. Quand bien méme on admet-
trait un aplatissement de fil, quand bien méme on chang:rait la position de la
fibre dont la longueur ne s’est pas modifiée, on n’avancerait en rien 'explication
du phénoméne; car le fil raide choisi, tiré longitudinalement, ne peut s’allonger
nide 1,7 pour 100 ni de la moitié de cette quantité ni du quart. Nous sommes
donc forcés de conclure : ou bien que par flexion il est possible de produire des
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allongements permanents qu’on n’obliendrait pas par traction, et cela sans que la
matiére cesse d’étre continue; ou bien que la matiére a cessé d’étre continue,
qu’il s’est produit une infinité de failles, invisibles a I'eeil et méme au microscope,
mais dont la variation des constantes peut nous révéler ’existence.

Sans vouloir résoudre en quelques mots une question de cette imporlance,
nous allons citer deux expériences qui montreront au moins quelles précautions
il faut apporter dans de semblables discussions.

@. On prend un fil, on détermine sa constante de torsion T'y, on l'enroule en
un spiral, on le déroule, on détermine & nouveau la constante de torsion T, :
I'; est.plus petit que T'y et d’autant plus que le fil était plus raide.

b. On détermine par la méthode du spiral la constante E, d’un fil raide; on le
recuil tout enroulé, la nouvelle constante E, est beaucoup plus grande que I’an-
cienne. Pour l’argent et un fil de o™, 5 de diamétre, trois expériences ont donné
pour le rapport

N 0,916 0,889 0,924 Moyenne... o,910

Pour le méme rapport des constantes E d’un fil écroui et recuit, Wertheim
avait trouvé directement 1,190. Je ne fais pour l'instant que constater cet écart
de 31 pour 100.

EXPRESSION DES CONSTANTES ® ET T DANS LA THEORIE
DE L’ELASTICITE.

Les équations de 1’élasticité pour les corps isotropes sont

__du [0y 0w>
Ni—Z‘U.d—x‘l")\e..., Tl_‘[L(&—‘_W/' ..

Elles contiennent deux constantes caractéristiques, A et p : exprimons les con-
stantes @ et T' en fonction d’elles et du rayon du fil.

On a

37\4—2;1.’ r—

— 2 —_ 2
®=71R2E=nR2p yp— ;

R* .

Rien ne prouve que.]a matiére des fils soit isotrope : on en rencontre qui sont
anisotropes sans contestation possible, et la question se pose de savoir si ce n’est
pas le cas général. La plus grande simplification qu’'on puisse faire, et encore
rest-il pas sir qu’elle soit légitime, consiste a les assimiler a un cristal & un
axe paralléle aux génératrices du cylindre. On admettra facilement que les pro-
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priétés de la matiére soient de révolution autour de 'axe de cylindre; mais il est
peu probable qu’elles ne soient pas fonction de sa distance & I’axe.

Admettons I'hypothése, pour ne pas trop compliquer la question. Les équa-
tions de I'élasticité ont alors cing constantes et peuvent s’écrire

Jdu dv

N1:21uld—x +2p255/— —+ 2,6,
Nz—_—2l~’~13—;‘ +2V~z% -+, 6,
N3:293%‘£+)\19;

dv  Ow ow  Jdu du  odv
i _— I3 . f| —_ 1 A . .
Ii=p (dz dy>’ L= \ 0z d)‘)’ Ty =(p ‘u‘)<dy ()x>

Pour déterminer les paramétres, nous n’avons, en tout, que deux expériences
distinctes : il y a donc indétermination, et une infinité d’hypothéses vérifieront
numériquement les faits. On passe au corps isotrope en écrivant

== =, K=o, =2
Calculons les expressions de ® et de T', on trouve facilement

E— (1 p2) (2 + M)+ 2#37\1’
P o By

Appelons o le rapport de la contraction latérale a la dilatation longitudinale

dans le cas d’une traction, on trouve

a—ﬁ—)\’
- 2(P-1+[’~2+7\1)’

expression qui devient ¢ — dans le cas d’une matiére isotrope.

2(@+ 1)
E , .
Enfin calculons le rapport Py que nous aurons ’occasion de rencontrer plus

loin,
E  p,
/ [J./

Hr"li*za
2

153

)

expression qui devient o™ =1+ o dans le cas d’'une matiére isotrope.

Nous pouvons discuter maintenant la question dite du coefficient de Poisson.
Fac.de T., 2 S., I 26
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Du rapport des coefficients \ et w dans les corps isotropes.

A priori, nous savons seulement que X et i sont des constantes positives : leur
A .
rapport ¢ = — peut donc prendre toutes les valeurs comprises entre o et 0; on
H )

admet qu’il est toujours > 1. On énonce souvent, au lieu du nombre ¢, le nombre s
défini par la relation

. q A
T2g+2 2(h+p)

Pour g =1, s =0,25; pour ¢ =, ¢ = 0, 50. Celte substitution de ¢ a ¢ est
ficheuse. Le physicien qui détermine s et trouve, par exemple, des nombres com-
pris entre 0,43 et 0,44, croit avoir une bonne approximation : ¢ varie alors
de 6,144 7,33 et, en définitive, c’est lui qui intervient dans les formules. De
plus, il finit par oublier la signification du nombre & et admet sans sourciller,
pour un corps isolrope, la valeur expérimentale ¢ = 0,50, qui est un non-sens;
elle conduit, en effet, & poser p. = o0 ou % =0, valeur qui ne se rencontre dans
aucun solide et que d’ailleurs personne n’aurait I'idée de soutenir.

Voici un Tableau qui facilitera au lecteur la comparaison :

c—o0,23 0,30 0,33 0,40 0,45 0,50

¢ =1,00 1,50 2,33 4,00 9,00 o

On admet généralement aujourd’hui, plus ou moins implicitement :

1° La théorie de I'élasticité pour les corps isotropes est applicable aux petites
déformations des métaux;

2° Le nombre o de cette théorie peut prendre toutes les valeurs entre o, 25
et 0,50, et, par conséquent, g toutes les valeurs entre 1 et oo;

3° Ce nombre varie pour un méme métal, suivant son état.

Le nombre & s’appelle coeflicient de Poisson.

Depuis prés d’un siécle qu’on discute sur ce coefficient, on a dit bien des choses
surprenantes et que nous n’avons pas l'intention de rappeler. Mais, si naives
qu’elles vont sembler, nous énoncerons quelques propositions dont trop de phy-
siciens ne paraissent pas se douter.

Voici la premiére : on ne peut parler d’un coefficient ¢ ou ¢ que si I'on est sir
de la possibilité de décrire un cycle effort-déformation rectiligne; on n'en peut
donner la valeur numérique que si 'on décrit effectivement de tels cycles recti-
lignes. Car, sans cela, on n’est pas sir de pouvoir appliquer la théorie de I'élasti-
cité, qui suppose essentiellement tous les cycles rectilignes.

