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ANNALES

DE LA

FACULTE DES SCIENCES

DE L'UNIVERSITE DE TOULOUSE.

SUR LES SOLUTIONS PERIODIQUES

PROBLEME DE LA ROTATION D’UN CORPS

AUTOUR D’UN POINT FIXE,

PAR M. GUSTAF KOBB,

a Stockholm.

Dans ses célébres Mémoires sur la Mécanique céleste M. Poincaré a étudié des

solutions périodiques d’un systéme d’équations différentielles de la forme sui-
vante :

(1) dx

d—-lv:X‘,(;r,,xz,...,a:,l,pt) (v=r1,2,...,1n),

ou les X, sont des fonctions développables d’aprés des puissances entiéres et po-
sitives de z,, ..., 2, et de g, | étant un paramétre arbitraire.

Il a montré que, si ce systéme admet pour w = o une solution
vil‘lz(p‘l)(t), .:(,‘3:cpg(t), ce x,,,:(pg(t),

périodique par rapport a ¢ avec la période <, il admet aussi en général pour des
valeurs trés petites de u des solutions périodiques, dont la période différe trés
peu de <. Il en admet méme avec la période =, s'il existe une intégrale du systéme
uniforme et indépendante de ~.
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Nous allons employer la méthode de M. Poincaré & la recherche des solutions
périodiques d’un systéme bien connu d’équations différentielles de la Mécanique
rationnelle, savoir le systéme qui définit le mouvement d'un corps grave autour
d’un point fixe. Ce systéme est, comme on sait,

dP " ' d ! o
AL =B g+ My —sy),  F=ry—ar,
d , dy’ "
B =(C—0)mp+Mg(zy —a),  L=pr—ry,
dr ‘ . ! a ! 4
€% =(A—B)pg+Mg(zy—yuy), b =qy—py.

A, B, C sont les moments d’inertie principaux du corps par rapport au point fixe,
Zo, Yoy 5o les coordonnées du centre de gravité du corps quand les axes sont les
axes principaux au point fixe et M la masse du corps.

Dans une Note publiée dans les Comptes rendus ('), M. Koénigs a énoncé
Pexistence des solutions périodiques de ce systéme. M’étant aussi occupé de
recherches analogues relatives a4 la méme question, je vais développer dans la
suite les résultats que j’ai obtenus.

Posons

pE=Mgz, pn=Mgy, pi=Mgs,

on aura un systéme de la forme (1), savoir :

’ d n 1 d { "
Ac—ffZ(B—C)qr—l—H(ny—@), d—’;zry—qy,

d e dy
(2) B =(C—Mmp+ply =8  L=p—r
ar , dy" ,
Co=B=Cpg-+ply —y), =g —p

Si le point fixe est trés prés du centre de gravité, le paramétre p. a une valeur
trés petite. Nous savons intégrer le systéme (2) pour = o, et nous trouvons

P=Po» 4=dq» T=7e 1=Yo V=% 7 =70

ol Do, oy I'0s Yos Yoy Yo sont des fonctions doublement périodiques du temps (),
dont la période réelle soit =, et cela quelles que soient les valeurs initiales des
variables.

Nous allons voir, maintenant, qu’il existe des solutions périodiques du sys-
téme (2) pour des valeurs petites de , avec la période 7, dont les valeurs ini-

tiales différent trés peu des valeurs initiales po, go, 7’0, Yo, Yo> Yo des fonctions

(1) 11 Mai 1896.
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Pos 905 T'oy Yoy Yo Yo- Nous allons développer ces solutions d’aprés des puissances

de ¢ et donner une méthode pour le calcul de proche en proche des coefficients.
Soient - :

;0+ B (70‘*‘ Bs) o+ Bs, ')70’*‘ By ;,o -+ Bs, ;8 -+ B

les valeurs initiales des variables q, r ', ¥"; & 'époque T ces variables
Py YT poq
prennent les valeurs
Po+ Bi+ ¢y, qo+ 52"‘4/2’ ro—+ B+ s,
7o + B+, Yo+ Bs+ds 7o+ Bet+ o,
olt ¥y, $a, ..., Y5 sont développables d’aprés des puissances entiéres et positives

de B, B2, ..., Bo et de . La condition nécessaire et suffisante pour que la solu-
tion soit périodique est ainsi

(3) h=db=Y=dh=¢;=Js=o.
Ces équations ne sont pas indépendantes. En effet, nous connaissons Lrois inté-
grales uniformes du systéme (2), savoir :
[ Fi=Ap*+-B@+Crr—oap(ly +py/+ )= C,
(4) {Fo=Apy+Bgy +Cry"=C,
Fo=p*+y2+y2=1.

Les quantités ¢ sont donc assujetties aux équations

FI(JT’O“‘ Bi+ 1y, '--7”—/;“‘@6“*"%)—‘171(;0'*"5” R ]—/34—56):0,
(9) < F2(—l;0+ Bi+ U ---:;’1’)""66‘4“‘1’6)_1—32(1—’0"‘ B -+ }7(’)'|_56):O’
Fo(7)0+51+44:, ceey :/‘,(’) + Be+ ‘PB)_F:%(/_)O‘*“ Bis "":/’:)"'— 56):0'

De ces équations nous tirons ¢, ¢, et Y en fonctions de ¢;, ¥;, ¥5, qui s’an-
nulent pour

;= % = 4’5 = 0.
On peut donc supprimer les équations
hi=d =15 =o.
Cela exige que le déterminant fonctionnel
OF, OF, OF,
op dg o7
OF, OF, OF | _ |
dp  9dq Iy |
OF, OF, OF,
dp dq oy
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ne s’annule pas pour

P=pP» G=qy» I'=Ty =% 7 =70 Y=, p=o.

