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SUR LES EQUATIONS AUX DERIVEES PARTIELLES DU PREMIER ORDRE. DB.j1

ou

) o o o

07
=L = 2
) > i}’ X 1‘}” x

9’ .

si ’équation caractéristique a une racine triple.
(@) Le groupe G, laisse invariante une équation du troisiéme ordre de
la forme

() 2y —(n—2)y" =o¢(z),
dont les courbes intégrales sont représentées par
(2) y=ax"+bx + ¢+ Y(z),

{ () étant une intégrale particuliere de 'équation (1).
- Si, dans Iéquation (2), on remplace y par y + (), elle devient

y=a-+bx+cx",
ui représente les courbes intégrales de I'équation
q P g q
((2)) xy”’~——(n—2)y”:o.

L’équation différentielle considérée dérive donc, par une transformation
ponctuelle, de I’équation canonique ((2)).
(b) Le groupe G, laisse invariante I’équation

() y'=y"'=k
qui dérive aussi de I’équation canonique
((3)) ]/L’ — J,” — O,

par une transformation ponctuelle; il suffit, en effet, de remplacer dans (1)

Yy pary +o(x), 9(z) étant une intégrale de I'équation (1), pour obtenir
I'équation canonique ((3)).

(¢) Enfin le groupe G, laisse invariante toute équation de la forme
" = ke*, A = const.
et le groupe G les équations de la forme
‘}/”/ — k;

chacune de ces équations dérive évidemment de I'équation canonique ((1))
Fac.de T. -- V. B.6
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par une transformation ponctuelle de la forme

2 =z, Y=y +o(x).

.

Le groupe G ne fournit donc, dans aucun cas, de forme canonique nou-
velle.
(d) 1l en est de méme du groupe

o A O L of

dax’ dy’ <oy’ 7 9y’

en effet, ce groupe laisse invariantes les équations du troisiéme ordre com-
prises dans la formule

32 oyl
Y VZ‘J:L — m?23.

)
J

Sil'on effectue le changement de variables suivant
£y = e"¥,
I'équation précédente prend la forme ((1')),
3y"t—ay y" =o.

(e) Reste a examiner le groupe

AN NEOT A NEOR

’ o

or’ Jdy dy dy
ol P, (x) et Py(«) sont les intégrales de
agy" - a,y' -+ ayy =o.

Supposons d’abord que les racines de I’équation caractéristique soient
distinctes. Le groupe est alors semblable au suivant

Lo of  of of
X b;; ) (}J” 5‘;? X @)

qui ne laisse invariantes que les équations canoniques
((2)) zy'—(n—2)y"=o,

Supposons maintenant que I'équation caractéristique ait ses racines
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égales. Le groupe est alors semblable a celui-la

of  of of  _of,
Ty 9 o

les équations invariantes qui lui correspondent sont données par la for-
mule

l)"” - /fy” 20,

chacune de ces équations dérive par une transformation ponctuelle (x, = kx)
de I'équation canonique

(3 ¥ —y"=o.

Le groupe considéré G ne fournit donc pas de forme canonique nou-
velle.

3. Les groupes a quatre paramétres de la troisiéme catégorie sont au
nombre de trois.
(a) Considérons d’abord le premier

of of U o

gz’ Tz T ey oy Zoy

Sim = 2, le groupe ne laisse invariante que I’équation canonique déja
obtenue
y”/ =0

Sim £ 2,il y a une infinité d’équations invariantes, & savoir celles qui
sont données par la formule

(l) ]'”/ — k}Ar/p, p=

ou k désigne une constante.

Il est aisé de voir que, pour une valeur donnée de m, ces équations déri-
vent toutes (sauf 'équation y” = o qui correspond & k= o0) de l'une
d’entre elles,

(2) ¥ = hy', =1

par une transformation ponctuelle. En effet, il suffit, pour passer de 1'équa-
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tion (1) 4 I'équation (2), de remplacer y par Ay, A étant déterminé par
1

h ;J———l N\ m—2
SOt

Dans la suite nous prendrons

h=—m—o2.

Remarquons, dés maintenant, que I'équation (2) dérive, dans le cas ol

m - 3,
de I'équation canonique

" —
' =o,

par une transformation ponctuelle (voir page 41).
(b) Le second groupe & examiner est le suivant

of  of of o (= of .
o @) xa;, x5;+ —2—+2)’>—
a ce groupe correspond unc infinité d’équations du troisi¢tme ordre inva-
riantes, & savoir les équations de la forme

(1) e =1,

ou k désigne une constante quelconque. Chacune de ces équations dérive,
par une transformation ponctuelle, de I'équation

" " 1
y” ey .__],

il suffit, pour le voir, de remplacer dans I'équation (1) y par y + 3 z*Lk.
(¢) Le dernier groupe & quatre paramétres de la troisieme catégorie
est

of o o of
o Tox’ dy’ y})7.

Ce groupe laisse invariantes les équations du troisitme ordre, qui ont la

forme
TN /4

y ‘}’ — m)/llz’

m désignant une constante.
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4. Enfin le seul groupe a quatre paramétres de la derniére catégorie est
le suivant
af af , Of of af
0—‘1" x%—; X 7);'-".1")’()—),’ ‘deV
Ce groupe laisse invariantes les équations différentielles du troisieme
ordre qui ont la forme

i 3
yyfl/ -+ 3),/'),// — /{yzy//‘.’,

ou k désigne une constante quelconque.
En résumé, nous venons de trouver que les équations du troisiéme ordre

suivantes
ngoll(x) _ y// (P///(x) —o,
‘)/J// — k‘)/l/p,
':V”/ ey// — I,
,}’/)’”, — m),./lg,

y.}/”,—k 3}”.}/” f— ky%yll%

et celles qui en dérivent par une transformation de contact admettent un
groupe ponctuel a quatre paramétres.

Nous verrons dans la suite que la quatritme équation et celles qui en
dérivent admettent un groupe de transformations de contact a cing para-
metres.

De méme la deuxiéme équation admet un groupe & plus de quatre para-

meétres si
p=o, p=I, p—2 ou p=3.

Nous pourrons alors dire que les formes canoniques des équations du
troisi¢tme ordre, qui admettent un groupe & quatre paramétres, sans ad-
mettre un groupe d’ordre plus élevé, sont

((4)) y'e"(z) —y"¢"(z) =o,

(%)) Yy =ky'>, pP#0,1,2,3, ko,
((6)) y'er' =i,

(7)) YY"+ 3y = kytyr3, k= o.
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SECONDE PARTIE.

CHAPITRE 1.

EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT UN GROUPE
A DIX PARAMETRES.

La correspondance établie par M. Sophus Lie entre les équations aux
dérivées partielles

(1) F(z, 5, 5, p, q) = o,

qui admettent un groupe de transformations ponctuelles, et les équations
différentielles ordinaires

W) — O,

(2) H(z,y, ¥ 5" ¥

qui admettent un groupe de transformations de contact, nous a permis de
ramener le probléme proposé¢ a la recherche des équations aux dérivées
partielles qui correspondent aux équations canoniques (2), déterminées
dans la premiére Partie de ce travail. Comme je l'ai déja énoncé, je sup-
poserai une équation aux dérivées particlles définie par son équation
associée. Gréice a I'introduction dans le calcul de cette équation aux diffé-
rentielles totales, il deviendra souvent facile d’apercevoir que deux équa-
tions aux dérivées partielles sont semblables et de trouver les changements
de variables qui permettent de transformer 'une dans I’autre.

1. Equations aux derivées partielles qui correspondent a 'équation
canonique

(1) y'=e.

Nous avons déja vu que ces équations sont les équations aux dérivées
partielles qui dérivent, par une transformation ponctuelle, de I'équation

[+ p*+gi=o,
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dont I’équation associée est
(I) d.z"z—é—d')/i-{— dz? = O.

Le groupe de cette équation est précisément le groupe des transforma-
tions conformes (').

2. Equations aux dérivées partielles qui correspondent & Uéquation
canonique
(") 2y y" —3y"=o.

Cette équation étant 'équation différentielle des hyperboles, dont les

asymptotes sont paralleles aux axes de coordonnées, dérive par une trans-
formation ponctuelle de I'équation

12

(2) (4 y2)y" = 3yy=o,
qui a pour intégrales tous les cercles du plan
(3) (x—a)+(y —b)*+c*=o.

Tout revient donc a chercher les équations aux dérivées partielles qui
correspondent a I'équation (2).
En exprimant que la droite (voir p. 16)

(x —a)da+ (y —b)db—cdc=o0
est tangente au cercle (3), on trouve
da® + db?+ de? = o.

La famille des équations aux dérivées partielles qui correspondent a
Péquation (1) est donc la méme que celle qui correspond 4 I'équation

' canonique
y/// —o0
— ¥

et nous pouvons ¢énoncer le théoréme suivant :

Tuiorine. — Toule équation aux dérivées partielles

F(z, 5,5 p,q)=o0

(1) Transformationsgruppen, 11° Volume, page 459.
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qui admet un groupe de transformations a plus de cing parameétres
dérive, par une transformation ponctuelle, de I’équation

(1) I+ pi+qg*=—o,

et admet, par conséquent, un groupe de transformations & dix para-
métres.

Cororraie. — Toute équation différentielle

H(x’ y, yl’ ‘y”, ),I//) — 0,

qui admet un groupe de transformations de contact a plus de cing
paramélres admet e'galement un groupe de lransformalions a dix pa-
ramétres et derive de Uéquation

‘}/”/ e O,
par une transformation de contact.

3. Transformations de contact par lesquelles les coniques, ayant
deux poinls communs, se changent en coniques langenles & une droite
donnée en un point donné. — Proposons-nous de déterminer une trans-
formation de contact permettant de passer de I'équation

(1 +y2)y"=3yy=o

a I'équation
Y=o,
ou, ce qui revient au méme, de la famille des cercles
(1) (2 — a2+ (y—0)2+c?*=o0
a la famille de paraboles
(2) y=a+bxr+ca’
Appliquons d’abord, & 'équation (1), la transformation particuliére
a'=i(a—+c), b =10, c=a—c,

qui transforme 'équation correspondante a (1),

da'® 4+ db'? + dc'* = o,
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dans la suivante
db?— fda dc = o,

qui correspond a I’équation (2). La famille des cercles est alors représentée

par

[z —i(a+c)F+ (y —b)*+(a—c)=0;

il ne reste plus qu’a résoudre le probléme suivant, qui est complétement
déterminé :

Déterminer la iransformation de contact
x':X(Cl’,}’, Z), )":Y(-%,)’, z)’ Z'IZ(-”,J’, z)

qui fait correspondre, a la famille des éléments linéaires représentée

par

3) [z'—i(a+ )P+ (y — b))+ (a—c)?=0o,

x'—ila+c) +&(y'—b)=—o,
la famille suivante
(4) y—=a-+bx+cax?, z=b+2cx.

Pour résoudre ce probléme, remarquons que le systéme (3) peut prendre
la forme suivante

2ia + ub—=ax'+ uy', u _

(3"

[ 2ic + vb =o'+ vy, ¢

obtenue en résolvant le systéme (3) par rapport & a et c.
De méme, le systéme (4) peut prendre la forme

2a +bx=2y—:sa,

(4"

scx -+ b —a3,

Les systémes (3") et (4) doivent évidemment représenter la méme mul-
tiplicité de points (x, ¥, =, @, b, ¢); donc on doit avoir

uy w z' + vy

_— = — = e

2y —zx ax E f
Fac.de T. — V. B7

2
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ces quatre équations se réduisent aux trois suivantes

x2'+uy'=i(2y — sx),
'+ vy = vz,

u—1ix,
qui, résolues par rapport a x, y, z, donnent

xr=—1iu,
ly=—=u(y'— 3'a") avec w?—oauz' —1=o,
!

—ux'.

s=y

Il est aisé de voir que ces équations définissent une transformation de
contact. C’est la transformation cherchée. Désignons-la par T. La trans-
formation de contact la plus générale, par laquelle la famille de paraboles

y—=a+bx +ca?

devient la famille des cercles du plan, est représentée par le symbole ST,
o S désigne la transformation de contact la plus générale, qui laisse inva-
riante Péquation y" = o (Transformationsgruppen, t. 11, p. 439).

Cela posé, considérons I'ensemble H des coniques ayant deux points
communs A et B, et 'ensemble K des coniques tangentes 4 une droite D en
un point C. Pour faire correspondre la famille H & la famille K, par une
transformation de contact, il suffit d’appliquer a la famille K la transfor-
mation de contact (USTV), ot U et V sont définies ainsi : U désigne une
transformation homographique faisant correspondre a4 K la famille des
paraboles déja considérée; V désigne une transformation homographique
faisant correspondre la famille H & la famille des cercles du plan.



SUR LES EQUATIONS AUX DERIVEES PARTIELLES DU PREMIER ORDRE. B.51

CHAPITRE II.

EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT UN GROUPE
A CINQ PARAMETRES.

1. Cherchons d’abord les ¢quations aux dérivées partielles qui corres-
- pondent a la forme canonique

(2)) zy" —(n—2)y"=o, n#o,1,3%,2, -I.

Les courbes intégrales de cette équation peuvent étre représentées par
I’équation
Comme précédemment, écrivons que I'équation en x
1 "
(1— —>da——xdb+ —dc=o
n n

a une racine double; il suffit, pour cela, d’¢liminer «x entre I'équation pré-
cédente et la suivante (voir p. 17)
db — z"'dc =o;
dec _ [db\"
da ~ \da)

Les équations aux dérivées partielles cherchées sont donc toutes sem-

on trouve ainsi

blables a celle dont la forme associée est

ds _ [dy\"
an = <%> -
Groupe de U’équation (II). — Par son origine méme, la famille de
courbes

axn

— —o0
n

¢(z, y,a, b, c)zy——a(x— ’I—z>+bx——c
admet le groupe G défini par les transformations infinitésimales

- _. 9 _9f __of _ 29
(G) le—_xdx’ Xzf—}’(Ty’ Xsf—a;) Xaf—-l’—y) Xsf==x d—)’.
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Proposons-nous de déterminer le groupe conjugué (p. 21) du groupe
précédent. Nous devons, pour cela, déterminer les transformations infini-
tésimales de la forme

X f=X,f+ Ai(a, b, c)% + By(a, b’c)%—i—ci(a, b,c)%,

qu’admet la multiplicité de points (x, y, @, b, ¢) définie par I’équation
o(x, ¥, a, b, ¢) =o.

Les équations qui déterminent A;, B,, C; s'obtiennent en écrivant que
I’équation :
Xjo=o

est vérifiée en chaque point de la multiplicité considérée.

Calcul de A,, B,, C,. — En faisant { = 1, on trouve

n
X (o) =— A,(I— %) +bx+ Byx — cav"—Cff—l =o.
Cette relation étant indépendante de y doit avoir lieu quelles que

soient les valeurs de «, a, b, c; par suite,

Aj=o, B,=— 10, C,=—cn.
Ainsi

Calcul de A,, B,, C,.

X

7 . I i
Xi(e) =y — (1= 5 A Bo— G 25

donc on doit avoir identiquement

1 axn / ) x"
a<1— —) —bx+c— — (1 — ~>A2—|—xB2—— —Cy=o,
n, n n n
c’est-a-dire :
Ay=a,- B,=0, C,=c
_et, par suite,

O OO
XS = Gy T oa T o o
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Calcul de A, B, C,.

Xg,@—_—-x-—(l— —>A3-1—.1B3—C3x = o.

Cette relation doit étre une identité en x, a, b, c; donc

n

B3':07 C3:O, A3:

n—I
et
r o O n_9f,
X3f_0—y+lz—l da
Calcul de A ,, B,, C,.
X;‘(p:x—<l——>A4—|—xB—-C4xn o,
d’ou
A, =o, C,=o, B,=—1,
e O O
Xi/ =25 — 3
Calcul de A, B;, C,.
X5o ::x"—(x——)A + xB; ——-C = o,
d’ou ’
As=o, B; =o, Cs —n,
A
Xsf=«x _+ Y 9¢
Il résulte du calcul précédent que I'équation
(1) ;L’ —<Z‘Z>n nF—1,0,4,1, 2

admet le groupe a cinq paramétres défini par les transformations infinité-
simales

of o o LI I f of .
() 02’ oy’ 93’ Taz TVoy 9 Yoy T "0s
Nous avons déja vu (I*® Partie, p. 23) que ’équation (II) n’admet pas
d’autres transformations infinitésimales que les précédentes; donc I' est
bien le groupe de I’équation (II). o

De la nous pouvons conclure (I'* Partie, p. 39) un résultat déja annoncé
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et relatif a I’équation diftérentielle des courbes

. ) y=a-+bx+cx®, n#—1,0,%, 1,2,
a savoilr

((2)) zy" — (n—2)y"=o.

Cette équation n’admet pas un groupe de transformations de contact a
plus de cinq paramétres.

Caractéristiques de I’équation canonique (11). — Si I'on se reporte &
la formule qui donne les courbes intégrales de I'équation différentielle du
troisieme ordre qui correspond a I’équation (1I), on voit que les caracté-
ristiques de cette derniére sont représentées par les ¢quations

1 alL
B = T— )& —ay+ 3,
y=ar"ls —y,

ou bien, en changeant la signification des lettres «, 3, v,

.}/ — an,—lz =,
(© ; ’

x— a”z —f.

D’autre part, les transformations finies du groupe I' sont données par les

formules
5 z'= ax +c,
(r) y'=aby +c,,

s =ab”s + c;.

De la, on déduit immédiatement que les droites C s’obtiennent en appli-
quant toutes les transformations de I' & la caractéristique particuliére

Xx=y =23

Cas particulier ott n =— 1, 0, 3, 1, 2.

Si n=o0o0un=1,l'équation (II) devient linéaire et, par suite, admet
un groupe infini. Si 7 est égal 4 I'un des nombres — 1, §, 2, I'équation (II)
devient, par une transformation ponctuelle évidente, identique a

dz?*+dy*+ ds*=o

et, par suite, admet un groupe a dix paramétres.
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2. Passons 4 la détermination des équations aux dérivées partielles qui
correspondent & I’équation canonique

(3N y'—y"=o.
I;es courbes intégrales de cette équation peuvent étre représentées par
y=ce*—ax —a—b.
Différentions, en considérant x et y comme constants, nous obtenons
e*dc — x da — da — db = o.
La condition pour que cette équation en x ait une racine double est

de ab

' gan,

da

Les équations aux dérivées partielles cherchées sont donc toutes sem-
blables a celle qui a pour associée I'équation

dz Ay
= = edx,
dx

(TII)

Groupe de Uéquation (1II).

Considérons la famille des courbes intégrales

y=ce*—axr —a—>b,

qui admet le groupe G, défini par

9 9 d p 9
Xs=2, ng:yé, xsf:(-{fyi, X,,f:ngyi, Xsf:engy_".

Cherchons le groupe conjugué de G. Comme dans le cas précédent,
nous devons chercher les transformations infinitésimales de la forme

Xif =X, f + Ai(a, b, c)-% +Bi(a, b, c)%— +Ci(a, b,c) %,

qu’admet la multiplicité de points (z, y, @, b, ¢), définie par

9=y —ce*+axr—+a-+ b—=o.
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Calcul de A,, B,, C,.
X0 =—ce*+a—e*Ci+ xA -+ A+ B,
Cette expression devant étre nulle, quelles que soient z, a, b, c,
Ai=o, B,=—a, Ci=—uc,
X f=L —alf o4

ab?_cdc

Calcul de A,, B,, C,.
XQCP :)f—exC2+xA2+Ag+ Bg.

Cette expression devant étre nulle en chaque point (z, y, a, b, c) de la
multiplicité ¢ = o, on doit avoir identiquement

e*(Co—c) 4+ (Ay—a)zr +Ay—a+By,—b=o,

c’est-a-dire

et
, af af af af
X3 _y(j}—/ +ay +b¢7b_+c%'
Calcul de A, B,, C,.
L’identité
X;0 =1—e*Cy+ A3+ A;+By;=o0
donne
A,=o, B,=——1, C;=o,
, . Of _of
X5/ = FIEP T
Calcul de A,, B,, C,.
L’identité
Xk(p::x—-—e”Cg—l—xAb—l— A4+ BLIO
donne

Ai=—1, B,=1, C,=o,
c e Of O 9
X&fw—d’a}j — -()_(l -+ '(ﬁ'
Calcul de A;, By, Cs.
L’identité
Xscp:ex—exc5+ xzAs+A;+By—o
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donne
A;—o, B;=o, Ci=1,
, )
Xsf: el'_f_ df .

1 A= _ &

(111) ‘ Tz =€

admet le groupe défini par les cinq transformations infinitésimales sui-
vantes :

() o, A, A xf+ygji+~‘—)j—c, xf’i—l—-

oz’ dy’ 09z’ T ox 95

Reste 4 examiner si 'équation (1) n’admet pas un groupe d’ordre plus
te)
¢levé. Pour cela, désignons par

X /=5, 00 9) L a0, ) 5+ 82, 7,9)

U

ds

une transformation infinitésimale laissant invariable I'équation (III) ou
I'équation équivalente

, _dy
Lds — L dx= e

Les équations qui déterminent &, v, { s’obtiennent en écrivant que I'équa-
tion

ot lil4 ¢ 3 ot ot
ox —dx +dyd +d‘d _dwdx+d dy + Zdv
ds dx
on on on 0¢ J 9z
dd+d_'dy+dzd dddw-}—dd—l—ddu
- dx T dx dx -

est une conséquence de (IIT). Posons

Les équations cherchées s’obtiendront en écrivant que la relation

¢ ¢ ag\ 73 ok dn on
<d—x+ dy+"’“oﬁ>e“ <dx+ o_y+ea \(‘_“)+—+°‘¢Ty+ 9z

Fac.de T.— V. B.8
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est une identité en x, y, 3, , cc qui donne

0L 0 0505 9n 0 o on O on

o, 'aj:O)
3

or =% T o Toxr 9y

0z 9z oy
En différentiant ces équations, on voit immédiatement que toutes les
dérivées du deuxiéme ordre sont nulles; d’ailleurs, le nombre des fonctions
£, 1, Cetde leurs dérivées du premier ordre est douze, le nombre des rela-
tions entre les dérivées du premier ordre est sept; doncle nombre des para-
métres qui entrent dans %, v, { est égal & cinq. On trouve facilement

AN

- —ax -+ ¢y, n=ay -+ bx + c,, {=(a+0)s+c;.

Ce resultat montre que les transformations qu’admet I'équation (1) sont
toutes des transformations du groupe I'. On peut donc dire que :

I est le groupe de Uéquation (111).

De la nous pouvons conclure également que I’équation différentielle des

courbes

Yy=a-+ bx + ce*,
a savoir
(( 3 )) VVM — ]JY’

n’admet pas un groupe de transformations de contact & plus de cinq para-
metres.

Caractéristiques de U'équation canonique (111). — Sil'on se reporte a
la formule qui donne les courbes intégrales de I'équation
q g q
ylll ___.yll

on voit que les caractéristiques de I'équation (I11) sont les droites repré-
sentées par les équations

B=e¢*zs—ax—ux —y,

y=ze*—x,
ou bien, en changeant la signification des lettres o, 3, v,

(y—i—ocx:_—@,

| e“:—.r:*/.

(€)

D’autre part, les transformations finies du groupe I' sont données par les
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équations
5 x'=ax + ¢y,
(T) Y = abx + ay + c,,

5= aets + c;.

De la on déduit immédiatement que les droites C peuvent étre obtenues
en appliquant toutes les transformations de I a la caractéristique particu-
liere

I
]

Yy =90,

Résumé.

11 existe deux classes d’équations aux dérivées partielles admettant un
groupe de transformations & cinq paramétres, sans admettre un groupe
d’ordre plus élevé.

Les équations de la premiére classe sont semblables a I'équation associée
a la suivante

ds d
(1) iz _<d§> nx—i1,0,4, 1,2
Les transformations infinitésimales du groupe de cette équation sont dé-
terminées par les cing

o o o o af I af j
oz’ 9y’ 93 oz TPoy TF0x Yoyt

les transformations finies sont données par

x'=a,x + as, y=aay+a, s=aals + a;.

Les équations aux dérivées partielles de la deuxiéme classe sont semblables -
a I'équation qui a pour associée la suivante :

(1) R

Les transformations infinitésimales du groupe de 1'équation (III) sont
les combinaisons linéaires des cinq suivantes :

o U L, O U o

oz’ dy’ 93’ Tor TYoy TP Ty tEos0
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les transformations finies sont
x'=a,x + as, Y =ajax + ay + a,, 5= a,e%s + a;.

Toute équation aux dérivées partielles admettant un groupe ponctuel a
cinq parameétres (sans admettre un groupe d’ordre plus élevé) dérive, par
une transformation ponctuelle, de 'une des deux précédentes.

CHAPITRE 1II.

EQUATIONS AUX DERIVEES PARTIELLES QUI CORRESPONDENT
A L’EQUATION y'y" = my".