Un solide est un vrai solide par rapport a une déformation, quand le cycle
effort-déformation est rectiligne, et il ne saurait y avoir d’autre définition expéri-
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menlale. Il n’y a pas & discuter, si ¢ ne pourrait devenir nolablement supérieur
4 0,25 qu’a partir du moment ou les déformations permanentes deviennent sen-
sibles, simplement parce que cela r’a pas de sens.

I est gratuit de dire que la valeur de &, théoriquement égale a o,50 pour les
liquides, décroit d’un corps a ’autre, au fur et & mesure que ceux-ci se rapprochent
de I'état solide, parce que nous n’en savons rien. S'il suffit de faire . = o dans
les équations de I'¢lasticité des corps solides isotropes, pour avoir celles des corps
liquides, cela ne prouve pas qu’entre ’état solide et I’état liquide il existe des
élats intermédiaires conlinus pour lesquels p décroit jusqu’a o, A conservant une
valeur finie.

Enfin, voici une derniére remarque que je n’oserais faire, si le préjugé con-
traire n’existait pas. On trouve facilement ¢ = Pyl On ne peut pas dire,

a priori, que o croit parce que u décroit; il peut se faire que & croisse, parce
que E croit plus vite que p. )

Les résultats expérimentaux abondent : la plupart des physiciens qui se sont
occupés d’élasticité, de prés ou de loin, ont fait leur détermination du nombre s;
il semble qu’en Allemagne ce soil une épreuve indispensable; mais la premiére
condition, quand on compare deux quantités, c’est de montrer qu’elles existent,
et au moins de les définir. Quand nous appliquerons la technique discutée dans
les pages précédentes et que nous déterminerons E et T', nous aurons le droit de
parler de leur rapport. Il est assez rare qu’on ait pris ces précautions.

Il faut remarquer, en outre, que toutes les méthodes employées a déterminer ¢
ne peuvent conduire au méme résullat que si la matiére est isotrope; orily a
généralement présomption pour qu’elle ne le soit pas. Il y a donc autant de coef-

ficients expérimentaux ¢ distincts qu’il y a d’expériences distinctes, et ni les unes
. \ ' A
ni les autres ne representent, et pour cause, le rapport —-
P.

Pour montrer & quel point nos critiques sont fondées, nous ajoutons quelques
nombres. Dans un Mémoire de M. Amagat (Ann. de Chim. et de Phys., 6° série,
t. XXII; 1891) sont donnés les résullats suivants :

Valeurs des coefficients de Poisson.

Acier. Cuivre. Laiton. Plomb.

0,2686 0,3270 0,3275 0,4282

« Les nombres consignés dans ce Tableau montrent que, pour les métaux
étudiés, cet ordre esl aussi sensiblement celui dans lequel les corps deviennent

plus mous, plus susceptibles de subir les déformations permanentes. » Voila qui
va bien.
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Mais, dans un grand Mémoire de Tomlinson, je trouve (Phil. Trans., t. 1;
1883):

Recuit. Fortement étiré.
Cuivre............ 0,315 0,453 0,293 0,733
Argent..... veeev. 0,367 0,392
Laiton............ 0,587 0,504
Platine........... 0,076 0,051
Fer...... e 0,281 0,325 0,321

Ces nombres résultent de la comparaison des coefficients de torsion et de
traction directement mesurés; ils nous inspirent les réflexions suivantes :

1° Les métaux recuits ont des o inférieurs a o, 50; les fils écrouis par la filiére
ont des ¢ généralement supérieurs & 0,50 : ce qui prouve qu'ils ne sont pas
isotropes. Les nombres donnés ne représentent plus le coefficient de Poisson.

2° Le coefficient = n’augmente pas certainement d’un métal a un métal plus

mou, puisque nous voyons croitre le rapport ™ d’un métal recuit au méme
[ .

métal écroui et que cette analogie en vaut bien une autre.
3° La question du coefficient de Poisson reste entiére au point de vue expéri-
mental, car si personne ne prétend que /=y ou /=2, tout le monde s’éton-

nera qu’en passant du platine recuit au cuivre recuit ¢ = m varie de 0,184 9,7,

soit de 14 54 (3 = 0,076 pour le platine, s = 0,433 pour le cuivre).

Il semble que le nombre ¢ peut étre déterminé trés facilement pour les fils
dont les diamétres varient de o™™,3 a 1™™, ou du moins que l'on peut obtenir,
sans qu’il soit nécessaire de faire aucune mesure de diamétre ou de longueur,
une constante caractéristique de la matiére du fil.

Du rapport des constantes ® et T.

Nous avons montré que pour les corps isotropes on a
-

E

— =1+ 0.

24

St le corps n’est pas isotrope, on peut poser arbitrairement = +s :la

quantité ¢’ est définie par celte équation méme. On tire dela, en multipliant haut
&

)

. ™
et bas le premier membre par

[

R

- =1+4cq.

=] &
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La valeur de o’ se déduit donc de la connaissance des constantes déja définies ®
et T et du rayon du fil. Si le corps est isotrope, le nombre &’ ainsi défini se con-
fond avec le coefficient o de Poisson. Il est clair que le calcul de ¢’ ne préjuge
pas Iisotropie, qu'on peut employer telles méthodes que 'on voudra pour déter-
miner séparément @ el T, et que la seule condition essentielle est d’opérer sur le
méme échantillon. »

Mais on a cherché, soit a faire simultanément les deux mesures, soit & com-
biner ces mesures de maniére que les dimensions du fil disparaissent de la for-
mule. Voici les méthodes qui permettent d’atteindre ce but.

La premiére est due a Kirchhoff qui I'a proposée en 1859. La barre cylindrique,
maintenue horizontalement par 'une de ses extrémités dans un étau, porte, fixée
transversalement a autre, une tige dont ’extrémité est elle-méme chargée d’un
poids. Il se produit donc & la fois une flexion et une torsion dont il est facile de
calculer la grandeur.

Soient L la longueur de la barre, P le poids qui la fléchit, £ la fleche. On a

3R

P—E AR I

Soient maintenant Cle couple de torsion et « I'angle correspondant

L PN
CﬂZR T
On tire de la
P _ 3f E _ 3f ,
C 7 La 2}Li_]42 (1+a),

le rayon a disparu.

Les déterminations étaient faites par la méthode de Poggendorff et a 'aide
d’un quadrillage sur verre : tout se ramenait a une seule lecture.

Cette méthode est inapplicable s’il s’agit de fils fins. On peut alors combiner la
mesure de ' et celle de E par le ressort spiral, en utilisant la méthode statique
ou la méthode dynamique.