On aura _
’A[)o Bg, o
A=4 A By, Cro |=4ABT, (5o¥, — 7070) 2 0.
o o o

Nos conditions sont maintenant

Nous avons six variables B, ..., Bs; mais les trois derniéres sont assujetties a
la condition

G+ B+ (o + 8+ (7o +B8:)' =1,

de sorte que nous ne pouvons donner des valeurs arbitraires qu’a deux des 3. Po-
sons, pour simplifier,

B.=pBs=pBs=o.

Les fonctions 3, ¢;, U5 sont des séries en By, 3., 85 et 1, qui s’annulent en
méme temps que ces variables. Pour pouvoir tirer des équations (6) les Py en sé-
ries de ., il fallait d'abord voir si le déterminant fonctionnel

9 (s huds)
d(siﬁZ 63)

Bi=By=Bs=p=o.

ne s'annule pas pour

Mais p, ¢, r, 7, Y, ¥ étant pour = o des fonctions doublement périodiques
de 7, les 4 sont des fonctions assez compliquées des 3, de sorte que la discussion
du déterminant pourrait étre difficile. Nous allons, par conséquent, adopter une
autre méthode, et, dans ce but, cherchons d’abord s’il existe des séries périodiques
qui satisfont formellement aux équations (2).

Nous allons ainsi essayer d’'intégrer le systéme

d " ! d ) "
Ad—f:(B—C)q"+p(ny—§7)‘ ;1{-:'“7’—(17,

d , dy' p
(6) B c—z% =(C—A) rp+y(§y——£y’), ?};— =py'—ry,

dr y_”

. , d ,
Cd—t:(A—B)pq—l—p(Ey—m‘), 2 =97 Py
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par des séries de la forme

PEXPE, g=S g =k
0 0 0

(7)

r=XnE Y=XNHE Y= e
\ 0 0 0

olt les coefficients de p* sont des fonctions périodiques du temps avec la pé-
riode =. On sait que py, ¢o, 79y Yo» Yos Yo sont des fonctions doublement pério-
diques, dont la période réelle est t. Substituons ces séries dans le systéme (2)
et comparons les coefficients de u* des deux membres. Nous aurons, pour A =1,

’ d N " ’
A%:(B"L)("oqr**qo'“x)—i—(nyO—CyO),
dq, o
(8) B v = (C —A) (pori+ ropy) + (Lyo — &YY),
dr, ) ,
‘ C d_t :(A—B)(q0p1+ p071)+ (?C:'Yo _T‘YO)
el
dyl —a 4 ” . ' "
dr o1 GoY1 1Yo 9170
dy/ , )
(9) Tyt’-:poyl——row/l_}_pi},o__mw’

"

W b gy —
| d? =Goy1— PoV1 ™ FHYo— P1Yo5

ensuite, pour )= 0, on retrouve les équations
d,
ATE=(B—0) qr.,
"/
(10) B%:(C—A)’bpw
dr
G d—; = (A—B)pyq.,
0 N ’ "
dr " ToVe 9070
(11) i =PoTo— Totos

\ dt == qoYo— PoYo-
Fac.de T., 2 S., 1.
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En général, on aura

d——. " ’ BN
A a{?‘ —(B—=C)(gonm+rop) =npia— i+ H =T,
dq, ~ X N . o
(12) B ar (C—=A)(rypr+pom) = I — Epi— + Hy =T,
dar, , :
g de (A=B) (Por+qop)) = Eppm— i+ Hy = T,

ou H,, H,, H; sont des polynomes qui contiennent au plus

Pr—1 qr—1, =1 et Yh—2» “/')\—2, 7;‘-2 )

ensuile v
/ d'\ , ” N ,
\ d/; = (Po¥h — @073 = — ays + Ny -+ Li=HP,
; d"/s\ " Vo) . " —H»
(13) Cp —pen—rep) =—nyet o+ L =HY,
(d"/li o gLy — o - — H™
7 — Qo= povi) ==+ v+ Ly = HY,

ou Ly, L,, Ly sont des polynomes qui contiennent au plus
Pr—1, Gr—1» =1, =15 "/5‘—17 '/;‘—1-
Intégrons d’abord le systéme (8), que nous écrivons

dp " ' 1
A 71{71 — (B —C)(qori+roqy) =0y,— &y, =T,

dq . .
BEDL — (C— ) (ropi+ pory) = Gpo— &y =T4",

dar,
dt

~ ) I e )
C— — A=B)(peq1+qup1) = &7, — e =T4".
Ce systéme dépourvu des seconds membres n’est autre chose que les équations
aux variations du systéme (10). Alors nous en connaissons trois intégrales parti-
culiéres, car le temps n’entre pas explicitement dans (10), savoir

dp, B—C - dq, _C—A . dry, A-—B
—d—l: A GoT0s (/I—W——_B‘"npm '1:}%{‘:—(—:—[70’/0-

,:

Posons maintenant

B—-C C—A A-=DB
pPr=a, A GoT0s q1=—= B rypy =y, r=a

Potlo+ vy

il
4
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et 'on aura
da,

(B_C)(]oro 7[7_(B‘_C)(qo"l_*_"oll]):r(.l“y

d ~ da, )

B % + (€ —A)rop, ;ﬁl —(C —A)rye, ==\
. dv : ‘(

(,‘ ﬁ -l—(A—B)Po’[o%—(A——B)poul _:131)'

De la premiére de ces équations, nous aurons

da, v, i, T

A hiki oot . I
(14) dt /'0+(/0+(B—-C)q0r0

et, en substituant cette valeur dans les deux autres,

du, (C—A)rop, (B—=C)gq,I'}— (C—A)p, T
- ), = 9

dr 9o (B—0C)gq,
q (_i‘;l (/\—]})poqo — (B—C),-Or(:il)__(A_B)por(l“.
dt -+ e 1= B=C)r
On voit aisément que
u h g b
[, == — ), — 2
", YT,

sont deux intégrales particuliéres de ces équations, sans seconds membres. En-
suite, on aura

B(B—C()
(15) )
dt.