1. Considérons d’abordle cas ot m est différent des nombres 1 et 2.
Les courbes intégrales de I’équation sont alors représentées par

(m (}’—Q—b)’”“l:c(x_!_a)m—z'

I’équation aux différentielles totales correspondante s’obtient en expri-
mant que la courbe représentée par I'équation (1) est tangente a la courbe
infiniment voisine
(m—1)db de (m—2)da
(m—udb __dc  (m—2)da,

(2) y+0 ¢ z+a

il suffit pour cela d’¢liminer x et y entre les équations (1), (2) et la suivante
(woir p. 16)
db da

2

y+b x+a
on obtient ainsi
de  [db\m-!
I.’¢quation proposée ne fournit donc pas d’équation canonique nouvelle,
carona vu que I'équation (4) admet au moins un groupe & cin( parameétres.
Remarque. — Si m est différent de o, 1, 2, 2, 3, I'équation (4) n’admet
qu'un groupe a cing parametres (voir p. 59); donc :
Le groupe des transformations de contact qui laissent invariante I'équa-
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( 35 ) }J‘}/I// — Iny”2
est un groupe a cing parametres pour toute valeur de m différente de
o,1,3,2,3.

Si m est égal & o, 3, 3, I'équation (4) admet un groupe a dix parameétres :
il en est donc de méme de I'équation (5).

Enfin, si m =1 ou m =2, on ne peut plus comparer les groupes des
équations (4) et (), car ces ¢quations ne se correspondent pas. Nous allons
trouver que, dans ce cas, ’équation (5) admet un groupe a cinq parametres.

2. Considérons d’abord le cas ot m =1.
L’équation différentielle considérée devient
(1) Y=y
et a pour intégrale générale
(2) By +b) = extzra;

a et b désignent deux paramétres arbitraires, « et § sont deux paramétres
liés par la relation

(3) 9(a,B)=0

pour le moment indéterminé.

Comme précédemment, nous devons exprimer que la courbe représentée
par I'équation (2) est tangente a la courbe infiniment voisine

s db
JA e —_— = :

(4) 3 +)’+b (x+ a)da + ada
il suffit, pour cela, d’éliminer x et y entre les équations (2), (3) et la sui-
vante

dl
éz—?:(x—l—a)da-i—xda:

Choisissons maintenant la fonction indéterminée g, de maniére que

(3)
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nous avons alors a éliminer x et y entre les équations suivantes

—|—b—cex2_a da  db de
yrov= > azda y+b

ce qui donne
“_ 5
dc
Cette équation est aussi une de celles que nous avons déja trouvées
admet un groupe & cinq paramétres.
3. Soit m = 2.

I’équation différenticlle devient
(1 Yy'=ayn
et a pour intégrale générale

(2) Bly+b)=L(z+a)a, o(ap)=o.

: elle

Exprimons que la courbe représentée par I’équation (1) est tangente i

la courbe infiniment voisine

X+ a o

(3) (y +b)dB +Bdb— da_ | da

b

nous sommes alors conduits a éliminer x et y entre les équations (2),

et la suivante

(4) (y+b)d@+pdb:%‘f_%ﬁ.
Prenons encore
a:ﬁ: ;.

Le systéme des équations (2), (3), (4) est alors équivalent au suivant

da _ db _ de
z+a y+b ¢’

y+b__ ,zxr+a
c =1 c ’

et le résultat de I'élimination de « et y est évidemment

db
da

— pdc

— = e,
de

Nous retombons encore une fois sur une équation déja obtenue.

(3)
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Le calcul précédent montre que I'équation du troisiéme ordre
(I) ],I)//” — ,’z‘y/lg

admet, dans tous les cas, plus de quatre transformations infinitésimales.
Nous allons maintenant déterminer les transformations de contact qui
permettent de ramener la forme (1) 4 'une des formes canoniques.

Réduction de Uéquation (1) a sa forme canoniquc.

Premier cas. — Soit m =1.
Les éléments linéaires des courbes intégrales sont, comme on a vu, dé-
terminés par les deux équations

Xr4a X +a
V+b=ce ¢, y=ec¢
ou bien
cy'— b=y,
(2)

I

4 —
ey —a==x.

D’aprés une remarque fondamentale faite au début de ce travail, ces
équations représentent, quand on y considére x, y, ' comme constants et
a, b, c comme variables, les caractéristiques de I’équation associée a

dp &

— pdc

(3) ,(_i;_—e’

Effectuons sur a, b, ¢ une permutation circulaire; cette transformalion
particuliére raméne 'équation (3) a la forme canonique

db
, dc

“C __ da
(4) da_e ’

ct le systéme (2) devient
‘ (l)"-— c=Y,

o
(2) ?.afi_y’—b:x.

D’autre part, on a vu que les mémes caractéristiques peuvent étre repré-
sentées par les deux équations

Yi=cet—axr,—a—b,

yi=ceth—a
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i ax,—l—b:y;—y,,

’
) cetr—a=y,,

qui définissent les éléments linéaires (z,,y,,y,) des courbes intégrales de
I'équation canonique
(3 Yi—yi=o.

Pour déterminer une transformation particuliére qui ramene la forme (1)
a la forme canonique ((3)), il suffit de trouver les fonetions

»’”::f(x,)’,}"), ylzg(ﬂc,y,)"), .)';:Il(x’)/’y/)v

de maniére que les systémes (2') et (5) définissent la méme multiplicité de
points (z,y,», @, b, ¢). On trouve immédiatement, en remarquant que les
équations (2') et (5) sont linéaires en a, b, ¢,

(6) xlz_'(y,’ )”1—,}’1:—1’, )’1:—‘
I est aisé¢ de vérifier d’ailleurs que les équations (6) définissent une
transformation de contact.

Deuxiéme cas. — m = 2.
On trouve de méme que, pour ramener ’équation

}"}"” — 2}///.3

ala forme canonique ((3)), il suffit d’effectuer la transformation de contact
définie par les équations

==Ly, y—=ryi=y, Yi=—xy.

Troisiéeme cas. — La méme méthode montre encore que, si m est diffé-
rent des nombres 1 et 2, il suffit d’effectuer, dans I'équation

n n2

Y'y

= my
la transformation de contact

xl:

72 =

U=
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pour ramener cette équation a la forme canonique

x4y — (m—3)y|=o.

CHAPITRE IV.

CLASSIFICATION DES GROUPES HOMOGRAPHIQUES A UN PARAMETRE DU
PLAN. COURBES PLANES ADMETTANT UN GROUPE HOMOGRAPHIQUE. SIGNI-
FICATION GEOMETRIQUE DES EQUATIONS CANONIQUES

= \ n - dy
dz?+ dy?+ dz2 = o, ds = <£Z—Z>l dz

- -2 = edr,
dx dx dx

Les courbes planes qui admettent un groupe homographique jouent un
réle important dans I'interprétation géométrique des résultats précédents.
Ces courbes ont été déterminées par MM. Sophus Lie et Klein et appelées
par eux courbes V (Math. Annalen, t. IV). La recherche de ces courbes
est fondée sur la classification suivante des groupes homographiques & un
paramétre du plan.

1. Classification des groupes homographiques a un paramétre et @
une variable x. — Un quelconque de ces groupes est engendré par unc
transformation infinitésimale de la forme

Xf=(a+2bx +ca?) %

Ce groupe laisse invariants deux points distincts ou deux points confon-

dus suivant que
b*—ac*o ou b*— ac —=o.

Par un changement de variables homographiques, on peut ramener X /,
dans le premier cas, a la forme

(1) X f==x % (points invariants @ —= o0, # = )

ct, dans le second cas, a la forme

d
(2) Xof = ’jé (points invariants z? = «).

Fac. de T. — V. B.

Ne
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Si I'on se borne a considérer les changements de variables homogra-
phiques, on peut dire que les formes (1) et (2) ne sont pas semblables, car
la substitution qui change X, fen X, f est définie par I'équation transcen-

q ge Ay P q

dante
x' = Ce®.

‘n résumé, les groupes homographiques considérés se partagent en
deux classes : ceux de la premiere sont semblables au groupe G, défini par
X, f, ceux de la seconde au groupe G, défini par X, /.

Les transformations finies de G, et G, sont

(Gy) ' =azx,

(G3) z'=x +a.

2. Classification des groupes homographiques a un paramétre et deux
variables e« et y. — Un quelconque G de ces groupes est engendré par
une transformation infinitésimale de la forme

9 a9f '
Xf=(a,+ ayxr + asy) 0—5 + (by+ by + byy) % + (¢, + c3y) <J: % +y %ﬁ/>

Ce groupe G laisse invariants des points et des droites du plan; I'étude
de ces ¢éléments invariants va nous fournir une méthode de classification
toute naturelle (). )

Les seuls cas qui peuvent se présenter sont les suivants :

I. Le groupe G laisse invariants A, B, C et trois droites formant les
cotés du triangle ABC (fig. 1).

Fig. 1.

W

i \

Le groupe G est alors semblable homographiquement au groupe G,

(V) Transformationsgruppen (p. 580-585).
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qui laisse invariant le triangle formé par la droite de I'infini, 'axe des « et

I’axe des y.
L of of
Transformation infinitésimale de G,. = oz T MY 9y’ mZo, 1.
Transformations finies de G;....... z'=ax, y =amy.

II. Le groupe G laisse invariants un point simple A et un point double B

Fig. 2.

/B
(fig. 2). Les droites invariantes sont : une droite double confondue avec

AB et une droite simple passant par B.
Le groupe G est alors semblable homographiquement au groupe G, qui

laisse invariants :
Le point simple (5 =0, x=0), La droite simple y = o;

Le point double (z =0, y = o), La droite double s = o.

Transformation infinitésimale de G... .. o +y .
dx ady
Transformations finies de G,.......... = x4+ a, ¥ =evy.

III. Le groupe G laisse invariants un point triple A et une droite triple
passant par A( fig. 3).

Fig. 3.

o

G est alors semblable homographiquement au groupe G qui laisse inva-
riants le point triple (x = 0, z = o) etla droite triple 5 = o.

, L . 7)
Transformation infinitésimale de G;. o +x 9,
ox dy
Transformations finies de G;....... ' =zx+a, Yy =y+ax

IV. Le groupe G laisse invariants une infinité¢ de points et de droites, a
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savoir : chaque point d’une certaine droite D et chaque droite d’un fais-
ceau A (de sorte que le point A est invariant). Ce cas se subdivise en deux
autres :

1° Le point A est extérieur  la droite D (fig. 4); le groupe G est alors

VAV SN

semblable homographiquement au groupc G, qui laisse invariants chaque
point de 'axe des y et chaque droite paralléle a I'axe des .

Transformation infinitésimale de G,. . .. .. z ﬂ

Transformations finies de Gy............. ' =ax, Yy =

Le groupe G est alors homographiquement semblable au groupe G, qui
laisse invariant chaque point de la droite de 'infini et chaque droite paral-
lele & axe des .

. L o d
T'ransformation infinitésimale de Gs. .. d_{;
Transformations finies de G;......... r=x+a, Yy =y

“n résumé, les groupes homographiques G|, G,, G,, G,, G;, d’ot déri-
vent tous les autres, sont définis par les transformations infinitésimales sui-
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vantes
() X,f:x%+my%€a
/]
() Xf= Ly,
(111) X,f = gg+x3—§,
‘ng:xgé7
(IV) < of
[xr= £

3. €ourbes planes admettant une transformation homographique in-
finitésimale. — Je dirai dans la suite que la courbe C, représentée par

(1) ¢'(z, y) =o,
est une dérivée homographique de la courbe C, représentée par

(2) ¢(z,y)=o0,

si équation (1) est la transformée de 'équation (2) par une substitution
homographique.

Cela posé, considérons une transformation homographique infinitési-
male X f et cherchons les courbes qui admettent cette transformation (et
par suite le groupe G engendré par X f).

Premier cas. — X f est semblable homographiquement a

1f_xd—f+my mZo, 1,

En d’autres termes, X fest une transformation infinitésimale de la pre-
miére classe.

Les courbes qui admettent la transformation infinitésimale X, £ sont les
courbes intégrales de I'équation

dr dv

X ”ly
7 A : » ’ 9 >
c’est-a-dire les courbes représentées par 1'équation

y — Ad’"’.
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On peut donc dire que :

Toute courbe admettant une transformation infinitésimale de la
premiére classe est une dérivée homographique d’une courbe

y=a™

Deuxiéme cas. — X f est une transformation infinitésimale de la
deuxiéme classe, c’est-a-dire est semblable homographiquement &

af 9
Xzf:£+nyY

Toute courbe admettant cette transformation infinitésimale X, f est une
courbe intégrale de I'équation
dz _dy.
r -y ’
c’est-a-dire une courbe ayant une équation de la forme

y=Ae*
Donc :

Toute courbe admeltlant une transformation infinitésimale de la
deuxieme classe est une dérivée homographique de la courbe

y —e~.

Troisiéme cas. — X f est une transformation infinitésimale de la troi-
siéme classe, c¢’est-a-dire est semblable homographiquement a

On en conclut, par un raisonnement analogue aux précédents, que :

Toute courbe admettant une transformation infinitésimale de la
troisiéme classe est une dérivée homographique de

2y —x*=o,

cest-a-dire une courbe quelconque du second degré (non décompo-

sable).