La formule qui permet de déterminer E par le ressort spiral est

EnR*

(Jl—_— 4[‘ .

) ’ . sy . ’ . .
L’opération terminée, rectifions le fil en le déroulant et déterminons la con-
stante de torsion
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de la comparaison de ces équations on tire

C1 E ’
= — =0 1.
Cz 2}1.

que le corps soit isotrope ou non.

Les conditions expérimentales paraissent excellentes, puisque les mesures des
couples se font exactement dans les mémes conditions. Le fil serait légérement
conique que les formules resteraient les mémes, puisque chaque partie du fil
intervient pour son propre compte et de la méme maniére dans les deux expé-

Al

. ¢ . C .
riences. Le rapport ' aurait donc une signification plus précise que les nombres C,

N
et G, pris isolément. Enfin on ne doit faire aucune mesure ni de diamétre, ni
de longueur. Cette méthode, beaucoup plus commode que celle de Kirchhoff,
s'appliquerait & des diamétres variant de o™™,3 a o™™, 6.

Malheureusement, toutes les critiques, déja formulées plus haut contre la
méthode du spiral, peuvent étre répétées ici. Voici une curieuse expérience sur
du fil d’argent de 500 de diamétre. On enroule un fil liveé recuit par le com-
merce, on détermine la durée d’oscillation sous l'action du ressort spiral, on
déroule et 'on mesure le coefficient de torsion. Trois expériences ont donné

o =0,328 0,292 0,285 Moyenne ..... 0,302

On prend du fil du méme argent écroui par la filiére, on 'enroule raide, on
recuit, on mesure la conslante du ressort spiral, on déroule et I'on mesure le
coefficient de torsion. Deux expériences donnent

g=0,582 0,476 Moyenne .... 0,529

Nous reviendrons plus loin sur I'explication de ce paradoxe.

CHAPITRE 1I.

SUR LES PROPRIETES EN UN POINT D’UNE COURBE DE DEFORMATION.

On fait décrire & un fil une courbe de déformation. Pour préciser, supposons
qu’'on le soumette & des poids qui croissent proportionnellement au temps : on
mesure a chaque instant l'allongement en fonction de la charge : la courbe
obtenue s’appelle essai de traction.



.

SUR LES COURBES DE DEFORMATION DES FILS. 203

Evidemment, elle nous fournit de précieuses indicalions sur I’état du métal
avant la déformation; mais son utilité ne sera compléte que si nous connaissons
les propriétés du métal en chacun de ses points. Nous nous proposons d’étudier
dans ce Chapitre les conditions de cette détermination et le choix des propriétés.

L’essai auquel nous soumettons un corps, en un point d’une courbe de défor-
mation, doit étre de telle nature qu’il ne modifie pas I'élat auquel ce corps esl
parvenu.

Arréter une courbe de traction en un de ses points, soumettre le fil & une
autre grande déformation permanente, lui faire décrire, par exemple, une courbe
de torsion compléte, ne serait pas étudier les propriétés du métal au point d’arrét
sur la courbe de traction, mais superposer les eflets de deux déformations per-
manentes. Au contraire, la détermination, en chaque point de la courbe de trac-
ton, de propriéiés telles que la densité, la résistance électrique, etc., détermi-
nation qui n’entraine pas de nouvelles modifications permanentes sensibles,
permet de mesurer les changements de nature.

Il faut, en un mot, que I'essai ne modifie pas sensiblement la nature actuelle
du corps et puisse étre fait avec une précision suffisante. Le choix de ces essais
souléve des questions sur lesquelles il faut se faire une idée nette avant d’entre-

prendre les expériences.

De la nécessité d’une vérification.

Ce ne sont pas les constantes du fil qu’il y a intéréi a connailtre, mais celles de
la matiére qui forme le il : jusqu’a quel point peut-on passer des unes aux autres ?
Si I'on était stir que, dans la déformation, le fil restat rigoureusement cylindrique,
rien ne serait plus facile : mais c’est une hypothése gratuite, puisque le fil dans
son état primitif n’est ni rigoureusement cylindrique ni rigoureusement homo-
géne. Or toute différence qui se crée ou s'exagére, par la déformation entre la
forme réelle et la forme cylindrique, tend a faire varier les constantes du fil, a
supposer que celles de la matiére restent invariables; nous allons d’abord le mon-

trer sur quelques exemples.
Cherchons la constante 7 d’un systéme formé par une série de fils mis bout a

bout.
Soient

l;, I, les longueurs des fils,

oy, %, leurs torsions,

I'y, [ leurs constantes,

3/; = [ la longueur de ’ensemble,
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Sa; = a la torsion totale,
I’ la constante de I'’ensemble.

Puisque chaque fil résiste au couple total, on a

Or, par définition, on a

r
c=-7
d’ot
L4
r i
et, plus généralement,
i ' dx
rJj, I(»

Cherchons de méme la constante @ d’un tel systéme.
Chaque bout de fil supporte la tension totale, on a

dp:d)l dTl.iy
d’otx
dl,—ap b
i — (D"

i

Additionnons toutes les équations, il vient

Or, par définition, on a

dP:q)—l7

d’oul
L s b
0 @,

et, plus généralement,

Supposons maintenant que 'on remplace le cylindre par un tronc de cone sans
changer, d’ailleurs, I’état de la matié¢re ni la longueur : le rayon en chaque
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point est
k(t+pzx):

k est un coefficient que nous calculérons en écrivant que le rayon primitif est 1
et que le volume reste constant dans la déformation. Nous avons I'équation

‘
l—'_—k"-‘f (1+ px)dx,
0 .

d’ou
I
2 . .
"= 1+pl 82
pt+ 3

Cherchons maintenant quelle variation la modification de la forme, qui n’a pas
fait varier les constantes de la matiére, a produite sar la valeur des constantes du
fil. Puisque la constante de torsion est proportionnelle & la quatri¢éme puissance

du rayon, si I est la constante pour le fil cylindrique de rayon 1, la nouvelle
constante en chaque point du fil conique est

I'(v+px)
< P‘ll?)i’
1+pl+

~
J

et nous aurons, pour calculer la constante I' du fil conique, I'équation

_4_<,+ L, el ‘uf’_dw__
r— P 3 rJ (1+px)*

Résolvant, -1l vient
p2 12 3
_“ 1+pl-f 3

I
T\ 1+l /7

J

r

d’oti, en négligeant les termes d’ordre supérieur au second,
C=T'(1 — p*&2).