Vi

i

[ _ o _ ) _ (1)
7.1:7\1_‘_‘/ (B C)(/Or(zl (C A)Porl d[,
0
\

t
- (B —C) ryTy— (A — B)p, I}
"+f0 CB—=0)

On peut montrer que les seconds membres sont des fonctions périodiques du
temps avec la période =. Dans ce but, multiplions la premiére des équations (8)

par po, la seconde par ¢,, la troisitme par r, et ajoutons; on aura ensuile, en
tenant compte des équations (10),

, ) ,_ d .
Pl + q Ty + r I, = 7 (Apopr+ Bgoq +Crory).

La quantité entre parenthéses est une fonction périodique du temps. En
eflet, nous connaissons I'intégrale du systéme (2)

Ap*+B@*+ Cri4ap(&y +ny'+ &) = 2K,.

En substituant dans cette équation nos séries (7) et en comparant les coefficients
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des différentes puissances de u des deux membres, on aura

Apopr+Bqoqi+ Crory+ (Ey,+ ny,+ £y}) = const.
ou
Apyp1+Bgoq,+Crory =1,

U, étant une fonction périodique connue du temps. Ensuite, on aura

70+ 70 T+ 7 Uy = L (Ap T+ Bg, Ty + Cry T ) = o.
Ainsi
av,
dt’
Ap Iy +Bg, )+ Cr,T, =o,

ply+  qli+ r Ty =

d’ou résulte

’ dU
(B—C)qoT, — (C—A)p T} =—C dtj’

Al ! r dU
(B_(J)I'Ora_(A—B)I)ol‘ fend Ttl.

Substituons ces expressions dans (15), on aura enfin

= CU,
)\1-—)\1——— E—(m)
(16)
=9 U
T B =10)
Ensuite

da, _ b v 1 B C Ny T,
de — ¢ r B—C{\Cr? Bq? Y ger,

Pour que «, soit une fonction périodique du temps avec la période =, il faut
que l'accroissement du second membre pendant le temps = soit nul; ainsi

= /1 -1\ _ 1 B C I"ls
(17) 1(ﬁ>+“<ﬁ>——[B~cxm%*ﬁﬁ>“+azJ’

en désignant par

T
1
[F]:;fo F dt,

la valeur moyenne de I, F' étant une fonction périodique du temps avec la période =.
Ensuite nous aurons

t( 5 - -
. Ay vy 1 B C T _
(18) m——/o q_§+7§+B_~G[U’< — — ;>+6]o"oJ dt + ay,

[}
=

=
<
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ol @, est une nouvelle constante arbitraire, et enfin

 B—C
Pr=a A qoTos

(19) —ac—ér —1—)1
9 91— @ B oPo qo’

A— v,
ry —= al_C—1)0q0+ 77
\ 0

ou @y, hy el v, sont données par (16) et (18).

On observe que @, peut devenir infinie, mais d’une telle maniére que py, g, et
ry restent toujours finies. Cela résulte immédiatement de expression de py, ¢,.
ry comme des fonctions doublement périodiques.

Nous avons ainsi trouvé une solution périodique du systéme (8) qui renferme

deux constantes arbitraires, les constantes ), et v, étant assujetties a la condi-

tion (17).
Intégrons maintenant le systéme (9) que nous écrivons de la forme

d , y ) ,
% —r071+(/071:r170—7170:H(1“’
/ d", " "

(20) CT/tl —PoYyF Poys =it — o = HY,
dy”

1 Lp— Lp— (1)
G T TV TP =it — Piyo=Hi
\
Nous connaissons trois systéemes d'intégrales particuliéres de ces équations dé-
pourvues de seconds membres, savoir les neuf cosinus directeurs

0(0’ ﬁv’ 70’
’ r ’
%, B 7o

" " "

%os 0 7o
mais il est préférable, au lieu des « et 3, de choisir les combinaisons linéaires

a = oty + [Py, b = ay — By,
a = oy, + if, O =a, — B3},

" Ul " “Rl
a'= oy + I3, V"= oy — (B,

i désignant le symbole y/— 1. La solution générale du systéme (20) sans second

membre sera donc
Y= Cia +Cyb + Cs?o’

v1i=Cd + G + Cyyy,
/1= Cya" + Cy b+ Gyl
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Pour troaver la solution la plus générale du systéme (20) avec les seconds
membres, appliquons la méthode de la variation des constantes. On auara

dC dG, d!

@ GV G =1y
dC, dC, . dC,

Vi TV e =1

En multipliant la premiére équation par &, la seconde par ¥/, la troisiéme par
0" et en ajoutant, nous aurons

dC,
dt

._%( H(! [}IHEZ!)+ b”}[(;‘ﬂ)

en vertu des relations
ab +a'd +a'l" =o,

B4+ b o,
byo+ b'yy+ 0"y, =o,
et, d'une maniére analogue,
dC,
dt

T e B g Y -

o %(a}];“_‘_ a,H;”—F a”II;”\)'

Ensuite on aura C,, C, et C, par des quadratures. Etudions maintenant les
fonctions dans les seconds membres. On a, d’aprés M. Hermite (') et en adoptant
ses notations,