Quatriéme cas. — X f est une transformation infinitésimale de la qua-
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triéme classe, c’est-a-dire est semblable homographiquement &

9 J
ka:xd‘;,- Xsf:5£

Comme précédemment, on trouve que :
Toute ligne admettant une transformation infinitésimale de la qua-

trieme classe est une ligne droite.

4. On voit donc que les courbes admettant une transformation infinité-
simale homographique sont les dérivées homographiques des courbes re-
présentées par les équations

(1) y =",
(2) Yy =e%,

Cherchons maintenant a classer ces courbes d’apres le nombre des trans-
formations infinitésimales qu’elles admettent.
Cherchons d’abord les transformations homographiques infinitésimales de¢

(1) y=a"
Je suppose m différent des nombres

—1, 0, 4, 1, 2.
Soit X f
_ of o
Xf=&a, y) 55 +0(@ ) 50
E=ay+ a2 + a,y + ¢, 2% + ey,
N=">0,+ byx -+ by + c,xy + c,)*

une transformation infinitésimale satisfaisant a la question; les équations
qui déterminent £ et v s’obtiennent en écrivant que

(2) n=ma" 1§

est une conséquence de 1'équation (1).
Si dans I'équation (2) on remplace y par ™, ce qui donne

bo—+ by + by ™+ 2™ (01 & 4 ™) = ma" g+ a, & + A, X"+ z (¢, & + cya™)).

on doit obtenir une identité; de la on conclut, eu égard aux hypothéses
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faites sur m,
t—=ua, n=—my.
Supposons, maintenant, que 7 soit égal & I'un des nombres
— 1 %’ 2,
la courbe (1) est alors une conique, c’est-a-dire une dérivée homogra-
phique
(3) 2’ — 2y =o.

Un calcul analogue au précédent montre que cette conique admet trois
transformations homographiques infinitésimales, a savoir

U, a(lsy )y

I U, LU,
” dy’ oz " ay) T oz

dx dy dx +2y

Enfin, si m est égal & o oua 1, la courbe (1) représente une ligne droite,
c’est-a-dire une dérivée homographique de la droite
xr=o,

qui admet évidernment six transformations homographiques infinitésimales,
asavoir

of | LOf Lo of [ of  of o)
e oy Yoy x(”WJ“y@)’ y<xdx+y?>7'

On trouve, aussi facilement, que la courbe
y ="
) ) ) . . PP . ,‘ .
n'admet qu’une transformation infinitésimale homographique, a savoir

9 )

Il vésulte de la que toute courbe plane, admettant une transformation
homographique infinitésimale, appartient & l'une des trois classes sui-
vantes :

Premicre classe. — Cette classe comprend les courbes ui admettent
une transformation infinitésimale homographique et une seule.
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Ces courbes sont les dérivées homographiques de

y=x", m £ o, 1 et mZ—1, 4, 2
et de
y =e%.

Deuxieme classe. — Les courbes de la deuxiéme classe admettent trois
transformations infinitésimales et trois seulement. Ce sont les courbes du

deuxiéme degré non décomposables.
~ Troisiéme classe. — Enfin la troisieme classe comprend les courbes
admettant six transformations homographiquesinfinitésimales. Ces courbes

sont les droites du plan.

5. Cela posé, désignons par le symbole (J) tout complexe déterminé par
les droites qui rencontrent une courbe V (plane). Cette courbe sera appelée
la directrice du complexe. ‘

Cherchons a former I'équation générale des complexes (J). A cet effet,
considérons d’abord deux complexes (J) particuliers, & savoir les com-
plexes J’ et J” qui ont respectivement pour directrices

=0, y=a",

5 =o, y = €L,

Il est clair que tout complexe J est la transformée homographique de
I'un de ces deux complexes.
Le complexe J’ a pour équation

vds —sdy xds —sdre\™
) = (=) 0

~

en entendant par la qu’il est formé par les tangentes aux courbes inté-
grales de I’équation (1).
De méme, le complexe J” a pour équation

D) Y d"';z‘l}’ :e._Js—'

<

Appliquons & ces deux complexes la transformation homographique

Fac. de T. — V. B.1o
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qui transporte la directrice a l'infini, et nous trouvons pour complexes
transformés les deux suivants
d Ay
dx dx de 7
Pour obtenir I'équation d’un complexe (J) quelconque, il suffit de faire
dans les équations précédentes la transformation homographique la plus
générale. Remarquons d’ailleurs que ceux de ces complexes qui sont du
deuxiéme degré peuvent étre considérés comme des transformés homogra-
phiques du complexe des droites, rencontrant le cercle imaginaire de
l'infini
dr? 4 dy* + d;? = o.
Les développements qui précedent nous conduisent aux résultats sui-
vants :

Toute équation aux dérivées partielles, admetiant un groupe de trans-
Jformations & plus de quatre paramétres (c’est-a-dire un groupe a cing
ou dix paramétres), est une transformée ponctuelle d’une équation aux
dérivées partielles, pour laquelle les tangentes aux courbes intégrales
déterminent un complexe J. Ce complexe J a pour directrice une courbe
du deuxiéme degré (non décomposable) ou une courbe V quelconque,
suivant que le groupe est & diz paramétres ou seulement a cing.

CHAPITRE V.

EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT UN GROUPE
A QUATRE PARAMETRES. EQUATIONS QUI CORRESPONDENT A L’EQUA-
TION CANONIQUE ((4)).

Je commence par déterminer les équations aux dérivées partielles qui
correspondent a I'équation différentielle des courbes

(1) Yy =a+bx+co(x),
a savoir I'équation

((4)) ,VII/(?”('I;) . )/,//(Pll/(‘l/,) — 0.
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Le groupe de cette équation est, comme on sait, défini par les transfor-
mations infinitésimales

df df ) af
y d oy ’ 2(7) 5% ())
ou par les transformations finies
r'=x, Y=a-+Bx+yo(x)+dy.

. ' Al v )
Le groupe conjugué G est donc évidemment le groupe 4 quatre para-
métres «, B, v, ¢

a'= o+ da, O'=B +2b, c'==y +de.
Cela posé, sil'on élimine  entre les deux équations

da +zdb -+ o(xr)dc=o,
db + o'(x)dc = o,

on trouve une équation de la forme

de db
(2) da = @ <@> :

Réciproquement, quelle que soit la fonction @, on peut toujours déter-
miner ¢ («) de maniére que les équations ((4)) et (2) se correspondent. I
suffit, pour le démontrer, de faire voir qu'une certaine intégrale compléte
de (2)

V(z, y,a,b,c)=0
représente précisément l'intégrale générale d'une équation de la forme ((4)).
Soit, a cet effet,

dc dc
(3) a9 <gg>
’équation aux dérivées partielles associée a I’équation (2). Appliquons la

régle donnée par Lagrange pour trouver une intégrale compléte, c’est-

a-dire posons
dc de

« désignant une constante arbitraire, et intégrons

de — x db— ¢ (x)da=o,
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ce qui donne
¢c—bxr —ag(x)—y=V(zx,y,a,b,c)=o.

Or cette équation représente bien, si 'on y considére a, b, ¢ comme
constantes, l'intégrale générale de 1'équation
/’/(D//(x) ‘”/(.T):O.

De ce qui précede résulte que :

Les équations aux dérivées partielles qui correspondent a U’équation
canonique ((4)) sont semblables a celle qui a pour associée

ds dy
av) ()

® désignant une fonction arbitraire.

L’équation (IV) admet le groupe défini par les quatre transformations
infinitésimales

df af ()f af _of
(G) ox’ dy PES xﬁ:;_‘ ‘)()) 8~

ou par les transformations finies
x'=a,x + ay, Y'=a,y + ay '=a,s + as.
Reste a examiner si I'équation (I'V) n’admet pas un groupe d’ordre plus
élevé. Pour cela, cherchons les transformations infinitésimales

2 9
Xf=&(x,y, 5)0'—£+n(x, )/,;)% + ¢ (x, },,:)5{’

qui laissent invariante I'équation (IV). Posons

dy _ ds

(I_,]"v ’
n on 0% on 205 0%
ey ) P a—*“%—z’

< oz N3
X(B)= g2 rage +B( =52 ) B3 — B0

<>

Alors
X(at) ==

€, n, {sont données par les équations qui expriment que

(3) X(B) — () X(2) =0
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est une conséquence de
(4) B =d(a).

Un calcul facile montre que la condition nécessaire et suffisante pour que
I'on ait
X (a)=o, X(B)=o,
quelles que soient « et B, est que X f'soit une transformation infinitésimale

du groupe G. Cela posé, supposons que X f désigne une transformation in-
finitésimale n’appartenant pas au groupe G, et représentons par A et B

A=ay+a o+ a, + a(c o+ c,B), B=>5,+byo+ b+ B(ciot+ ¢y B)

ce que deviennent X () et X(f8) quand on y remplace z, y, z par des con-
stantes choisies de maniére que les coefficients @, b, ¢ ne soient pas tous

nuls. Il faut évidemment que I'équation
B—A®(a) =0

soit aussi une conséquence de I'équation (4).
En d’autres termes, si I’on considére a, 3 comme les coordonnées d’un

point d’un plan, il faut que la courbe représentée par
B==a(x)

soit une courbe V. Dans ce cas 'équation (IV) est semblable a une des
équations déja trouvées, qui admettent un groupe a cinq parameétres.

Sila fonction @ est quelconque, comme nous le supposons, I'équation (IV)
admet le groupe G et n’admet pas un groupe d’ordre plus élevé. On peut
donc dire que G est le groupe de ’équation (IV).

Ceci nous conduit a cet autre résultat.

L’équation différentielle des courbes

y=a-+bx+ co(x),
a savoir
(4) )’WCP” — l}/”(PVI/: 0o
admet un groupe de transformations de contact & quatre paramétres, et
n’admet pas de groupe d’ordre plus élevé.
Les équations aux dérivées partielles, qui correspondenta 'équation ((4)).
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sont susceptibles d’une interprétation géométrique analogue a celle que
nous avons déja donnée pour les équations.qui admettent un groupe de
transformations & plus de quatre paramétres.

Désignons par le symbole (I) tout complexe déterminé par les droites
qui rencontrent une courbe plane quelconque C. I est clair que tout com-
plexe (1) est une transformée homographique d’un complexe de méme na-
ture pour lequel la directrice est dans le plan de I'infini, c’est-a-dire d’un
complexe ayant une équation de la forme

Az _ o (%
w=(2)

Les équations aux dérivées partielles qui correspondent & I’équation
((4)) dérivent, par une transformation ponctuelle, d’une équation aux
deérivées partielles pour laquelle les tangentes aux courbes intégrales
déterminent un complexe (1).

Donc :

CHAPITRE VI.

EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT UN GROUPE A
QUATRE PARAMETRES (suite). EQUATIONS QUI CORRESPONDENT AUX EQUA-
TIONS CANONIQUES

((5 )) ym — I(.}’”p et ((6 )) ym ey =1.

1. Nous avons vudéja (p. 36) que les équations ((5)), qui correspondent
a la méme valeur de p, dérivent toutes (sauf y” = o) de I'une d’entre elles

(1) y'=hy'"r, h#o,

par une transformation ponctuelle. Il suffit donc de chercher les équations
aux dérivées partielles qui correspondent a I'équation particuliére (1). Dans
la suite nous poserons

m—3
) — — m — 2 8]
P m — 2’ ¢ ’
et nous prendrons
h—=m— 2.

Pour écrire l'intégrale générale de 1'équation ((5)) nous sommes obligés
de distinguer plusieurs cas.
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Premier cas. — m est différent de o et de 1 (et bien entendu aussi de 2).
Alors I’équation (1) est I'équation différentielle des courbes

. (.2’) —+ a)m

(2) v _m(m__l.)—b(x—l—a)—f—c.

[équation aux différentielles totales qui correspond & cette équation résulte

de I’élimination de x entre

(J? + a)m—l
m —1

~da — (& + a)db + dc —- bda = o,

(x + a)y"*da—db=o,

et par suile a la forme suivante

—_ — —_— — —_— )
da = \da ou n = —=a2—p ().

di—l)ﬁt_lﬁl db\" . m—1
< ’ m —2
Remplacons a, b, ¢ respectivement par

2a 26 2(c+ab,

- — ;

’ 2
n n n-

'équation des courbes intégrales devient

. ‘, 2 22 m  2bx  a(c—ab)
‘y_m(m:T) ) IL> - - ’

n n*

et I'équation aux différentielles totales

dc +adb—bda <db>”
= ; n=2—p.

da “\da
Deuxiéme cas. — m = o.
L’équation (1) devient
Ly =
Les courbes intégrales peuvent étre représentées par I'équation
y=c—b(x+a)—L(x+a).