La constante du fil T est donc plus petite que la constante qui pour la méme
matiére correspondrait au fil cylindrique; V'erreur relative est le carré de la dif-
férence relative des rayons maximum et minimum. Nous avons supposé dans
notre démonstration que le cone formé par le fil était unique : le résultat est le
méme quand il existe un nombre quelconque de cénes le long du fil. Ainsi,
dans tous les cas ol I'expérience indique un  décroissant avec 'allongement, on

Fac. de T., 2¢ S., 1. 27
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ne peut pas savoir, @ priori, si 'effet ne tient pas a une déformation géomé-
trique, sans changement de nature.

Le calcul de la variation de ® peut se calquer sur le précédent.

La constante ® est proportionnelle au carré du rayon; si @ est la constante
pour le fil cylindrique de rayon 1, la constante du fil conique est, en chaque
point,

(1 +px)
p2 {2

1+ pl—+ 3

el nous avons, pour calculer la constante ® du fil conique, I’équation

I ¢ dx
><—l’7fo (+pa)

pzlz
1 3
T 1+pl ’

I ot L2
5_<1+pl—+— 3

Résolvant, 1l vient

1+pl+

d’ou, enfin,

La méme formule s’appliquerait encore a la résistance électrique. On a évi-
demment, en appelant R la résistance par unité de longueur,

Rl:f R(x)dzx.
0

Mais R(z) est en raison inverse de la section; si R’ est la résistance du fil
supposé cylindrique et de rayon 1, la résistance en chaque point par unité de

longueur est

2 ]2
1+pl+pgl
l4

(U +pax)?

d’ou
e (r g B8) [T
RI=R <1 +pl+ 3 >IO (1+px)2’

d’ou

272
R:R'(I-l—ggl >

La conclusion est générale : si I'on ne peut certifier que la forme est restée
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cylindrique, les résultats numériques sont douteux, et méme les conclusions qua-
litatives ne sont légitimes que si les variations sont du sens contraire a celui que
la discussion précédente fait prévoir.

On est donc conduit & chercher s’il est possible de ramener la matiére d’un
corps dans un état toujours le méme sans modifier les relations géométriques des
éléments quile composent. Admettons qu’il en soit ainsi : la détermination des
propriétés en un point d’une courbe de déformation consisie alors & comparer
les propriétés actuelles du fil aux propriétés qu’il reprend quand, sans le modi-
fier géoméiriquement, on raméne sa matiére a cet état type. On peut alors con-
clure I’état de la matiére, sans avoir a se préoccuper des irrégularités de la défor-
mation. Il serait de plus souhaitable que cet état type fiit isotrope; mais ce n’est
pas une condition supplémentaire qu’on impose, car il semble difficile qu’on

puisse siirement ramener toujours & un état anisotrope parfaitement déterminé.

Du recuit des fils.

On est tenté de se faire du recuit une idée schématique qui, malheureusement
pour la simplicité des phénoménes, s’éloigne singuliérement de la réalité. On
pourrait supposer qu’un recuit, maintenu un temps suffisant & une température T
assez voisine du point de fusion, rend aux molécules leur mobilité et que I’état
ainsi obtenu est bien déterminé, stable et parfaitement isotrope. Il va de soi que
'on né devrait pas s’approcher du point de fusion assez pour que le corps risque
de se ramollir ou de fondre; car on ne serait plus certain que les relations géo-
métriques des éléments ne se sont pas modifiées.

On appellerait états types la série des états par lesquels passerait aux diffé-
rentes températures la matiére qui aurait été une fois chauffée assez longtemps
a une température T assez voisine du point de fusion; toute température T, <<'T
serait caractérisée par un de ces états.

Le seul probléme qu’il resterait & résoudre serait celui-ci: supposons que le
corps ait été déformé, portons-le a la température T, sans la dépasser; le corps
prendra-t-il au bout d’un temps plus ou moins long Iétatisotrope caractéristique
de cette température T,? ce qui entrainerait de plus que, porté ensuite a toute
température inférieure ou supérieure, il atteigne immédiatement I'état type cor-
respondant a cette nouvelle température.

Les faits contredisent entiérement ces hypothéses trop simples, et nous devons

passer en revue les effets généraux du recuit.

Efets généraux du recuit.

1° Modifications dans la forme géométrique. — Il n’est pas possible de
porter des fils tout prés du point de fusion, parce qu’un cylindre liquide trés
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allongé n’est pas stable et tend a se résoudre en sphérules sous action des forces
capillaires. Au-dessous de la température de fusion, il y a une grande résistance
& la transformation, parce que la mati¢re est seulement ramollie ; cependant il est
impossible de prévoir a quelle distance de cette température la forme cessera
pratiquement d’étre stable. La tension superficielle est énorme et Parrondisse-
ment des bouts des fils métalliques chauffés, analogue au bordage des tubes de
verre, le montre suffisamment.

Ces effets de capillarité tendent & boucher les petites cavités intérieures qui
peuvent exister dans la masse métallique. Les rayons de courbure sont petits, les
pressions considérables; les gaz qui remplissent les cavités sont absorbés et
celles-ci se ferment.

La capillarité tend aussi & modifier la forme extéricure, si le fil est enroulé
suivant un tore ou généralement plié; et I'on pourrait trouver 1a une des causes
de I’énorme accroissement du coefficient de traction déterminé par le ressort
spiral, quand on recuit le fil enroulé. Supposons la spire horizontale et que la
section droite du fil primitivement circulaire ait été transformée en une ellipse
dont les axes (vertical et horizontal) soient b et a. Le couple de flexion était pri-

mitivement
., R*
C prm— ZE I‘ 299
il est devenu
,_ T ath
C —-ZE—L— 234

la densité étant restée la méme, nous devons écrire que les aires du cercle pri-
mitif et de ellipse sont égales, d’ou la condition

R2= ab,
d’ou enfin

¢ _ a

C b

Le couple a augmenté dans le rapport des axes de Pellipse.
Cette transformation en ellipse de la section circulaire du fil modifie tout diffé-
remment le couple de torsion. 11 était

-

C,= ro,

»1a
= 7

il devient
T a*bh?
= I: -—a2 +——b2 p.OC,
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d’ol

On peut s’expliquer ainsi deux expériences citées au Chapitre précédent.

Ainsi, pour modifier la nature de la matiére, sans modifier la forme géomé-
trique (et par la il faut entendre la position des surfaces qui limitent la matiére
intérieurement ou extérieurement), le recuit doit nécessairement se faire a une
température assez basse pour que les forces capillaires ne puissent I'emporter sur
la résistance au déplacement.

2° Retour a U'homogénéité isotrope. — Clest précisément cet effet qu’on
cherche a obtenir par le recuit et a séparer de tous les autres. Nous aurons a
étudier dans le Chapitre suivant par quelle technique on parvient a ce résultat.