. O,0)H(u—w) ., . . 0, (o) H(u—{-—m)
— S R el (hu+v) —_ . (e »1
CEETR T T (0)0(a) e e O LI R
. OO H, (v —w) . . 0 (o) H[(H—i—(n) s
I oL i(hu+v) [ I —i (hu+v)
C=aap = Hi(0)0(u) ¢ ’ V=a = H (0)0(u) ’
n___ FR1 I—II(O)O(N —'0.)) i(hu+v) 3 I Y I{I(O)G(“ (”) e—i( ,,H.w,)
S et ¢ = T e
. cnu o dnosnu o shodnu
/o cho’ T T e /= Tenw

(1) Sur quelques applications des fonctions elliptiques, p. 3.
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oll w, % etv sont des constantes et « est une fonction linéaire du temps
w=n(t—¢).
Ainsi, H(", H{", H" étant des fonctions périodiques du temps, on aura
OHY 4 b'Hg”—i— b'HY = e—i(hu—v)l_)(t),

ot P est une fonction périodique. Ensuite
I . . —
C,= Efg—l()\u+v) P(¢)dt = e—iu+v) P,(t)+C,,

P, est une nouvelle fonction périodique et (i; une constante. De méme

C,= éf(aﬁ(ln_,_ a’H(.Z”—l— a”H;”)dt — [ eiOu+v) F(t) = el Py(t) + 'Cz.
Enfin, en introduisant les valeurs de H{"", H{", H\" dans I'expression de —=,
! 2 8 P dt
on trouve
d((l; —o, C,= const.
Alors, nous aurons
o _ 0, (0)[H(z — w) Py (&) + H(u + w) P'(1)] -
/1—C1(l +C20+C3Y0— ZHI((‘))@(H) +(43/0,
b . v B [H (=) Py () +H (t+0)Pr(0)]
2 ~ = ! 2,0 R 3%
(21) 470 =Gl 4 Gl Gy 2H, () O (u) + e
- - NP,
S = Cya"+ Cyb" + Cayl == H,(0)[O( — o) P, (t) +O(u+ ») Py(8)] eyl

2iH (o) O(u)

en posan t

C,=C,=o.

Par conséquent, v, ¥}, v, sont aussi des fonctions périodiques du temps. Il

est clair que les expressions de vy, 7|, v, sont réelles, les quantités

Cia, C,b,

étant des quantités conjuguées.
Au commencement de nos recherches, nous avons posé

54_—“ @5: @s: o,
c’est-a-dire nous avons supposé que les séries v, ¥', ¥’ pour ¢ = o0 sc¢ réduisent

ANae Yo, v
Vos Yor Yoo
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L)
Alors il faut que vy, v}, v} s"annulent pour ¢ = o.
(Cela nous donne les équations

Cia + €0 + Cyy,=o,
Cia"+ G0+ Csyy=0, pourt—=o.
Cia"+ Cy0"+ Cyyy=o,

Mais le déterminant

a b 7y
a b oy | =— 44
al/ b/l ylc/'

il s’ensuit
Cl—_—O, C2:O, C3:O

pour ¢=o. C; étant une constante, nous la choisissons égale a zéro. Ensuite

€= ;f<bH'.+b'H;+b”H;>dt:—§f<bp1+b'ql+wmdt,

Gg:gf(aH’1+a’H;+a”H’3)dt: éf(dpri-a'(lﬂra”ﬁ)dl,

en vertu des expressions de H, H,, H} et les relations bien connues entre le
cosinus directears.

En substituant les valeurs de py, ¢,, r, prises de (13), en tenant compte de
(10), (13) et (18), nous aurons

dp, ,dq, ,ar,

= dpy . ,,dqy _,,dre\ ('dt b
+)nlb |:b?17+b Lll+b7l — + —| d¢

- dp, , dgy ,drg

N———
O\N
o\sm] &'
+
o
]
2
I
s
X

dl’o /dqo /rd"O
gt TV T

dp, _ ,dqy  _,dr,

alf <a—t +a —E—I—a T dt
t '

< >f A P
) QB 9o

- dp, o »dro tfl_t a ___/‘
-%-Jlf[<agt—+07l+am | 7‘ﬁ+70 dt = [ A, dt,

ou A, et A, sont deux fonctions de ¢ entiérement connues. Aprés I'intégration, il

faut partout poser ¢=o.
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Ces deux équations et I'équation (17) font connailre les trois constantes a,

% et yv,. Elles ont la forme

L&+Mﬁ+N@:/mm,

(23) /ua+Mm+N@:/@m,

M, 2, + Nyv, = Ay,

de sorte que la condition nécessaire et suffisante pour que 'on puisse déterminer

les conslantes a;, Ay, v, par (23) sera

L, M, N,
(24) D=|L, M, N;|2o.
o M, N;

Celte condition remplie, nous avons intégré les équations (8) et (9) par six
fonctions périodiques de la période ©

. N ’ ”
])l’ (]17 T /1) 71’ 71’

dont, en outre, les trois derniéres s’annulent pour ¢ = o. Substituons ces valeurs

dans les équations (12) et (13) et posons A = 2. En les intégrant, nous trouvons
P2 92, Ta ¥2s 7;’ 7;

et ainsi de suite. Supposons maintenant que nous ayons trouvé lous les coeffi-
cients de p, ¢, , v, ¥, ¥ jusqu’a 'ordre n — 1; nous allons voir qu'’il est possible
d’intégrer les équations qui déterminent

. ’ U
Pnry Gns  Tas Yas Vs Yue

Posons A = n dans les équations (12)

dpn ]
cl;[ —(B—C)(qorn—i*l'o(/n):r(ln’

5 dq, g
(2()) B ?[t_ _(C—A)(’.OPQ +pol'”>:l\2 /’
Jdr, )
| C = (A=) (poda+ qopa) =17,