L’équation aux différentielles totales correspondantes a cette forme s’ob-

(1) On voit que n est différent de 1 et de o.
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tient en éliminant = entre
da

dc —(x + a)db — =o
. XT+a
et
da
C=Gray

ee qui donne

1
dc——bda_2 db 2
da - da> ’

Remplacons a, b, c respectivement par
8a, 2b, 8c—8ab.
L’équation des courbes intégrales devient
y=8(c—ab)—a2bx — L (x+8a),

et 'équation aux différentielles totales

ol

de +adb—bda _(db
da da
Troisiéme cas. — Solt m =1.
L’équation (1) devient

n "2

Yy -y =0
les courbes intégrales peuvent alors étre représentées par
y=(z+a)[L(x +a)—1]—c(z+a)+b.

L’équation aux différentielles totales correspondant a cette forme s’ob-
tient en éliminant z entre

L(x+a).da—(x+a)dc+db—cda=o,

da
x+a

=dc,

ce qui donne

3) daJid—Z—i—db—da—cda::o;

je dis que cette équation dérive de I'équation connue

db
dc da
— = e
da
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par une transformation ponctuelle. En effet, remplacons dans(3)bpara+b.
Nous obtenons

da db e—o
LTt a— o~
ou bien
db
e‘dc — oa
da ’

il suffit maintenant de remplacer c par £c¢ pour obtenir la forme désirée.

En résumé, les équations aux dérivées partielles qui correspondent & 1’é-
quation ((5)) sont, d’'une part, les équations aux dérivées partielles corres-
pondant a I’équation ((3)), d’autre part les équations semblables a celles
qui a pour associée

ds+xdy —vdx  [dyv\* n=i1, 0
) dx _(d—x> ’ n=os-—p

Un calcul absolument analogue & celui qui a été fait plus haut (p. 55)
montre que cette équation admet le groupe
o _of o of

ox 793> 937 gy F d;

n(x—f +yg—f—l—'>~ £>_<mg—£+”gf>’

(G)

ou bien
x' = b (z + a,), Yy =6y + a,), =05+ a2 — a,y + a;).

Reste & examiner si G est bien le groupe de I'équation (V).
A priori on peut voir que, pour

n=nz2,

l’équation (V) admet un groupe a dix paramétres, car alors elle correspond
a I'équation

Il en est de méme si

n-——I.

En effet, pour cette valeur de n I'équation (V) prend la forme

ds +zxdy —ydr [(dz\?
dy T\dy/)
V. — Fac. de T. B.11
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Changeons « en — y et y en x, 'équation devient

ds +xdy —vdr __»<d}’ 2
dx “\dx

or celle-ci admet, comme nous venons de le voir, un groupe & dix para-
meétres (').
Nous allons démontrer que si I'on a

nz—1i,0,1,2,

I'équation (V) n’admet pas d’autres transformations infinitésimales que
celles du groupe G. Il nous suffira de faire voir que I’équation

(5 y'=ky'», ol p—=2—no0,1,2,3 et k #o,
n’admet pas un groupe a plus de quatre paramétres.

2. Proposons-nous de déterminer le groupe de I'équation ((5)).
Soit

n9f nof n 9f
E(x,y,y)0x+n(w,y,y)dy+Ci(x,y,y)d—y,

une transformation de contact infinitésimale laissant invariante I'équa-
tion ((5)) et soit W sa fonction caractéristique, de sorte que

f__OW ,OW OW oW

AN A i

Désignons par X f la transformation prolongée

dxr

*'—Ci

+C2(w Y ¥ ’7”)0,(;/ + &z, y, 00", ’”)dj;/

On sait que

G=Py+ Py Poy"=Fa(y"),
‘:3: Q0+ 3Q1y”+ 3Q2}.”2+ Qs),/m_‘_ (R0+ Ri]'”)_}'”/: Fg(;V”) _|_)/I/I F‘ (y//)’

(1) Plus généralement, si 'on remplace dans I'équation (V) n par 1 — n, on obtient une
équation semblable.
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avece
po= (3 I, L OW (AW oWy W
=Nz " 9y )’ YT oy oy \\oz 7Y 9y ) T ay'?’
Q= (I DYV, W (N 0NN O (0N oW
= \\oz 7 9y )) =y \\oz 77 dy) +dy oz YV oy ))
A S(CAGRZAR) I S

2T 0y gz Y oy /. dy oy"’ BTy

OW  OW [[OW oW LW
o= Ty 07’<<0_x+y5y—>>’ =3

Les équations aux dérivées partielles qui fournissent W s’obtiennent en

écrivant que la multiplicité de points (w, y, y', y”, ") définie par
X (}’/”) — /{P‘},I/P“ X(V”)

est contenue dans la multiplicité ((5)).
A cet effet, exprimons que la relation

(1) Fyt-ky" F, = kpy ™' Fs,

est identique en x, y, y', y".
L’identité (1) prend la forme

(2) Fs=ky" " (pF,— F,y").

Si p—1n’est pas égal i la différence & des degrés de F, et de pF,

I'identité précédente se décompose en deux

(3) F;—=o, pF,—F,y"=o.
Voyons ce qui arrive si
(4) p—1=20.

Les valeurs possibles pour & sont les nombres suivants :

3, 2, 1, 0, —1, —2.

_ F,y”,

Il résulte des hypothéses faites sur p que I'égalité (4) ne peut avoir

lieu que si

p=14 ou p=-—i.

Dans le premier cas, I'identité (2) montre que IF; doit se réduire a son
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PW
F3 P Q3‘y!/3 — dy/3 ylld’

et que (4F,—F,y”) doit étre indépendant de y”
4F,— F,y"= P,

Cette derniére égalité montre que )

EAYS
4P, — R, = —d}ﬁ =0
De 14, on déduit I'identité
) F;=o;
et, par suite,
4F,—Fy"=o.

Dans le deuxiéme cas, I'identité (2) montre que

. F; =Q,, Fo+ Fiy"= (P2 + Ry) y";
de 14 on tire
Py=o;

Q,=o0;

puis
donc, dans ce cas encore, les identités (3) sont vérifiées.

En résumé, I'identité (2) entraine, dans tous les cas, les identités (3)
(3) F;=o, pF.—F y'—o.

Celles-ci donnent

(4) PP2—R1:O? pPI“—'RO—:O’ PO:O’
(5) Q1:0, Q'2:0-
La premiére montre que
0*'W
(a) Iy =0;

la seconde des égalités (5) donne alors

W

@ ayay =°

La seconde des égalités (4) devient

oW PW
(P—I)T)?‘F(ZP—%W—O,
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ou bien
(c) W _ W
dy = dzdy’
ou
— 2p—-3.
p—1

Si I'on remarque que cette derniére entraine

?*W
(d) "5.}7{ =0,

on voit que les égalités P, = o et — o prennent les formes suilvantes
q g 0 |
1

( PW W

¢) ozz oxdy 7’
PW W

/) dx* dy’ *ox dy o

En différentiant I’équnation (¢) par rapport a y’, on trouve I'équation

P*W o *W
dz? dy' dxdy

0.

On apercoit alors immédiatement que

W
(8) W = 0,
et, par suite, ‘
W
(/l) W = 0.

En résumé, nous avons trouvé les équations suivantes

PW _ IPW _ PW _ »W »W

0 =0 gE =% GAT% Gz =% gzay

W _ LIW
dy dyoy' 7’

de la on déduit d’abord que toutes les dérivées du troisiétme ordre de W
sont nulles, puis que

W=a-+Bx+yy + May —my).

Le groupe de I'équation ((5)) est donc défini par les quatre transforma-
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tions infinitésimales

of  Idf of of of
d_d?, ‘0-5',7 a}d)” ‘ﬂa—l—m‘}/@)

qui ont pour fonctions caractéristiques

-y, 1, &, my—ay.

De la on conclut que le groupe de I'équation (V) est bien un groupe a
quatre parameétres, lorsque n est différent de — 1, o, 1, 2. Ce que nous
voulions démontrer.

En résumé, nous venons de trouver une nouvelle famille d’équations aux

dérivées partielles admettant un groupe & quatre paramétres. Ce sont les
équations semblables a celle qui a pour associée

nZz-—1,0,1, 2.

ds +xdy —yde _ (dy\"
v dx ~<Ir

3. Cherchons maintenant les ¢équations aux dérivées partielles qui cor-
respondent & I’équation canonique

((6)) }//// ey’ —r1.

Un calcul élémentaire montre que les courbes intégrales de cette équa-
tion sont représentées par

(1) y=F(z+a)—b(xz+a)+ec,
avec

F(x):x;2 ({x—~§->-

L’équation aux différentielles totales correspondant a I’équation (1)
s'obtient en éliminant x entre les équations

F(z+a)da — (x + a)db+ dc — bda = o,
F'(x + a)da — db—=o.

Si I'on remarque que

F'(z) =L,

F(z)=xlox—2z=aF(2) — =,



SUR LES EQUATIONS AUX DERIVEES PARTIELLES DU PREMIER ORDRE. B.87

on trouve immédiatement que
de—bda e;'—f:
da o

Remplacons a, b, ¢ respectivement par
2a, 2b, 2c¢-+ 2ab,
I'équation précédente devient

dc+adb—bda %

da
ede,
da

Les équations aux dérivées partielles cherchées sont donc toutes sem-
blables a celle qui a pour associée
ds+xdy —vde &

— edx
(VD) v = edx,

Un calcul analogue & celui qui a été fait (p. 55) plus haut montre que
cette équation admet le groupe défini par les transformations infinitési-
males

of _Of of o _ of _of o . ..o
() 92705 957 9y o Tog T@ NGy TG

ou les transformations finies
z'= (z + a,;)e%, Y —a,x2'=(y+ a))e%, = (3 + ayx — a,y + as) e,

Nous allons démontrer maintenant que G est bien le groupe de I'équa-
tion (VI), c’est-a-dire ‘que I"équation (VI) n’admet pas d’autres transfor-
mations infinitésimales que celles du groupe G. Tout revient & prouver que
I’équation du troisiéme ordre

),w ey — 1

n’admet pas de transformation infinitésimale étrangére au groupe déja
connu

95 oy’ Tay Tan 5 )i

oF o o of [a® of
ox’ dy’ ay dx < )d‘y

A cet effet, soit X f une transformation infinitésimale de contact laissant
invariante cette équation et, par suite, I'équation équivalente

v/ — e_y//.

Y
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La fonction W, caractéristique de X/, est déterminée par l'identité en
x, y, y/’ y//

ou F,, F,, F; ont les significations données plus haut (p. 83). De la on dé-
duit d’abord
F;—=o, F,+F,=o

et ensuite
EW_ W W PW  OW
T oy ™Y Tt TV Powgy Ty T

rwo_ W LW
dzdy dxdy " oz

Donc W est donnée par ’équation

x?
W:a,—t—agx—%—agy’—i—a‘(zy—l-; —.»ry’).

L’équation du troisiéme ordre considérée n’admet donc que quatre trans-
formations infinitésimales distinctes, a savoir, les quatre déja connues.
Donc I'équation (VI) n’admet aussi que quatre transformations infinitési-
males distinctes, ce que nous voulions démontrer.

00—

CHAPITRE VIL

EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT UN GROUPE A
QUATRE PARAMETRES (svrte). EQUATIONS QUI CORRESPONDENT A L’EQUA-
TION CANONIQUE ((7))

1 ”§
() Yy 3y y=kyry"2

1. Je commencerai par intégrer 'équation ((7)), en me fondant sur la
remarque suivante. Soit

f(x,)’,a,b,c)':—()

la famille des courbes intégrales. Cette famille a trois paramétres admet le
groupe G & quatre paramétres, défini par les transformations infinitési-
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males

G) o LU L

(’.I/" (L‘E—-‘r7 ),_d;’ x 0—x+xy5)—,

ou les transformations finies

(G) o — -+ a , my

Il résulte de 1a que chaque courbe de la famille admet certainement une
transformation infinitésimale du groupe G. En d’autres termes, les courbes
intégrales sont des courbes V (voir p. 65).

Ceci nous conduit a chercher si 'équation ((7)) admet une intégrale par-
ticuliére ayant I'une des formes suivantes :

(1) y=2a",

(2) ¥y =€,

La condition nécessaire et suffisante pour que 'équation (1) représente
une courbe intégrale est exprimée par I'équation

(3) (2n —1)Vk*—1=F.

Si A* est différent de I'unité, cette équation permet de calculer 7 en
fonction de %, et I'équation ((7)) admet, par suite, une intégrale particu-
licre de la forme (1).