3° Cristallisation. Homogénéité anisotrope. — Un métal recuit assez long-
temps a haate température, ou qu’on refroidit lentement a partir de I’état fondu,
cristallise : c’est un fait qui parait général. La description du métal brilé, telle
que la font Ia plupart des auteurs, correspond bien a ce phénoméne. Contre cette
cristallisation, on ne peut, évidemment, qu’éviter de recuire trop longtemps &
trop haute température. Elle se produit méme avec des métaux parfaitement purs
et dans le vide. Dumas, opérant sur de I'argent pur dans le vide, a trouvé, apres
refroidissement, un culot bien cristallisé. Le milieu a une influence : Caron dit
que Uargent et I’étain, qui ne rochent pas dans I’hydrogéne, y cristallisent d’une
maniére inaccoutumée sous le rapport de la grandeur des cristaux.

Certains alliages cristallisent beaucoup mieux et plus facilement que les métaux

avec lesquels ils sont formés.

4° Liquation. Hétérogénéité. — Presque tous les alliages soumis & un refroi-
dissement lent tendent & se séparer en plusieurs produits définis, différents entre
eux par la composition, la densité, etc. La petitesse de la proportion des métaux
n’empéche pas le phénoméne de se montrer. La liquation peut encore se produire
quand on chauffe longtemps, 4 une température inférieure & son point de fusion,
un alliage obtenu par refroidissement brusque a partir des métaux liquides. Le
milieu dans lequel se fait le recuit n’intervient pas.

50 Stabilité ou instabilité, modification des états obtenus suivant la loi de
refroidissement. — On connait les effets de la trempe, ¢’est-a-dire du refroidis-
sement brusque sur Pacier. Sur d’autres métaux, les effets peuvent éire opposés,
le métal devenir malléable : la trempe adoucit les bronzes riches en étain qu’on
peut aplatir au balancier. On admet généralement, dans les usines qui travaillent
le cuivre, que 'immersion dans ’eau des cuivres sortant du recuit a pour eflet
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d’adoucir le métal en méme Lemps que de le décaper; mais le fait est trés contes-
table. D’une maniére plus générale, il se peut que le métal, refroidi a la tempéra-
ture ordinaire, ait des propriétés qui dépendent de la maniére dont le refroidis-
sement s’est effeclué, de la température jusqu’a laquelle on a refroidi et du temps
qui s’écoule depuis le refroidissément : les aciers au nickel étudiés par M. Guil-
laume sont un exemple de ces phénoménes.

6° Occlusion des gas. — Les métaux peuvent absorber des gaz & température
relativement basse et garder & froid les gaz qu’ils ont absorbés a des températures
plus élevées. Leurs propriétés mécaniques peuvent en étre complétement mo-
difiées. M. Caron fait fondre du cuivre dans ’hydrogéne; aprés quelque temps,
il le laisse refroidir. Un peu avant la solidification, le métal roche : refroidi, il est
rempli de cavités profondes, la densité a diminué; le rochage est incomplet. Méme
effet dans 'oxyde de carbone.

Dumas a montré que le rochage de 'argent pour 'oxygéne est incomplet, méme
dans le vide : le gaz retenu se dégage lentement dans le vide de 400° & 600°. A
partir du rouge, le dégagement cesse; lorsque I’argent se ramollit, le phénoméne
se renverse; il y a absorption d’oxygéne.

7° Actions chimiques proprement dites du milieu. — Le cuivre du com-
merce contient toujours un peu d’oxyde en dissolution; le recuit dans I’hydro-
geéne commence par le réduire. On supprime ainsi une impurcté, mais le grain du
métal en est complétement modifié : la masse a servi pour ainsi dire de labora-
toire. Si l'action dure plus longtemps, le cuivre absorbe de 'hydrogéne; il est
cassant. Mais il le devient bien davantage, si alors on le recuit a I'air. Tous ces
effets se comprennent aisément.

De méme, si 'on recuit 'argent au rouge sombre dans I’hydrogéne, on élimine
Poxygéne qu’il conlient toujours : le métal devient cassant. En recommengant
plusieurs fois au rouge sombre — le cycle — recuit dans I'air, recuit dans’hydro-
géne, on rend le métal pulvérulent. On recuit du cuivre dans air, il se forme une
couche d’oxyde noir qui se détache aisément. Mais il se forme aussi une combi-
naison du sous-oxyde avec le métal, connu sous le nom de cuivre rosette. On
est plus ou moins averti de ces phénoménes par la couleur que prend le mélal;
pale, presque blanc, aprés un recuit dans ’hydrogéne, il rosit par le recuit dans
'oxygéne ou lair.

Par cette énumération rapide des effets généraux du recuit, on voit a quel
point la réalité s’éloigne du schéma que nous avions d’abord imaginé. Au point
de vue auquel nous nous plagons, nous chercherons seulement par le recuit a
produire ’homogénéité isotrope et définie du 2°, en évilant, autant que possible,
tous les autres phénoménes. Nous verrons que le choix d’'un métal presque pur,
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et en particulier du cuivre, facilite singuliérement lasolution d’un probléme inso-
luble dans le cas général.

Des propriétés de cohérence et d’élasticité suivant Coulomb.

Coulomb distinguait dans un métal deux groupes de propriétés. Les premieres,
qu'il appelle propriétés de cohérence, ne sont pas des fonctions déterminées des
paramélres, température, pression, magnétisme, elc., et se transforment d’une
maniére continue. Les secondes, les propriétés d’élasticité, non seulement se-
raient plus stables, mais jouiraient de ce privilége d’étre des fonclions détermi-
minées des paramétres, de ne dépendre que de leurs valeurs actuelles et pas du
tout de leurs variations antérieures.

En particulier, pour ce qui concerne les constantes Aet y, son opinion, énoncée
en langage moderne et mise au point, revient a soutenir que ni les parcours a
température constante des courbes de déformation, ni les cycles de température
ne modifient les constantes élastiques proprement dites, pourvu qu’on les mesure
dans des conditions toujours les mémes.

Cette dualité essentielle dans les propriétés des corps se traduit pour lui, sous
forme matérielle, par latiribution des propriétés d’élasticité a des particules inté-
grantes, des propriétés de cohérence & un ciment qui sert de liaison a ces parti-
cules. La confirmation expérimentale d’une vue si profonde présenterait une
importance considérable et donnerait une base solide, indépendamment de toute
théorie, a 1’étude des métaux. Malheureusement, il parait certain qu’au moins
sous cette forme absolue elle ne correspond pas a la réalité.

L’expérience montre de la facon la plus évidente qu’un fil raide ou recuit n’a
pas les mémes constantes élastiques. La question revient a savoir si la variation de
densité qui peut exister quand on passe d’un état & P'autre suffit pour expliquer
dans les idées de Coulomb le changement des constantes élastiques.

En admettant méme une variation de densité assez notable, on se trouve d’ail-
leurs fort empéché quand on veut traduire analytiquement ses idées.