\

ou les I' dépendent, au plus, des coefficients d’ordre n — 15 elles sont, par con-
séquent, des fonctions connues périodiques du temps. Nous connaissons trois in-
Fac. de T.. 2° S., 1. 3
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tégrales particuliéres des équations (25) sans seconds membres, savoir
B—C - C—A . _A-—B
Pn= ‘A‘* GoToy Yn = "’B— rOPO’ I'n= _'C—“ POQtH
de sorle que nous posons comme auparavant

B—-C

Pn—=—a, A Fol0s Gn=a,

= A—B
’-B—‘ FoPo—+ Uy, 'n=—2a, —'*(w'*’l)o(/o"“ e

Un calcul, tout i fait analogue a celui que nous avons fait pour 2 == 1, nous
donune

(n
da, ¢, u, ™

_(—[[— —’1'0 Yo + (B _— (:)(]0]'0’

B%g . (C—A)rop, 0, — (B — 1])qofg"’——5C— A)pol“{”’

7o (B—0C)q,
c@n  (A=B)pogy (B —C)rT{" — (A —B)p, I\
dt ry e (B—0GC)r,
ct, ensuite,
)‘vl Yn
Up=— —> Yn -
4o ry

rem Tt (B C)TE = (€~ A)pLy

e dt,
. BB —C)
¢
y — 3 (B—C)r, L' — (A —=B)p,I'{”
Vo= Jn‘*"fo C(B——C) dt,

ot A, et v, sont des constantes arbitraires.

Nous allons montrer que les intégrales dans les seconds membres sont des fonc-
tions périodiques du temps. En effet, on obtient aisément

/ d o
Pl 4+ q T+ r T = di (Apopn—+Bgequ+ Crory)
(26) et

Ap Iy =+ Bg, Iy + Cr I = I, d% (AYopn=+Byoqn—+ Cyira).

D’autre part, nous avons les trois intégrales premiéres de notre systéme (2)

ApP+- B+ Cri+2p(ly +ny +§y") =2K,,
Apy+Bgy + Cry'=K,,

PRy =

Substituons les séries (7) dans les premiers membres, développons d'aprés les
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puissances de u et écrivons que les coefficients de p” doivent étre des constantes.
Ainsi,

Apopn+Bgqog,+ Cryr,= U,—+ const.,
(27) < AyePu+Byogn+ Cyora+ Apoya—+ Bqoy, +Crey,= V), + const.,

10Vn T 10¥nt 7ot =Wa '

ou U,, V), et W, dépendent seulement des coefficients d’ordre moins que n;
elles sont, par conséquent, des fonctions connues périodiques du temps. En ob-

servant que
Apo= 1,70, Bgo= 075, Cro=14Y,,

on obtient, des deux derniéres équations,
L(Ayopn+Byign+ Cyyr,) =V,+ const.,

ou V, est aussi une fonction périodique connue du temps qui s’annule pour
t = 0. Ainsi, les équations (16) prennent la forme

pol“<1n>+ qor(zn)+ ,,Or(sn): d_Un7
dt
.
Ap T+ Bg T+ Cr, T = d;t";
d’ou il résulte
av dU
—_— T __ (G — ) aVa —”’
(B C)qurz (( A)porl e G e
| o P au, av,
(B—C)rly" — (A—B)p, I"=B"0 — &0
et
-3 Vn'— CUn
M R (EC)’
v, =, +EPLY’_‘
n—"n C(B — C)

da,
Z;° On aura @, par une

quadrature analogue a celle obtenue pour a,. La condition pour que a, soit une

da,|
ar | =@

nous donne une relation de la forme

8 il =+, 2 | = cons
(28) x”[qﬁ] +v”[r§] — const.

Enfin, en substituant ces valeurs dans I'expression de

fonction périodique, savoir :
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Ainsi

B—C
Pn= A GoloAn,

(29) = —A ron.a +7_\'_’
‘9 qn— B 0])0 n qo’

r A B a,+

pu—, f -
n C Po’]o n ,,0
mais, @,, Ay, v, 6étant des fonctions périodiques du temps, p,, g, 7's sont aussi
des fonctions périodiques du temps. Passons, ensuite, aux équations (13) pour

A=n

d n ' " n ’ " n
dyt _("OY/L—qOYn):H(l ‘= "1:70"‘]'170+L(1 s
3 d“/,n ” () " . (n
( O) dit “(Po?u"’"o}’n)—Hz :pn70_1’170+L2 4
d‘/','l ' (n) ' (n)
dr — (@oYn—DPoYn) = HY :anO"Pn}’o“‘Ls 5

L, LY LY ne dépendent que des coefficients d’ordre moins que r, de sorte
qu’elles sont des fonctions périodiques connues du temps.
On voit aisément qu’on peut intégrer le systéme (30) exactement de la méme

maniére que le systéme (20). On obtient
7= Ofa + €0 + G,
Vo= G+ G+ G,
Yl;l — C(ln)a//_l_ C;lz) b" 4 C(sn)y"'”

ot les a et les b ont la méme signification qu’auparavant. Ensuite, C{”, GV, C{"’

sont déterminées par
dc(gn) dC‘;”

dC(/l)
@ g+l g g =W
! d(:(l,l) b' dC(2n) ' dc(:s”) — H»
“a + ar Tl T e
~ ~(
a" fia(:‘(;_l) 4+ " ‘ic(zn) +_yu d(xg'” :H(”‘),
dt dt o dt 3
d’ou résulte facilement
dcyw
O oy Y H, .