Si, au contraire,

.2
k=1,

c’est I'équation (2)uni définit une intégrale particuliére de I'équation ((7)).
En appliquant toutes les transformations du groupe G, dans le premicr
cas, & 'équation (1), dans le second cas, & 'équation (2), on trouve toutes
les courbes intégrales cherchées.
Donc I'équation

) b+ x+a\"
Y= m bx + ¢

(4

représente, dans le premier cas, les courbes intégrales, pourvu que 7 soit
lié & k par la relation (3).
Fac. de T. — V. B.12
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Les courbes intégrales sont au contraire représentées par

(3) y= br+c o

n
Si 'on a
k=1,

A la vérité, les équations (4) et (5) contiennent quatre paramétres «, b,
¢, m, mais ces quatre parametres ne sont pas essentiels.
En cffet, sil'on pose

—_— 1— 14 ! 4 - ! —_— 14 J— N
m=pl="o(a, b, "), a=a', b=l c=pc,

I’équation (4) devient, apreés la suppression des accents,

4" y— bx +c x4+ a \",
N < o(a, bye)\bx+c)’

de méme, par le changement de paramétres

m——~———eu —o(a, b, ) »——-—b =
1+b“—q’ ’ ’ » I—O—b‘U._

' ¢ N a-+cp
b

I’équation (5) prend la forme

bx +C r4-a

PR— b X+

" o(a, b, ¢)

La fonction arbitraire ¢(a, b, ¢) peut étre remplacée par I'unité, mais
nous verrons dans la suite qu’il y a avantage a poser

o(a, b, cy=\c—ab.

2. Recherche du premier groupe conjugué de G. — Ce groupe T est
formé par les transformations en a, b, ¢ conjuguées des transformations

, T+ o I Ay
Bevy VT Bary

par rapport a I’équation

. o bx+c z-+a\"
(47 J—cp(a,b,c) bz + ¢

Plusieurs des transformations infinitésimales de T peuvent étre obtenues
a priort sans avoir recours a la méthode générale.
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Ln effet, il est clair que 'équation (4’) ne change pas de forme si l'on

remplace z, a, ¢ respectivement par

X+ o, a-— o, c—ba
el si l'on choisit ¢ de maniére que
o(a—a, b, c —ba) =9 (abc), ou o =F(c—ab).

Donc les transformations & un parameétre o

ad=a—uo, c'=c—ba

forment un sous-groupe de T et, par suite, I'une des transformations infini-
tésimales de T a pour symbole
df s
A f— da dc

Quant a la fonction ¢, nous la choisirons de maniére que
¢ = (¢ — ab)™,

On apercoit alors facilement que le groupe T contient les deux sous-
groupes a un parametre A

{ @'=akl, i b'=bil,

i c'=cd, ? c'=ch,

et, par suite, les deux transformations infinitésimales

Af:al—i—cg—{, A f= b——-—l—czf
Lie groupe défini par les transformations infinitésimales A, /, A, fet A, f
étant le groupe conjugué du groupe défini par X, £, X, £, et X, £, il ne
reste plus qu'a déterminer la transformation infinitésimale conjuguée
de X, /.
Il suffit, pour cela, de calculer les fonctions a(a, b, ¢), B(a, b, ¢),
y(a, b, c), de maniére que la transformation infinitésimale

ey G

oz TEY 5y T '70c X/

laisse invariante la multiplicité de points définie par 1'équation (4) ou I'é-
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(uation ¢quivalente
Ly=@0—=n)bz+c)+nf(x+ a)—Lo.

Les équations qui déterminent a, B, v s'obtiennent en écrivant que la
relation

11— . x4 o ‘(("o)
x_bx (§x+/+b.z)—|—lz T a o

est unc identité en z, @, b, ¢. On trouve d’abord

9

) oa=—a?,
ct, par suite
(r— n)[*—_(ﬁbx_fc_‘_y_,_a]:a_,_ng).
Choisissons ¢ de maniére que
X(¢)=—as.

Alors B et v sont données par les équations

B=c— ab, y = —ac,
C['{)Pal‘

o =\c — ab.

La transformation infinitésimale conjuguée de X, f est donc

a?g{‘—:—i—(c— b)—f——acg{

le groupe & un paramétre qu’elle engendre est le suivant

, a b,_b—|—7\c s cC
z ) = < ’ C = .
1+ Aa 1+ Aa 1+ Aa

En résumé, le groupe T est engendré par les quatre transformations infi-

nitésimales
o _of of
Af__% 52., Ag/‘-——ﬂ% +(()()1
Ay f=a? -Z-}—(ab—c)—-—kacdf Akf:b()—f—%c—f

de b de

Grice & la maniére dont nous avons déterminé ¢, le groupe conjugué est
homographique et indépendant du nombre 7.
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3. Recherches du second groupe conjugué de G. — Ce groupe I” est
formé par les transformations en @, b, ¢, conjugudes des transformations

Zx + o Ay
G ! — ’: o
(G) x Bx 4y ’ Y Bx+vy
par rapport a I’équation
_ brtc IS
(39 Y @b

Choisissons encore o de maniére que
C? —\c—ab.

On peut déterminer toutes les transformations de I’ sans avoir recours a
la méthode générale. En effet, si 'on multiplie les deux membres de I'équa-
tion (5") par ¢*, on obtient

x(1+Ab)+a+he
o brte T
yeh=————e¢ : :

Ve —ab

donc I'équation (5"), considérée comme une équation & cing variables .z, y,
a, b, ¢, admet la transformation

(1) x'— r, Yy =ye,
, L4+ Ac , b , c
(2) = YTioae T

Donc les équations (2) définissent un’ sous-groupe & un paramétre du
groupe I". L'unc des transformations infinitésimales de T" est donc

A;f:(ab-—c)%—l—b‘l%—i—bc%.

On voit aussi facilement que les trois premiéres transformations infini-
tésimales de T, 4 savoir A, f, A, f, A, f, sont également des transforma-
tions infinitésimales de T". Ce groupe I" est donc engendré par les quatre

transformations infinitésimales distinctes

ASs Af, Ayfy Asf
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4. Recherche des équations aux déricées partielles qui correspondent
a U'équation

v

i3
(7)) Yy 3y = kyty

Nous supposerons dans la suite le nombre k différent de zéro (et par suite
n#73), car, pour cette valeur de k, I'équation ((7)) se réduit a

}’)’W‘i— 33/1‘}’”: o,
A L :
¢’est-a-dire

(r*)"=o,
el dérive par une transformation ponctuelle

2

xXry=x, .}/l - y
de I'équation
Y=o,
Supposons d’abord le nombre & différent de 'unité. Les courbes inté-
grales de I'équation ((7)) sont alors représentées par

bx +c <x+a)"
b

T g(a b0y \ba e 9 =Vc—ab,

ou bien

Ly =(t—n)L(bx +¢) + nl(z +a) — Lo;

en appliquant la régle si souvent rappelée, nous sommes conduils a écrire
que I'équation en x

(1—n)(zdb+c) nda dy
bx + ¢ +x+-a—~_(p-

=0

a une racine double. A cet effet, posons

X+ a

bx 4+ c

el exprimons que le discriminant de I’équation en ¢
(1—n)(bdc—cdbyt*+ (n—4%)(dc —adb+bda)t —nda—=o
est nul; nous obtenons ainsi

(1) (2 —1)¥(dc —adb+ bda)*—16n(n—1)(bdec — cdb)da=o.
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Comme 27 — 1 n’est pas nul, nous pouvons poser

hn(n—r1)

(2n—1)*

Remarquons immédiatement que A n’est pas nul; il suffit pour le voir de
se reporter & 1’équation qui détermine 7 en fonction de k. En outre, il esl
clair que

h 1.
L’équation (1) devienl alors, apres le changement de a en — a,
(1) (de +adb+bda)*+ 4h(bdec — cdb)da = o.

Supposons maintenant
k2 _1.

Les courbes intégrales de ’équation ((7)) peuvent alors étre représentées
par I'équation
xr—a
eb.r+c ;

__bxr+ec
Ve +ab
L’équation aux différentielles totales correspondante est

(de + adb—bda)* + 4(da+ bdc —cdb)(bdc— cdb) =o.

En résumé, les équations aux dérivées partielles cherchées se partagent
en deux classes. Celles de la premiére sont semblables a I'équation qui a
pour associée :

(VII') (ds+xdy — yde)*+ 4h(y ds — sdy)da = o, lz;fi'

celles de la seconde sont semblables a I'équation qui a pour associée

(VII) (ds +xdy —yde)+ 4(de+yds —sdy)y(yds—s dy)—=o.
L’équation (VII') admet, cnmme on a vu, le groupe défini par

xf—dl—-)’g{’ Xy f == f+(7cy+ )_Z+xo—g-€

9
2f_1'l-+z—— X, f= d‘—[ d_f
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Xif’ Xzf: X3f

of of
2 J rw Y,
dy s 05

B.g6
L’équation (VIII") admet le groupe défini par

ct
Xsf:(a'y+z)g'£ +y
Remarque. — Si dans la forme canonique (VIII’) on remplace x, y,

respectivement par
:’ -
Yy ¥y

on obtient la forme suivante, qui peut remplacer la forme (VIIT') :
(ds+ady — ydx)+ 4(de +yds —sdy)de =o.

(VIII)
Le groupe (X, X,, X;, X;) se transforme d’ailleurs en
le) X?f, X.}f’ XGf’

-9X6f9

Observons en outre que les six transformations infinitésimales
le) X2 f’ .

déterminent un groupe H, & savoir le groupe des transformations homogra-

phiques qui laissent invariante la surface du second degré

XY 4+ 5 =0.

Les transformations X, £, X, £, X, / déterminent un sous-groupe de H et
il en est deméme de X, £, X, £, X, / [on sait que ces deux sous-groupes sont

réciproques (1)].
(VII') admettent chacune un groupe & quatre paramétres; nous allons
maintenant démontrer qu’elles n’admettent pas un groupe d’ordre plus

5. Nous venous de trouver que les ¢quations canoniques (VII'), (VIIL),
¢leve. A cet effet, nous prouverons, ce qui est évidemment suffisant, que

(1) Yoir Transformationsgruppen, t. I, p. 382.
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I’équation
((7)) ]_y”/_l_ 3}1 ”_A‘}, J/// 0[1 k#o,

n’admet pas un groupe de transformations de contact & plus de quatre para-
métres.
Soit

i(ﬁ}’,}’)gz—i—n(xy, )—+t(ryy)___

une transformation infinitésimale laissant invariante ’équation ((7)) et soit
W sa fonction caractéristique, de sorte que

e dW ,OW __OW ,dW_
E— 0} n=W— yd}’" zl——%_‘"}/d—y‘

Désignons par X f la transformation prolongée

L of
Xf——g'gz y_l"Cl }’ +C2d o +C30”/()

Cela posé, l’équation ((7)) peut prendre la forme
yl

_i
=3y o4+ y" aJ, P=—" y=ky *

1

(1) Y

Les équations qui déterminent W s’obtiennent en écrivant que la multi-
plicité de points (x, y, ', ¥”, ") définie par
L 3

(2) X(}.II/) — 3(Px(y”) + SyI,X(CP) —|“%q-‘|}’”2x()/”) +y//ZX(¢)
est contenue dans la multiplicité (1). Pour cela exprimons que

3 2 L

Fae 30" e+ OF1=3X(y"0) + y"* X () + 2y X ()")

est identique en x, y, », »”. Nous obtenons d’abord

(3) YYF =" X () + 34X ("),
4) Fi+ 3y oF, =30X(y") + 35" X ().

I’équation (3) montre que X (") s’annule pour y” = o; donc
(a) P,=o

(1) Voir p. 82 et 83.
Fac.de T. — V. B.13
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et par suite
(b) Qo=o.
L’équation (3) développée donne
(3 (Ro+ Ry y") g =X () + 39 (Py+ Py,

et par suite, comme £ est différent de zéro,

. 2R, =3P,

c’est-a-dire
PW
(¢) P o.
Il résulte de la que
R =P,=o

et aussi
(d) Q3 — 0.

L’équation (3") devient alors
(3") Roy =X(¢) + 3Py
et I'équation (4) prend la forme
(4" Qi+ Q"+ Roo =Py9 + X(9).
Cette identité exige que
*W

(e) Q.,=o, c’est-a-dire Py oy —o.

Revenons & I'équation (3”); elle peut s'écrire
(2Rg —3P)y=2X(¥),

c’est-a-dire, eu égard aux valeurs de R, et P,

oW
‘!J —d':y— —FQX(q)):O
ou bien
X() =y G
ou enfin
oW oW

f) W::y—ﬁ‘*‘)’ oy
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Si Pou différentie cette égalité par rapport a jy, et sil'on tient compte
de (e), on trouve
*W

(&)

En résumé, la fonction W doit satisfaire aux relations suivantes :

iy PV W e, IV 0w

=2 9zdy T 9ar T =y Y oy
*rW _ oIwW o, W
T 2 N

De ces relations on déduit immédiatement que les dérivées du troisiéme

3W . ST
ordre de W sont toutes nulles, sauf —(—)——, qui satisfait a
ox* dy

»*W s rwo_
0x29y’ dxdy

donc W est de la forme
W =a,y + ayy' + azxy + a,(xy + 2*y').