Faut-il supposer que I'unité de volume, prise dans le corps avant et aprés la
déformation, posséde dans les mémes conditions les mémes % et u? ou bien, pour
rester plus fidéles 4 sa théorie, considérant que le corps, avant et aprés la défor-
mation, contient le méme nombre de particules intégrantes, faut-il admetire que
ces particules conservent le méme ressort et, dans ce cas, comment faut-il dis-
poser des cinq coefficients que contiennent nécessairement les équations, méme
comme premiére approximation ? La premiére hypothése est écartée par ce fait
que la matiére des fils est sirement rendue anisotrope par certaines déformations;
la seconde est, elle aussi, écarlée par ce fait que les variations de densité sont
certainement trop petites pour expliquer tous les phénoménes.
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Si 'hypothése de Coulomb était vérifiée, les constantes de traction et de tor-
sion, qui seraient des constantes absolues, ne pourraient pas nous servir & carac-
tériser les changements d’état du fil aux divers points d’une courbe de déforma-
tion. L'expérience montlre, au contraire, que leurs variations sont trés notables
si les déformations sont grandes. Il est important seulement de préciser ce qu’il
faut entendre par une grande déformation : c’est ce que nous allons faire.

On trouve dans les Traités d'Elasticité les nombres suivants que nous donnons
sous toutes réserves. Fer recuit : coefficient E = 200008 par millimétre de sec-
tion, limite d’élasticité = 5%, Or E est la charge nécessaire a produire un allon-
gement de 100 pour 10o. Donc le fer cesse de pouvoir étre considéré comme
parfaitement élastique aprés un allongement de 53555 = 0™, 00025 par métre. Si
maintenant on allonge ce fer jusqu’a la rupture, soit par exemple de 20 pour 100,
il se trouve allongé de 8oo fois la quantité pour laquelle il a atteint sa limite
d’élasticité : c’est une déformation énorme. De méme, si un fil atteint sa limite
d’¢lasticité parfaite de torsion, pour une torsion de un tour-métre, une torsion de
un ou plusieurs tours-centimétre est une déformation énorme : au contraire, une
torsion de deux ou trois tours-métre sera relativement petite. On s’explique donc
aisément, par exemple, que nous ayons pu, dans nos recherches sur les courbes
de torsion, considérer la constante T comme effectivement constante, malgré les
déformations permanentes, parce que celles-ci étaient en somme toujours
petites (1). '

La question expérimentale de la variation des constantes ® et T' se complique
en tous cas de celle du changement de la densité; car, si 'on différentie les loga-
rithmes de I'expression générale de ces quantités, on trouve

Da C—l(—p 1 terme en g_dR_
ns 5 U erme e T
D dr 4dR
ans T n ——[‘ 2

en supposant, bien entendu, que I'on opére sur une longueur invariable. Il est
donc nécessaire de savoir comment varie la densité pendant les déformations per-
manentes, ne serait-ce que pour faire dans les valeurs de @ et de T la correction
nécessaire. Quoi qu'il en soit, les quantités ® et T', ou des quantités de définition
peu différentes, seront les premiéres que nous choisirons pour caractériser 1'état
du fil en un point d’une courbe de déformation. Elles satisfont parfaitement aux

(1) On trouvera une discussion plus compléte des ordres de grandeur des déformations
dans un article du Journal de Physique, mai 1899.
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conditions imposées; leur détermination se fait avec précision, au moins dans
certains cas, et sans qu'il en résulte de modification permanente nouvelle pour
le métal.

Des dilatations dans les métaux comprimés non uniformément.

Lorsqu’un métal est soumis sur toute sa surface & une pression (ou une trac-
tion) uniforme, son volume varie et, au moins pour de faibles actions, il est une
fonctlion bien déterminée de la pression : si la pression revient a sa valeur ini-
tiale, il reprend aussi sa valeur initiale. Si la pression uniforme atteint une valeur
suffisante, la densité subit peut-étre une altération permanente. Mais nous
n’avons aucune expérience a citer. Les pressions devraient se chiffrer par milliers
d’atmosphéres pour que leur influence apparaisse. Certes, on peut en obtenir de
telles : Mousson, dans son étude sur l'abaissement du point de congélation, est
allé jusqu’a 15000 atmospheres : un canon en supporte au moins 6ooo dans des
conditions particuliérement défavorables pour sa résistance.

Quel que soit I'intérét de ce probléme, sa solution serait loin de nous apprendre
ce qui se passe dans les cas usuels ot la matiére ne reste plus isotrope, et ou il
se produit des déformations permanentes non uniformes. Imaginons, par
exemple, une plaque circulaire comprimée lentement et uniformément suivant
la normale a la base : la déformation est mesurée par la variation relative d’épais-
seur. Ce cas correspond en gros a l'action du marteau, du marteau-pilon, a
Pécrasement des crushers en balistique. Un corps ainsi déformé ne doit pas rester
isotrope : c’est peut-étre méme une simplification trop grande de 'assimiler & un
cristal 4 un axe paralléle a la pression, carrien ne prouve que ses propriétés soient
les mémes tout le long d’un rayon.

La densité peut varier d’une facon permanente pendant la délormation et
reprendre sa valeur par le recuit. Mais, et c’est un point sur lequel nous voulons
insister, si la densilé pour un corps non isotrope est aussi bien définie que pour
un corps isotrope, la variation de la densité est un effet complexe qu’il faut
séparer au moins cn deux autres : elle est due a des dilatations ou contractions
permanentes qui s’opérent paralléelement et normalement & la direction de com-
pression, dilatations qui peuvent étre inégales.

Les corps étirés en fils cylindriques, avec ou sans filiére, se rattachent au
méme genre de symétrie. Il se peut de plus que, au moins dans le passage a la
filiere, les deux directions de ’axe du cylindre n’aient pas les mémes propriétés :
en d’autres termes, qu’il soit possible de reconraitre laquelle des extrémités d’un
bout de fil est entrée premiére dans la filiére.

La complication augmenterait pour les piéces laminées : car, méme en les sup-
posant homogeénes, les trois directions dirigées normalement a la lame, tangen-

Fac. de T., 2° S, 1. 28
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tiellement dans le sens du mouvement, tangentiellement dans le sens normal au
mouvement, n’ont pas nécessairement les mémes propriéiés.

Assurément, il pourrait se faire que le corps cessit d’étre isotrope pour toules
ses propriétés élastiques et que cependant les contractions principales perma-
nenles soient toutes trois ou trés petites ou trés peu différentes : il n’en est pas
moins utile de poser le probléme.

De Uanisotropie matérielle dans les fils.