Nous allons voir que le second membre est la dérivée d’une fonction pério-
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dique du temps. En effet, nous aurons

’ " dy ’ d'// " dy,
7oH + 7o HYY 74 H{;ZROTJ% 07”"1 07/;

-+ }’n("o}’lo_ 70"/,3) -+ Y:L(Po)”:)— 7o0) + Y qoto— Po70)

—+y “+y

d ! ’ "
- % (YO'Yn"‘“ "/oyn"‘_ }'o YIL)’

d’aprés (11). Mais la quantité entre parenthéses est égale 8 W, (27), de sorte que
Cy" = W, + const.

Quant aux C{" et CY’, elles ont la méme forme que C, et G, et, d'aprés la
forme de HY", H}, HY, on remarque qu’elles dépendent des constantes

N
Apy )‘m Yy

absolument de la méme maniére que C, et C, dépendent de «,, et v,
Il en résulte d’abord que'y,, v, 7, sont des fonctions périodiques du temps,
C{ et CY” ayant la forme

(= e—iAn+v) Pi(e), C;’”: e+rin+v) P (¢),
et, ensuile, que la condition que y,, v, 7, s’annulent pour ¢ = o0 nous donnera
Cr=o, CP=o, C{"=o0, (=o.
Les deux premiéres équations ont, en employant les notations (23), la forme

L,a,+ M}, -+ N,v, = quantité connue,

L,a,+ M,}, + N,;v, = quantité connue.

Mais A, et v, sont encore assujetties a la condition

=1 - [
M 7 “+ v, 7 = const.

M, 2, + N;v, = quantité connue;

ou

de sorte que la détermination des conslantes d'intégration a,, h,, v, est Loujours
possible sile déterminant

L. M, N,
D: Lg BIQ Ng
lo M, N, |

est différent de zéro, ce que nous avons déja supposé.
Ainsi, ayant supposé qu’un calcul préalable nous ait fait connaitre les coefli-
cients de nos séries (7) jusqu’a I'ordre (2 — 1) comme des fonctions périodiques
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du temps, nous pouvons toujours déterminer les coefficients d’ordre n comme
des fonctions périodiques du temps. Observons aussi qu’ils sont complétement
déterminés par la condition

, "
Y=Y ="Ya=0, pour t—=o.

Par conséquent, le calcul formel ne s’arréte jamais et il existe des séries

P -‘:Em 7L q;\:qu W,y :2 s

0 o 5
r=XnEh =20 =X
! 0

0
qui, substituées dans (2), satisfont formellement aux équations et dont les
coefficients sont des fonctions périodiques du temps. Enfin, les séries de v, v/, v/
se réduisent, pour t =o0, a
.)-/0’ :/’0’ )_/é),
ou aux valeurs initiales de y,, ¥, et v;, dont nous sommes partis.

Passons mainlenant & la démonstration de la convergence de nos séries. Nous
avons déja indiqué les difficultés qui se présentent en partant de la solution
périodique o

PodoToYo7070
des équations (2) pour pw=o. Ces difficultés proviennent du fait que les
accroissements ¢ deviennent des fonctions assez compliquées des variables 3. On
peut pourtant les tourner de la maniére suivante : posons

P=Po+ P&, §=qo+ Ty r=ry+ .z,
= e P e T O Al (R L)

et choisissons les z et les y comme variables au lieu de p, ¢, 7, v, ¥, ¥", ¥"- Les

équations (2) deviennent .

d " r

—da% = (B — C)(gs s+ roxs) +nys — &y + p[(B— C)@e@; + 1y — L3,

od ,

L0 (6= M)+ poz) + o — B+ L€ — M)+ T — Ena),

—}fﬁ = (A = B)(po 2+ qoy) + &g — nyo + p[(A = Bz 2o+ Eya—nyil,
31 4

7);—1 = roya— Go¥s+ T3y, — Zy Yy + @ (X3Ya— T2Y3)s

d Y

“L;!‘yf = Po¥3s— oY1+ T1Ye— T3Yo+ (21 ys— Z3)1)»

dys

L S = poya B3y — &1y 2y — Z1Ya),
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Pour p = o, ce systéme devient identique aux systemes (8) et (9). Ainsi, nous
~connaissons une solution périodique du temps avec la période © du systéme (31)
pour u = o, savoir :

0 0 0
Ly = P1» Ly== {1, L3=T,

0 0 , 0 ”
Yi=7 Y2=—"1 Y3s=—=71>

et, du reste, nous savons qu’elle est la seule pour laquelle v, v, ¥, s’annulent
pour ¢ = o.

Appliquons, maintenant, la méthode de M. Poincaré en prenant cette solution
périodique comme point de départ et voyons si le systéme (31) ne comporte pas
aussi pour des valeurs trés petites de p une solution périodique avec la période =,
telle que ¥y, 72, 33 s’annulent pour ¢t = o.

Au lieu de prendre comme variables les valeurs initiales des z et des y et,
ensuite, de les déterminer de fagon que les accroissements des x et des »,, pendant
la période 7, s’annulent, nous pouvons évidemment aussi bien choisir les con-
stantes d’intégration qui se trouvent dans les expressions de py, ¢, 71, Y1, Y1, V' -
En effet, I'existence de la solution périodique pour . = o dépend d’un choix con-
venable de ses constantes.