On voit donc que I'équation ((7)) ne peut admettre que les quatre trans-
formations infinitésimales qui ont pour fonctions caractéristiques

vy xy, my —aty,
c’est-a-dire les quatre suivantes

O LU U Lo

o’ Tox Yoy T oz Ty

C’est précisément ce qu'il fallait démontrer.
Nous pouvons donc dire que les groupes des équations canoniques (VII'),

(VIII'), (VIII) sont respectivement

(Xl) Xﬁ; X3’ Xh)? (Xh XZv X3’ XS): (Xn Xz: X3’ XG)-

6. Modification de U'équation canonique (V1I")

(dz +axdy —ydx)+hhdx(yds—zdy)=o, hzo, 1.
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Effectuons la transformation homographique

x' iy x'— iy 1+ 35’
X = — - = — - 5= — =
i—z'’ Y i—z "’ i—z’
qui fait correspondre & la surface
.Z")’ +3=0
la sphére
(%) 2?4+ y? 4+ 52 1=o.

Nous obtenons successivement les formules suivantes :

ol I gyl ol ’
dz—l—xd‘y»«ydx:—zido +x,/d'y i)g'y A

2

(i =3 (da'+idv') + (2" +iy')ds'
2

de = (6—35")?

(—i— 3 (da'—idy') + (2 —iy'y d3'
(f—3z")? ’

ydz—:dy:—

(d.l), - ',VI dz/ . Z/d_}/)g—l— (dy/ - zl dxl_ .’L'I dzl )2
(i—23)? h

dx(yds —zdy) =—

L’équation proposée a donc pour transformée
(da' +2'dy'— yda' ) + h(dx' + y'ds' — 5" dy')?
+h(dy +3'da' —2' dz')? —o, hF g C:.
Nous pouvons, par suite, prendre pour équation canonique, 4 la place de
I'équation (VII'), I'équation suivante

(VL) a(ds+xdy — ydr)* + (dz+ yds —sdy)*+ (dy +sdx — x dz)* = o,

avec
a1,

Nous verrons plus tard que, si @ = r, cette équation peut étre ramenée
par une transformation ponctuelle a la forme

dz*+ dy*+ ds* =o,

Quant au groupe de l’équation (VIIL), c’est le groupe transformé du
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groupe de (VII"). Les six transformations infinitésimales

X:f——-g—f—*‘zﬂ—)’g+x<xd—f+yg§+z2[>,

x dy K dz Jz
ngzg—{/+xg£——zg%+y<.. ................ ),
X3f:g£ +yg§—xg§+z< .................. ),
Xéf:%—r-yg——:%ﬁ—x(.. ................ ),
X5f:§§—!—z%——xd‘—:—l—y<.. ................ >,
ij':g—kx%—g’%+s<.. ................ )

définissent le groupe homographique de la sphére
2P+ )%+ P H+1=o0.

Le groupe de équation (VIL) est défini par les quatre transformations
infinitésimales

le’ X2f7 XSf’ XGf‘

CHAPITRE VIII.

SUR DEUX CLASSES PARTICULIERES DE COMPLEXES. — INTERPRETATION
GEOMETRIQUE DES EQUATIONS AUX DERIVEES PARTIELLES QUI ADMETTENT
UN GROUPE A QUATRE PARAMETRES.

1. Groupe spécial de transformations homologiques. — Je commen-
cerai par rappeler la définition d’un groupe de transformations homolo-
giques que I'on rencontre fréquemment dans les recherches de M. S. Lie.

Considérons, dans le plan des (x, y), les transformations homologiques
ayant pour centre d’homologie le point O, et pour axe d’homologie une
droite passant par ce point O. Ces transformations forment un groupe a
deux paramétres, dont nous allons chercher les équations. Remarquons
d’abord que les transformations homologiques qui ont le point O pour
centre d’homologie sont les transformations homographiques qui laissent
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invariante chaque droite passant par l'origine. Ces transformations sont
donc définies par les équations

[ x I — —______V .
) Jv_aaz—f—byﬁ—c’ y_ax—I—by—i—c
L’axe d’homologie relatif & I'une de ces transformations étant une droite,

dont chaque point reste invariant par cette transformation, a pour équa-
tion
ax 4+ by +c=1.

Les transformations particuliéres que nous cherchons s’obtiennent donc

en faisant
CcC—1

dans les équations (1), ce qui donne

(2) o= 5 y'= Yy .
ax + by +1 ar +by +1
I1 est aisé de vérifier que ces équations déterminent un groupe et que ce
groupe est engendré par les deux transformations infinitésimales

Nous appellerons ce groupe le groupe homologique spécial relatif au
point O.

Remarquons que, D et D’ étant deux droites quelconques du plan ne
passant pas par lorigine, il existe toujours une transformation du groupe,
et une seule, vis-a-vis de laquelle les droites D et D’ sont homologues. L’axe
d’homologie est la droite qui joint le point O au point d’intersection des
droites D et D',

D’une maniére générale, soit C’ la courbe homologue de C par rapport
a une transformation du groupe G. D’aprés la nature des transformations
du groupe G, il est clair que la courbe C ne peut admettre une transforma-
tion de ce groupe; donc il n’existe qu'une transformation du groupe chan-
geant C en C'.

2. Correspondance entre les droites d’un plan et les courbes d’une
certaine famille & deux paramétres. — Considérons dans un plan P un
point O, une courbe absolument quelconque C, et une droite D ne passant
pas par le point O. Appliquons au couple (C, D) toutes les transforma-
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tions du groupe homologique spécial G, relatif au point O. L’ensemble des
transformées de D comprend toutes les droites du plan ne passant pas par
I'origine O (n° 1); I'ensemble des transformées de C constitue une certaine
famille F de courbes & deux paramétres. Cela posé, soit D" une droite quel-
conque du plan (ne passant pas par l'origine), et soit S la transformation
du groupe G qui change D en D'. Faisons correspondre & la droite D’ la
courbe C’, homologue de C par rapport 4 S. Nous avons ainsi défini une
correspondance entre les droites du plan (ne passant pas par le point O) et
les courbes C de la famille F. Tl résulte, d’ailleurs, de la remarque faite
précédemment (1), que cette correspondance est univoque.

Observons, en outre, que si deux droites, D et D’, se coupent au point A,
les courbes correspondantes, C et C', se coupent en un point situé sur OA.
En effet, soit S la transformation du groupe G, qui fait correspondre le
couple (C/, D’) au couple (C, D); I'axe d’homologie de cette transforma-
tion est évidemment la droite OA. Si donc B est un point d’intersection
de OA avec la courbe C, la transformation S doit laisser.invariant ce
point B, et, par suite, il doit se trouver sur la courbe 7, transformée de C.

3. Dé finition des complexes K. — De la correspondance entre les droites
du plan P et les courbes de la famille F, il est aisé de déduire une corres-
pondance univoque entre les mémes courbes et les droites d passant par
le point O, mais non situées dans le plan P. II suffit pour cela de considé-
rer un complexe linéaire H tel que le pole du plan P soit précisément le
point O, et de faire correspondre a chaque courbe C de la famille F la
droite d conjuguée de D par rapport au complexe H ( fig. 6). Puisque la

Fig. 6.

correspondance entre les droites d et D est univoque, ainsi que celle qui
existe entre les courbes C et D, il en est de méme de la correspondance
entre les droites d et les courbes C. Je dirai, dans la suite, qu'une droite d
et la courbe C correspondante sont deux lignes associédes.
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Cela posé, remarquons qu'a toutes les droites d situées dans un méme
plan Q correspondent les droites D du plan P, passant par un point A situé
sur 'intersection de P et de Q (A est le pdle du plan Q par rapport au
complexe linéaire H). Donc on peut dire, en vertu de ce qui précéde, qu’a
toutes les droites d situées dans le plan Q) correspondent des courbes C se
coupant en un point B de la droite OA. De la résulte que les droites ren-
contrant & la fois deux lignes associées forment un complexe. Tout com-
plexe susceptible de ce mode de génération sera appelé un complexe K.
Les courbes C seront dites les directrices du complexe.

4. Complexes K de premiére espéce. Interprétation de Iéquation (V).
— Supposons que la courbe C, qui a été jusqu'a présent complétement
indéterminée, soit une courbe V relative au triangle formé par la droite D
et deux droites Oz, Oy. Les complexes K, que 'on déduit du couple (D, V)
ou des couples analogues situés dans le plan P ou un autre plan de I'es-
pace, constituent une famille particuliére de complexes; nous les appelle-
rons complexes de premiére espéce.

Cherchons I'équation générale de ces complexes. A cet effet, considérons
I'un d’entre eux, et prenons pour axes des x et des y les deux cotés com-
muns aux triangles liés aux directrices, pour axe des z la droite conjuguée,
par rapport au complexe linéaire H, de la droite de l'infini du plan des
(z, ¥). Pour obtenir les équations des couples (D, V), il suffit d’appliquer
a I'un d’entre eux, (D,,V,), les transformations du groupe homologique
spécial relatif au point O. Prenons pour droite D, la droite de I'infini;
alors la courbe V, a pour équation

xmyn =k, m-+n=r, k #o,
et, par suite, les couples (D, V) sont représentés par (voir n° 1)
(D) cx+PBy—+1=o0,
(V) amyr—=k(ax + By +1).

D’autre part, le complexe linéaire H est défini par les tangentes aux
courbes intégrales de

hdz+xdy —ydx =o, hZo;
donc les équations de la droite conjuguée de D sont

(d) y=hasz, x—— hfas.
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La condition pour qu’une droite, représentée par
r=as—+p, y=0bs+q,

. . . TR . .
rencontre deux lignes assocides (d) ct (V), s'exprime alors par I'équation
& (l -+ %— aq) :I)mqn.

Les droites du complexe peuvent donc étre considérées comme les tan-
gentes aux courbes intégrales de I'équation

= (xds-—zdx)"(yds — sdy)", m-+n=i.

Cette équation dérive, par une transformation homographique, de la
forme

£ =, Y =hy, 3

“
i
<
w

de ’équation

(2) (ds +uxdy —yde)= (xds—sdx)"(yds— sdy).

Si maintenant on remplace .z, y, = respectivement par <-—- ﬂ_>, (——

ni
N———

<—— ;>1 I’équation précédente devient
ds + xdy — ydoe =dx" dy", M+ n—=1
ou bien

ds +xdy — yvde dy\"
V) =)

dx du

Le calcul précédent montre que, si dans I'équation canonique (V), on
effectue la transformation homographique la plus générale, on obtient I'é-
quation générale des complexes K de premiére espéce.

Le complexe K défini par I'équation (V) a ses directrices dans le plan de
I'infini. Les deux cotés communsa tous les triangles liés aux directrices sont
les intersections du plan de I'infini avec les plans Oy et zO .

5. Groupe d’un complexe K de premicre espéce. — Les considérations
géométriques qui précédent mettent en évidence qu'un complexe K de pre-
miére espéce admet un groupe homographique & quatre parametres. En
effet, il est clair que ce complexe admet les transformations homographiques

Fac. de T. — V. B.i4
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qui laissent invariants a la fois le complexe linéaire H et la famille des
couples (D, V), qui correspondent au complexe K. Nous allons déterminer
ces transformations pour le complexe K défini par Péquation (2).

La famille des couples (D, V) admet évidemment le groupe, & trois pa-
ramétres, engendré par les transformations infinitésimales de G (n° 1)

Srmslelert) Seslell et

et la transformation infinitésimale

,f__nxgl +(n—1)y

9
;/ 0y

qui laisse invariante la courbe V,
(VO) - J;l—n.J,n:['

Considérons maintenant le tableau des transformations infinitésimales
homographiques du complexe linéaire (')

ds +-xrdy — ydx =o.

On apercoit immeédiatement que les transformations du groupe ayant les
formes

X,f+-§lg—£, X, f - :,%, X3f+§30f

‘

sont les suivantes

(1) Jf(JEgJ;c —G—UV% +~d~,>
R e

d’autre part, le méme groupe contient une transformation infinitésimale (et
une seule ), laissant invariant chaque point du plan des xy, a savoir

o (A s L o)

(1) Voir Transformationsgruppen, L. 11, p. 446.
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Le complexe K considéré admet donc le groupe défini par les quatre
transformations (1), (2), (3), (4). Si maintenant on remplace x, y, 5 res-

. I .
pectivement par — =, — %ct — -, le groupe devient

- 5.0

, or Y9z 920 dy "o
) of N (o . /)
‘n< azr 35/_'_2*0.;) (x()a“ Y 0z

et I'équation (2) a pour transformée I'équation (V). Donc P'équation (V)
admet le groupe G; nous avons vu d’ailleurs qu'il ne peut admettre un

‘ o _of o o, o
(G) <
(

groupe d’ordre plus élevé.

6. Complexes K de seconde espéce. Interprétation de I’équation (V).
— Nous avons vu qu'un complexe de premiére espéce est un complexe K
dont les directrices sont des courbes V appartenant a des triangles ayant
deux cotés communs. Supposons maintenant ces cotés confondus; nous
dirons alors que le complexe est un complexe K de seconde espéce.