Nous appelons anisotropie matérielle la distribution anisotrope de la matiére.
Si 'on veut s’en faire une image, on se figurera les particules disposées aux som-
mets d’un réseau dont les mailles ne seraient pas cubiques.

Soient L la longueur d’un fil, R son rayon, A la densité, p le poids de la masse
invariable considérée, nous avons '

(r) p=mnR2LA,

que le corps soit isotrope ou non, pourva qu'il soit homogéne.

Pour savoir s'il est isotrope, il faut pouvoir ramener sa matiére a un état iso-
trope de comparaison et déterminer les dilatations pendant cette transformation.
Si les dilatations relatives sont égales dans tous les sens, c’est qu’elle était primi-
tivement isotrope. Nous admettrons que le recuit, dans des conditions conve-
nables, raméne & un état certainement isotrope.

Donc, pour savoir si le fil est resté isotrope pendant la déformation, on le

. . . - . dR dL .o
recuira et déterminera les variations relatives T il était isotrope, elles

seront égales.

Malheureusement, les mesures directes du rayon et de sa varialion sont peu
précises et d’ailleurs illusoires, a cause des irrégularités inévitables de la forme
géométrique : on peut tourner la difficulté. Différentions (1), il vient

dA AR dL
(2) ~A‘+2—[{'+—E—O.

L’isotropie exige

2dR _dl .. dA_ 3dL
R~ L’ AT L

Pour savoir si une déformation a rendu le fil anisotrope, nous sommes con-
duits a le recuire et a déterminer : 1° la variation relative de densité; 2° la varia-

tion relative de longueur produite par le recuit.
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La question de I'anisotropie matérielle des fils serait résolue déja depuis 1835, si
I’on pouvait avoir la moindre confiance dans les résultats de Baudrimont (Ann. de
Chim. et de Phys., t. LX). Ce physicien déterminait séparément les variations par
le recuit des trois termes de I’équation (2) ; il ne trouvait pas zéro pour leur somme;;
ce qui prouve, 'équation étant indisculable, qu’une des déterminations est illu-

. dR | . .. \ . .
soire; c¢’est celle de " Ilindique, par exemple, le résultat suivant pour le platine :

avant le recuit le fil raide avait 127 u de diamétre, il en avait 19o aprés. Or, en
répélant maintes fois I'expérience sur des fils de platine dont les diamétres
étaient 100, 150 et 200, il m’a été impossible de distinguer au microscope un
accroissement, qu’on ne pourrait pas méconnaitre s’il était de 50 pour 100.

dlL.  dA . ) L . ’ A
Ses mesures de T ¢t 3 sont si contestables qu’elles ne méritent pas d’étre

. . dL . N cpp ]
discutées. La mesure de T est d’ailleurs extrémement difficile malgré les appa-

rences. Car il faut tendre le fil, déterminer la premiére partie de sa courbe de
traction. 5’1l était rectiligne dés les plus petites charges, ce serait une droite : au
contraire, ¢’est une courbe qui se raccorde plus ou moins loin a la droite théo-
rique, suivant que le fil se rectifie plus ou moins facilement. On n’est méme
jamais str d’arriver a la partie rectiligne, avant que le fil se déforme d’une fagon
permanente. En somme, on rencontre, dans la mesure de la longueur du fil et de
ses variations, les difficultés que nous avons signalées dans le Chapitre précédent
a propos de la mesure de la constante de traction. Tout ce qu’il est possible d’af-
firmer, et ce sont, d’ailleurs, les conclusions de Baudrimont, c’est que les allon-
gements ou raccourcissements par le recuit sont extrémement faibles, de I'ordre
de 5500 par exemple, et qu'on ne fera pas d’erreur sensible en les considérant
comme nuls. Cette conclusion, méme ainsi réduite, peut avoir, comme nous le
verrons, une grande importance.

dA

=<

Si I'on s’en rapportait aux Tableaux absurdes qui trainent dans tous les livres,

Passons a la détermination de la variation relative de densité

on pourrait s’'imaginer que la densité est une propriété extrémement variable de
la matiérve. I’ Annuaire du Bureau des Longitudes nous apprend, par exemple,
que le fer fondu a 7,20 pour densité, tandis que le fer forgé admet 7,79, soit une
variation de ;5 : M. Caron, faisant Pexpérience avec beaucoup de soin, trouve
pour le fer fondu dans I’hydrogéne 7,88 et pour le fer forgé 7,87 : nous voici loin
des premiers nombres. Plus on apporte de soin aux déterminations, plus les
dilférences sont petites. Car il faat faire une distinction importante : des impu-
retés presque inaccessibles a 'analyse chimique peuvent modifier profondément
la densité, tandis que des actions mécaniques considérables la laissent presque
invariable. Il faut donc étudier un échantillon d’un métal comme s’il était unique
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au monde, et considérer que les Tables numériques se rapportant a des corps
soi-disant purs ne donnent que de grossiéres approximations.

Voici ce que disent les auteurs qui ont étudié ce sujet le plus récemment et
avec le plus de soin, Tomlinson (Phil. Trans., 1833), Gray (Proceed. of the
Royal Soc., t. LIV).

Un allongement direct sans filiére diminue la densité. D’aprés Tomlinson, un
allongement de 25 pour 100 fait passer la densité du cuivre de 8,820 a 8,781;
d’aprés Gray elle passerait de 8,861 a 8,819.

Le martelage diminue la densité de certains métaux, augmente celle des autres ;
la densité du cuivre passerait de 8,866 a 8,875.

Pour la torsion permanente, Tomlinson indique une petite diminution, Gray
une augmenlation notable; pour 2,3 t. c., la densité passerait de 8,850 & 8,8g6.

Enfin, par le passage a la filiére, il y aurait une forte augmentation de 8,85 a
0,00, SOIL g5.

Ces expériences sont-elles concluantes ? Ont-elles la précision que leur prétent
leurs auteurs ? Ce n’est guére probable.

Les résultats trouvés ne sont valables que pour I'échantillon employé. Lord
Kelvin avait opéré sur du fil de cuivre dont la densité croissait par I'allongement
sans filiere, et, pour leur cuivre, les auteurs cités ont des conclusions différentes
au sujet de I'effet de la torsion permanente.

Tandis que Tomlinson donne des Tableaux indiquant la variation de densité
en fonction des déformations (page 108 de son Mémoire) et admet qu’elle peut
se représenter par une droite, Gray, qui est plus récent, trouve qu’elle est trop
jrréguliére pour qu’on puisse donner autre chose que sa valeur initiale et sa
valeur finale.