Observons d’abord que les accroissements des z et des y ne sont pas indépen-
dants, parce qu’il existe trois inlégrales premiéres des équations (2). Nous avons

Ap*+B@?+ Critap(ly +ny'+ ") =2K,,
Apy+Bgy' +Cry'=K,,

VY=,
d’ou il résulte, en introduisant nos variables « et y et en divisant par p.,
Fi=Apox,+Bgox,+ Crox;—+ Eyo+ 0y, + 8y

+ P*[E.)/l +ny,+8ys+ é(Aw‘;’+ Ba?+ c:c§>J = const.,

I“g: A Yoxx -+ B}/:}x2+ Cyg X3+ Apo‘yx -+ I}q0)’2+ C"O)’3

+ p(Az )+ Ba,y, + Cx;y;) = const.,

Fo== o1+ Voda+ 1oys+ 5 (y1+ 0308 =o.
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Le déterminant fonctionnel

o6, OF, o,
dzy 9z, Iy Bg, Cry, o
JdF, JF, OF , ) ” ,
d—xz dx, 7)’3 = | Bys Cy5 Apo | =BCyo(quys— 707s)
OF, oF, oy | 1"

p=o 02, dxy dz,

n’étant pas nul, nous sommes certains que les accroissements de z,, z3, y,
s’annulent si les trois autres le fount. Appelons ainsi

Az, Ays, Ay,

les accroissements de xy, 53, 33 pendant la période =; les équations a satisfaire
pour P'existence des solutions périodiques sont, par conséquent,

(32) - Axy=o, Ay,—o, Ay, =o.

Soient

- - X - ~ “n
Prs 9y T Y Yo N

les valeurs initiales des variables z ety pour w=o, et

El‘i—ﬁh 51+52’ ;l+1’33; :/l_'_ﬁ&’ :),1+657 ;’,1,+(36

les valeurs initiales pour (12 0; nous savons que Az,, Ay,, Ay, sont des séries pro-
cédant d’aprés des puissances enli¢res et positives de [ et de p. Ainsi des équa-
tions (32) il faut tirer trois des quantités 3 comme des fonctions des trois autres
el de p. Mais, au lieu de prendre les 3 comme variables, nous en introduisons
d’autres de la maniére suivante.

Les équations (31) ont pour .= o les intégrales (19)et (21)

B—-C
Pr=a, A GoTos

C—A Iy
1= a, — B FoPo + zjo’

A—B vy
n=ar— T Podo
. 7o

717 Cra + Cyb —+ Cyy,,
71 =Cia’ + C, 0" + Cyy),

7/‘/ — Cla”—i— Cgb”—i— C?V:;,
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ou

. 21
Cl'»:'— ;f (l)pl+bl(]1+b”7'1)dt+cu

. 1

! =
C,= 5[(apl—|—a’ql+a”1',)dl+tg,
C;= const.,

et a,, Xy, v; conliennent les constantes additives «,, Z, v,. La solution pério-
dique résulte d’un choix convenable des constantes 5., i,, ;4, C., (_]2, Cs.

De ce systéme de constantes d’intégration nous oblenons les valeurs initiales
correspondant a la solution périodique. Donnons maintenant aux constantes de

petits accroissements

oa, ‘ﬁh avy, 661, 662, 663;

les valeurs correspondantes des accroissements des valeurs initiales sont

— ~B—(C- -
8/)1:6“'qu]'0,
N - C—A-- 0l
0q, = da, B ropo + —>
9o
(33) or =oa, A= B85 g 4+
G o

071 = 8CY @y + 8C by + 6C, 3,
8y, = 0Cy al, -+ 8CL b, + 3Cy 75,
| 87 = 0Cha) -+ 8C3 b} + 3Cs 7).

Il est facile de voir que 3C et 3CJ sont des fonctions linéaires et homogénes

de ¢a,, ok, 8v,, 0C, 6C,. Posons maintenant

@,:8/;1, Bz_—-a—‘;n 53:371, 66:6?1’ 65:6‘/;, ﬁs—_—aa’-z;

il est clair que

Az;, Ay, Ay,

deviennent des séries en 3ay, ok, 8vy, 8C,, 8Cy, 8Cy. Calculons ces séries pour
w=o0. Mais, comme 2y, ¥3, ¥3 pour u = o se réduisent a p,, Y\s Y4, cela revient
a calculer
Apy, Ay, Ay
Fac. de T., »* S., 1. A
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On voit immédialement que

B—C- -1d B—C 3 )
Ap == N ‘/0"0[7;;‘1‘]:T—A—;[rl—lg}o}q‘?[’f’

0

ou, en employant les notations (23),

. Ap,._z'!g—w\—cqo o(M; 87, + N, 69, ).

Passons mainlenant a Ay|; nous avons

Y1=Ca + G b+ Cyy)
et

. t
. ) —
Ci=— ;f (bp,+b'q,+0"ry)dt + C,.
La fonction sous le signe somme est de la forme

e—ilhu+yv) : P (0) + [da ]01([) :
ou P(¢) est une fonction périodique du temps de la période .
Ainsi

€)= e—iOu+y) 3?,(0 S [@J]G,(z) |4 T
dt )
ou P, (t) est aussi une fonction périodique; de méme
C,= )u+v)§l) (¢) + {da ]Gg(t)$+ﬁz.

En observant que &' contient le facteur e« §) e facteur e~ 4V el que 7y, est

une fonction périodique, nous voyons que v, a la forme

(R

- S I i T da,’]
v =06a"+ Cy 0"+ Gy + [—_l

7 A, (¢) + fonction périodique
¢

ct de méme

g T ~ ~ da . . L. .
Yi=0a"+ G 0"+ Gy + [a’—tl] A, (¢) + fonction périodique.
Quand ¢ augmente avec <, @ et «” reprenuent leurs valeurs initiales multiplides
par un cerlain facteur e, et O’ et 0" deviennent multipliées par e=, de sorte que

nous aurons

— — — Fda,”
Ay =0C, aj(e” — 1) + dCy by (e= — 1) +- A, [% l;

d
Ay = =0C, @) (em — 1)+ 0C, b, (=" — 1) + A, [ d(zl]'
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) , . . l d d(l,
Par CODSC({UEDI, nous aurons, en itroduisant la valeur de ’

dt
( o=Ar,=r1P }5?,‘0?0(1\1357\,+N335,)+ ............................... (e et
(34) ? 0o=Ay,= Ay (My8h, 4+ Ny 8%, ) + 80, @ (e —1) 400y by (e —1) + (- ot e -
L 0= Ay, = | A (M%7, + Nyov,) +0C, ' (e — 1) + 0Cy bl (e — 1) 4 p(e . D)ot oo

