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SOLUTION

(UESTION POSEE PAR M. HERMITE,

PAR M. LE VAVASSEUR,

Professeur au Lycée de Moulins.

1. Probléme.— L’intégrale elliptique de seconde espéce
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J :f k2sn?x dx
0

J=KA2sn?(¢, k),

peut s’écrire sous la forme

% étant compris entre les limites o et K.

o' ()

Cetle quantité £ donne le maximum de la fonction o) comme le

montre la relation de Jacobi

X - _{f ('_')’(.17)
‘/0 k*sn*xdx = K _>@(1)'

On demande de la définir en fonction du module par une équation diffé-
rentielle (Cu. Herwite, Intermédiaire des Mathématiciens, n° 1, jan-

vier 1894).
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G.2 LE VAVASSEUR.

Rappelons aussi que K et K'= K (£") sont des intégrales de I'équation
différenticlle linéaire du second ordre
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3. Partons de I'équation
J=K£k*sn%(§, k).
Prenons une premiére fois la dérivée des deux membres de cette équa-
tion par rapport a k,
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ans cetlte equa 1011 remp acons —+ a’/{ dk par eurs va ellI‘S, remarquons,

en oulre, qu on a
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enfin que
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(voir Cours Hermite, 3¢ édition, page 263).
I vient, apreés simplifications,
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4. Posons, d’autre part, avec M. Hermite,

_Jz 0(x)
U =%~ 92y’
et servons-nous de la formule
A‘k”%ﬁ =0 d—U — k2 <U +x gg> + k*(z —snzcnx dnx)

(voir Cours Hermite, 3¢ édition, page 264).



SOLUTION D’UNE QUESTION POSEE PAR M. HERMITE. G.3

On en déduit, en observant que & annule la dérivée par rapport a x
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5. Prenant deés lors la dérivée par rapport a &k des deux membres de 1'é-
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trouve, aprés un calcul assez long, mais n’offrant aucune difficulté, que

équation différentielle demandée est

quation (1) et éliminant

entre le résultat obtenu et I'équation (1), on
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La fonction £ de k& sera donc de la forme
E=K (k) f(k)+K'(k)o(k);

les fonctions f (k) et ¢ (k) seront données par de simples quadratures.