Je ferai aux auteurs des objections plus graves, et pour ainsi dire, de principe :

1° La densité est une propriété de la matiére pouvant servir a déterminer son
état en tous les points d'une courbe de déformation. Or si les physiciens cités
prennent des précautions dans sa mesure, ils n’en prennent aucune dans la défi-
nition de la courbe de déformation aux divers points de laquelle ils la font. Le
renseignement que le fil a traversé trois trous d’une filitre, ou s’est allongé de
10 pour 100 sans filiére, ne parait pas suffisant.

25 Les auteurs ne semblent pas se douter que la matiére peut devenir aniso-
trope. Si, par I'étirage & la filiére, la densité augmente de g7 et si la matiére
reste isotrope, le recuit doit accroitre la longueur de § de cette fraction soit 5™, 5
par métre. Ce serait facile 4 conslater expérimentalement, ils n’ont pas cherché
a le faire. ,

30 Enfin, et c’est 1a 'objection la plus grave, ils ne contrdlent jamais leurs
résultats en recuisant le fil. Pour mieux dire, Gray le fait une fois, et la conclu-
sion qu’on doit tirer de cette expérience unique jette le doute sur tout le reste.
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(Page 287 de son Mémoire) : « Recuit. — Le fil dont on s’était servi dans
I'expérience précédente (il s’agit de la torsion permanente qui avait fait varier la
densité de 8,850 4 8,896, soit de 0,52 pour 100) était porté au rouge blanc (sic) par
un courant, pour chercher si, par ce moyen, la densité pourrait étre ramenée a
sa valeur initiale. Mais le recuit ne semble pas altérer la densité d’une maniére
appréciable; la différence n’excéde pas 0,1 & 0,06 pour 100. »

Si la densité qui a subi une variation par un traitement mécanique ne reprend
pas sa valeur par un recuit convenablement fait, on est en droit de se demander
si les expériences ne présenteraie'nt pas des causes d’erreurs cachées, de crainte
d’étre conduit a des conclusions tout a fait inadmissibles.

Dans une autre expérience, Gray trouve que la densité, qui augmente d’abord,
comme nous ’avons vu, quand on fait passer le fil a la filiére, diminue ensuite
quand le nombre des passes augmente. Il attribue ce fait a des gercures dans le
métal. Mais une telle explication s’applique tout aussi bien a la diminution de
densité produite par I'étirage sans filicre. Ici encore la vérification par le recuit
était indispensable.

Quoi qu'’il en soit, il est certain que les variations de la densité sont petites et
ne dépassent pas quelques milliémes : or la mesure de la densité est une opération
trés délicate, méme par la meilleure méthode que nous ayons, celle de la balance
hydrostatique. Si I'on ne dispose que de 287 ou 38" de matiére, pour oblenir le
millieme il faut certifier la pesée dans ’eau a o™s", 2 ou o™¢*, 3 pres, el cela dans
des conditions particuliérement défavorables. Sil’on ne fait pas bouillir I'eau, il
faut, pour enlever les bulles, donner au fil une forme géométrique simple (hélice
réguliére), ce qui limite beaucoup la longueur et, par conséquent, le poids du fil
qu’on peut employer. Si on la fait bouillir (ce qui est légitime, car I'expérience
directe montre que le cuivre, par exemple, ne se recuit pas sensiblement quand
on le porte quarante-huit heures & 100°), I’expérience est d’une longueur insup-
portable.

Pour ces raisons, tout en reconnaissant I'intérét de son étude, nous ne croyons
pas qu’on puisse prendre la densité pour une des propriétés propres a caracté-
riser 'état du fil aux divers points d’une courbe de déformation. Il semble qu’on
ne puisse cependant pas s'en passer pour corriger les valeurs des autres con-
slantes caractéristiques : la difficulté est facile a tourner, comme I’'a montré Mat-

thiessen, il y a déja longtemps.

Introduction dans les constantes de la masse au liew du volume.

Les constantes physiques sont souvent définies par unité de volume : elles le
seraient loujours plus commodément par unité de masse.

Soit, par exemple, la résistance électrique; { est la longueur du fil, ¢ la résis-
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tance spécifique, R le rayon, ¢ la résistance totale; on a

() 5— PL.

(2) | o=F1;

M est la masse de 'unité de longueur.

Pour une matiére donnée o’ est tout aussi bien défini que p, et d’une maniére
tout aussi rationnelle sinon plus. Matthiessen a fait observer qu’il résulte de
I’emploi de la formule (2) des déterminations plus commodes et plus précises que
celles que la formule (1) rend nécessaires. Pour déterminer la résistance d’un
bout de fil par la formule (2), il suffit, connaissant o/, de mesurer la longueur /et
de prendre par pesée la masse totale M /.

On élimine ainsi complétement la question de la densité. Déformons un fil :
nous aurons a déterminer, d’aprés la formule (1), a la fois les variations du coeffi-
cient 5 et les variations de la densité qui nous est nécessaire pour calculer le
rayon; d’aprés la formule (2) nous n’avons plus & connaitre que les variations du
coefticient o’ qui englobe les deux effets; mais la mesure de ces variations n’im-
plique en aucune facon la mesure de la densité.

La méme transformation peut étre faite pour les constantes élastiques

® —rR:E=nR*A % =M,

2RH*A2 2
Pe g o TRAT My
2 am  A? 2T

Iia détermination des nouvelles constantes ®', I, o’ n’exige plus qu’'une pesée
dans Dair.

Il ne faudrait pas croire qu’il y a la une sorte d'escamotage : bien des con-
stantes physiques sont définies dans ce systéme, comme, par exemple, toules les
chaleurs spécifiques et de transformation.

D’ailleurs, les nouvelles constantes, qui nous serviront uniquement, ne différent
des autres que par I'introduction d'un facteur presque constant, mais dont on

serait trés embarrassé pour donner a chaque instant la valeur exacte.

Détermination de la cohérence.

Outre les constantes élastiques @, IV et les autres constantes de nature quel-
conque, mais satisfaisant i la condition que leur détermination n’implique pas un
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changement d’état, on peut chercher comment caractériser la cohérence. La des-
cription de petits cycles de torsion le permet : nous renvoyons pour la définition
de la mollesse & un Mémoire antérieur (Ann. de Chim et de Phys., 1898).

Transformations permanentes et déformations temporaires.

Reprenons exemple du fil soumis & une charge qui croit proportionnellement
au temps. Si 'on étudie le métal pendant la déformation méme, ou aprés avoir
ramené la charge a étre nulle, les résultats seront différents. Une déformation
temporaire se superpose dans le premier cas a une transformation permanente.
La premiére peut étre considérée, au moins comme premiére approximation,
comme ne dépendant que de la tension actuelle; la seconde dépend de toutes les
tensions antérieures. 1l faudra soigneusement distinguer dans leffet total ce qui
est dG a V'une et a Pautre.

Nous ¢tudierons dans le prochain Chapitre la courbe de traction a charge crois-

sant proportionnellement au temps.