En supposant

9w - > >
(33) P02 0, G020, ryZo,

d’aprés quelques transformations, ces équations deviennent

0= M0k + Nyok, + P, (g, 6%, 0v,, da,, 0C, 6C, 0C, ),

(36) ( 0= OC +pPy(eeei e ),

0= 6(4]13—1—;11’3( ....................... ).
Ces équations permettent d’exprimer trois des quantités Si,, ov,, 8C, 3C,
comme fonctions des trois autres de nos six inconnues et de . Mais nous avons
vu qu’en choisissant 8y, 2., 3., B4, 85, 3¢ comme variables il est permis de donner

a deux des 3 des valeurs arbitraires, et, dans le calcul formel de nos séries pé-
riodiques, nous avons posé

By = By=By==o.

Il résulte des formules (33) que nous devons avoir
0 = dC3 a, -+ 0CY by + 3C; 7,
0 =dC{ a; + oCY by + 0C; v,
0 =dC} &, + dCY b}y + 0Cy ¥,

ou, le déterminant des seconds membres n’étant pas nul,

o

= 0(; = o.

300 = 5

Nous avons

G

Il

. t
- l;f (bpi+ b qy+0"r)dt+C,,

et la fonction, sousle signe somme, est une fonction linéaire de a,, Xy, v, de sorte

que 6C{ devient une fonction linéaire et homogéne de 8a,, 3k,, 3v,, 3C, qui, en .
introduisant les notations (23), deviendra

0CY = L, da,+ M, 6%, + N, 4y, + oC,,
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de méme
0C = L, da,+ M, oA, - N, 6y, + 3C,.

Ainsi, les conditions

Pe=Fs=pB=o

nous donnent deux équations linéaires et homogénes entre 8a,, 34, 3v,, 5C,, 8C,

et, de plus, ~
5(:;,: o,

de sorte (ue nous aurons enfin les équations

0= ....... M,y 00, Nydvy oo, + p Py,
o = R < ulPy,
O et A4 0Cy .. + p Py,

(37) - -
o = L,da, + M,d}, + N,dv, + oC,,

0= L,0a,+ M;0%, + Ny0v, + ... + 0C,,

Le déterminant des termes linéaires des seconds membres devient, aprés une

légére transformation,

I Le My N,
(38) A=| L, M, N,
o M; N
Alors, st
AZo,

nous pouvons résoudre les équations (37), et nous obtenons nos six inconnues

da,, Ok, 0v,, 0C,, 0C,, dC,
comme des sévies en @ qui s’annulent avec p, et, par conséquent, aussi
Bir Ba B

en fonction de @. Ainsi, pour des valeurs assez petites de w, il existe un et un
seul systeme de valeurs initiales de x,, z», 3, ¥, ¥2, ¥3, tel que la solution
correspondante des équations différentielles (31) sera périodique et telle que y,,
¥a, y3 s'annulent pour ¢ = o. Ainsi, connaissant @ priori 'existence d’une Lelle
solution périodique, nous savons qu’elle est développable d’aprés des puissances
de w; mais, d’autre part, le calcul formel que nous avons fait nous a montré
qu’il ne peut exister qu’un seul systéme de séries x,, 2, 23, ¥, ¥2, ¥3 €n u, dont
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les coefficients sont des fonctions périodiques du temps et telles que yy, 2, ¥
s’annulent pour ¢ = o.

Par conséquent, les séries obtenues par le calcul formel sont convergentes et
représentent bien la solution périodique. Le déterminant (24) D est, comme nous
voyons, identique au déterminant A.

Au lieu de choisir

Bi=B;s=ps=0
et, par conséquent,
Y1=)s==)3=0 pour { =o,

nous avions pu donner a deux de ces quantités des valeurs arbitraires trés petites,
ces quantités étant assujetties a la condition

F,=o pour £ =o.

Il existe, par conséquent, une double infinité de solutions périodiques.

Enfin, pour 'existence d’une solution périodique du systéme (31), il suffit que
les équations (34) soient satisfaites, ou, en tenant compte de la condition (35),
que les équations (36)

0= My %, -+ Ny v, 4+ P, (g, 0%, 89, 0@, 8C,, 3Gy, 0C,),
o= 4 0GPy 2,
o= -+ 6(—:2+HP3( ................ e e e e s . )

soient satisfaites.
Alors, si une au moins des quantités

1 I
MF[E]’ NF[?s]

est différente de zéro, nous pouvons toujours résoudre ce systéme, et I’on s’assure
facilement que cela n’arrive pas en général. On trouve, en effet,

dnw E N _i snw E—K
cne Ki2K’ s~ Cicnw K ’

M3:

T~
€
>~

ot E et K désignent comme ordinairement les intégrales complétes de la seconde
et de la premiére espéce.

Ainsi, dans le domaine de chaque systéme de valeurs initiales

P f_]» Ty )79 Y ;”,
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il existe en général une double infinité de valeurs initiales, qui correspondent a
des solutions périodiques des équations (2), ayant toutes la méme période pourva
que la valeur de w soit assez petite. La période commune est la méme que dans
la solution périodique des équations (2) pour w = o, les variables ayant les va-

leurs initiales

P ;9 7 :;’ e

S G