Tutorime. — Les complexes K de seconde espéces dérivent tous, par
une transformation homographique, de l'un quelconque d’entre eux,
par exemple du complexe déterminé par les tangentes aux courbes in-
tégrales de 'équation

dy
e(lfl"

dz +xdy —ydr
dx -

(V1)

Considérons un complexe quelconque de seconde espéce; prenons pour
plan des (x, ) le plan des directrices, pour origine le sommet commun a
tous les triangles (aplatis), liés aux directrices, pour axe des y une droite
quelconque Oy du plan et pour axe des z la droite conjuguée, par rapport
au complexe linéaire, de la droite de I'infini du plan des zy.

Le complexe linéaire est alors défini par une équation de la forme

hds 4+~ 2 dy — ydx = o.

Comme précédemment, il suffit, pour obtenir les équations des couples
(D, V), d’appliquer les transformations du groupe homologique spécial,
relatif au point O, & un couple particulier (D,, V,). Prenons encore pour
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droite D, la droite de I'infini; alorsla courbe V, a pour équations
; x
o he", s:=o0,

et par suite les couples (D, V) sont représentés par

{ 27 =By --1==0,

(D)

[ - o,

'

N
.0 | -
T 57 L

o
(V) a
’_ S I= 0.
Les équations de la droite d conjuguée d’une droite D sont
x—=—hBs, y=hasz.
La condition pour que la droite

xre=as - p, y=0bz+yq

rencontre deux lignes associées (d)et (V) s’exprime alors par I'équation

q
’ < . @:ﬁi) ke,
VZ h

Les droites du complexe défini par cette équation sont évidemment les

tangentes aux courbes intégrales de

hds +~axdy —vdr ———\:',’f—f;,":
o . "ke‘l‘b 5 1.
h(rvds — sdx)

On voit donc que le complexe dérive par une transformation homogra-
phique de la forme

2= ha, y' =, sl s

du complexe de méme espéce pour lequel 7/ = 1 et k = 1, c’est-d-dire du
complexe déterminé par I'équation

ydzs—zdy
ds -xdy —ydr =i
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ce qui revient & transporter a l'infini, par une transformation homogra-
phique, le plan des directrices, on trouve

v
dN- +xdy-— ya’r —,,:_
T

dxr

ce que nous voulions démontrer.

On peut, comme précédemment, démontrer a priort qu’un complexe K
de seconde espéce admet un groupe homographique a quatre paramétres et
que ce groupe est un sous-groupe du complexe linéaire correspondant au
complexe K.

7. Définition des complexes H. — Considérons une surface quelconque
du second degré, et supposons qu’on ait établi, entre les génératrices d’un
méme systéme, une correspondance homographique quelconque. Cela
posé, les droites qui rencontrent a la fois deux génératrices homologues
forment évidemment un complexe.

Les génératrices du second systéme sont toutes des droites du complexe.

La surface du second degré est la surface singuliére du complexe.

Tout complexe susceptible de ce mode de génération sera appelé un com-
plexeH.1ly alieu de distinguer les complexes pour lesquels les génératrices
doubles de ’homographie sont distinctes de ceux pour lesquels les généra-
trices doubles sont confondues. Les complexes H de la premiére catégorie
seront dits de premiére espéce, les autres seront dits de seconde espéce.

Avant de déterminer les équations de ces complexes, je commencerai
par rappeler quelques théorémes de M. Lie, relatifs aux transformations
homographiques qui laissent invariante une surface du second degré non
décomposable.

Considérons la surface représentée par I'équation

(S) Zy 4 5= 0.

Les transformations infinitésimales qui laissent invariante cette surface
forment un groupe a six parametres, défini par les transformations infini-
tésimales

9 9 9 9
Xij= % yd‘{ X,/ =2 +“o_§’ Xof =28 i (ay s )_/;Jmmg,
G r—y O of o of 9
Np=r s Xr=ter g g N
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Les trois premiéres transformations infinitésimales déterminent un sous-
groupe T, de G, les trois derniéres forment également un sous-groupe T,.

Les transformations du groupe T, laissent invariante chacune des géné-
ratrices d’'un méme systéme

(D) y =2, la 4+ z—o.

Les transformations du groupe T,, au contraire, échangent ces droites
entre elles. Le groupe en %, conjugué du groupe T,, est engendré par les
trois transformations infinitésimales

AR A A
an’ " d) dr’
qui correspondent respectivement a X, f, X; f, X, f.

De ce que le groupe conjugué est un groupe a trois paramétres résulte
ce fait, que nous utiliserons & I'instant :

Etant donnés deux couples quelconques (D,, D)) et (D,, D)) de geé-
nératrices D, il existe toujours une transformation du groupe T, (et
méme une infinité simple) qui transforme D, en D} et D, en Dy,.

Cela posé, revenons aux complexes H de premiere espéce.

8. Complexes H de premiére espéce. — Un de ces complexes est com-
plétement déterminé quand on donne la surface singuliére S, les deux géné-
ratrices doubles de I’lhomographie et le rapport anharmonique % qui carac-
térise ’homographie.

TutoriMe. — Les complexes H de premiére espéce, qui correspondent
au méme rapport anharmonique, dérivent tous, par une transformation
homographique, de un quelconque d’entre eux, par exemple du com-
plexe déterminé par les tangentes aux courbes intégrales de U'équation

(VII) (ds +axdy —ydze)+ 4h(ydz: —sdy)dx =o.

En effet, considérons un quelconque de ces complexes et effectuons une
premitre transformation homographique qui transforme la surface sin-
guliére du complexe en la surface suivante

(%) Zy -+ 5 =0.

Le complexe transformé est un complexe de méme espéce ayant pour
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surface singuliére X. Soient alors
(D) y=h Ax +s5=0

les équations des génératrices liées par une homographie. Par une seconde
transformation homographique, qui n’altére ni la surface X, ni I'ensemble
des droites D, nous pouvons, comme on a vu, amener les deux génératrices
doubles a coincider avec les génératrices correspondantes aux valeurs A=o
et 2 = . Au complexe H transformé correspond alors une homographie
définie par une équation de la forme

N=k¥.
La condition pour que la droite
xr=as -+ p, y=>0bs+4q,
coupe la droite D est exprimée par I'équation
| ar+Ah(1-+bp —ag) —qg=o0:
donc I'équation du complexe est

(1+bp—aq)‘2+<k +7I{+-2>aq:0

ou bien

(1 +bp —aq)*+ Lhag = o, ou 4/1:/c—|—%—f—2.

Le complexe représenté par cette équation est précisément celui des tan-
gentes aux courbes intégrales de I'équation (VII). Le théoréme est donc
démontré.

De la définition d'un complexe H de premiére espéce résulte immédiate-
ment qu’il admet un groupe homographique a quatre paramétres. En effet,
considérons, pour fixer les idées, le complexe H défini par I'équa-
tion (VII).

Ce complexe admet évidemment toutes les transformations homogra-
phiques qui laissent invariante la surface du second degré X et les deux
génératrices doubles de I'homographie. Or les transformations du groupe T,
laissent, comme on a vu, chaque génératrice D invariante; donc le com-
plexe admet le groupe T,. En outre, la seule transformation infinitésimale
de T,, qui laisse invariantes les génératrices doubles (A = 0, X = ), est la
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transformation infinitésimale X,/ qui a pour conjuguée
5 ar

donc le complexe H considéré admet le groupe défini par les quatre trans-
formations infinitésimales

X1f9 X?fa X:sf, Xk./’

Nous avons vu, d’ailleurs, que ce complexe n’admet pas de groupe d’ordre
plus élevé.

Ainsi, pour former le groupe d’un complexe H de premiére espéce, il
suffit de déterminer les transformations homographiques qui laissent inva-
riantes la surface singuliére du complexe et les génératrices doubles de
’homographie correspondant au complexe.

Si, dans I'équation (VII) qui contient déji un paramétre A, on effectue
la transformation homographique la plus générale, on obtient I'équation du
complexe H le plus général. Cette équation contient & la vérité seize para-
meétres; mais, comme le groupe de I'équation est & quatre paramétres, douze
seulement sont essentiels.

Cas particulier. — Si
A=r, d’ou =1,

c’est-d-dire, si chaque génératrice est a clle-méme son homologue, le com-
plexe (VII) est celui des tangentes de la surface . Ce complexe admet
évidemment le groupe & six paramétres G : donc il admet également un
groupe a dix parametres.

Remarquons d’ailleurs que, si I'on effectue dans I’équation (VII) la trans-
formation homographique

al+ iy )
= o J

al— gy {+ s
0 —_ ¥
t— 3

f

(1]

L — 3 L — 3

on obtient un complexe H de méme espéce, défini par I'équation (wvour

p. 100)

ds' + 2" dy" — y' dx' )+ h(da' «+ y' ds' — 3" dy')? + A(dy' -+ 5" da' — 2" d3')* = o.
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La surface singuliére du complexc est la sphére

2+ Y+ 1=o.
On retrouve alors ce résultat de M. Klein (') :
L’équation
(ds +xdy — ydzx )+ (de +yds — sdy)*+ (dy + sdv —axdz)*=o0
définit le complexe des tangentes a la sphére
x4+ Y+ P4+ 1=o.

Nous verrons plus loin par quelle transformation ponctuelle cette équa-

tion se change en la suivante
dr? + dy? + ds* —=o.

9. Complexes H de seconde espéce.

TukoriMe. — Tous les complexes H de scconde espece derivent, par une
transformation homographique, de Uun quelconque d’entre cur, par
exemple, du complexe défini par I'équation
(VIII) (ds +axdy —ydx) + 4(dr + yds — sdy)de —o.

En effet, considérons un complexe quelconque H de seconde espéce ct

effectuons encore une transformation homographique qui le change en un
complexe ayant pour surface singuliére
(2) xry 43 =o.

Soient alors
(D) ¥y =1, ha +3=o0
les équations des génératrices, qui sont liées par une homographie.

Une seconde transformation homographique, n’altérant ni la surface X, ni
Iensemble des droites D, permet, comme nous avons vu, d’amener le
rayon double unique de 'homographie a coincider avec la génératrice cor-
respondante & ) = oc.

L’homographie qui correspond au complexe H transformé est alors défini
par une équation de la forme

N—N =2k, k Zo.

(1) KLEIN, Mathematische Annalen, t. V.
Fac. de T.— V. B.15
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La condition pour que la droite
X T=as -+ p, y=0bs+¢q
rencontre deux généralrices homologues est alors exprimée par I'équation
(1--bp —aq)+hag — 4k q*=o.

Cette équation représente le complexe des tangentes aux courbes inté-

grales de
(ds+xdy — ydx)*+ 4(yds —sdy)dr — k> da?=o.

11 suffit maintenant de remplacer y et s respectivement par iky et ths
pour obtenir Iéquation ( VIII) et le théoréme est démontré.

Remarquons, d’ailleurs, que la derniére transformation homographique
n’altére ni la surface 2, ni I'ensemble des droites D, ni la génératrice
double de I'homographie. Donc la surface singuliére du complexe ('VIII)
est encore la surface X; la génératrice double unique de I'homographie est
la génératrice correspondant & » = . Enfin le nombre & qui caractérise
I’homographie est égal a i.

On verrait, comme précédemment, que, pour former le groupe d’un com-
plexe H de seconde espéce, il suffit de déterminer les transformations
homographiques, qui laissent invariantes la surface singuliére et, sur cette
surface, une génératrice et une seule, a savoir la génératrice double
(unique) de '’homographie correspondante au complexe.

Si, dans 1'équation (1), on effectue la transformation homographique la
plus générale, on obtient I'équation du complexe H de deuxi¢me espéce le
plus général. Cette équation contient quinze paramétres; mais, comme
le groupe de I’équation esta quatre paramétres, onze seulement sont essen-
tiels ().

10. De ce qui précéde résulte que :

Toute équation aux dérivées partielles qui admet un groupe a quatre
paramétres dérive par une transformation ponctuelle d’une équation
pour laquelle les tangentes aux courbes intégrales déterminent un com-
plexe 1 (voir p. 78), un complexe H ou un complexe K.

(1) Les complexes H se confondent avec les complexes [111(111)] et [111(12)] signalés par
M. Weiler (Math. Ann.,t. VII, p. 168 et 178).

- 00O ———
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CHAPITRE IX.

SUR LES CARACTERISTIQUES DES EQUATIONS CANONIQUES. COURBES
GAUCHES QUI ADMETTENT UNE TRANSFORMATION HOMOGRAPHIQUE
INFINITESIMALE.

Les caractéristiques des équations canoniques appartiennent & la famille
des courbes gauches, étudiée par MM. Sophus Lie et Klein, qui admettent
une transformation homographique infinitésimale (). Je me propose, dans
ce Chapitre, de classer ces courbes et d'indiquer ensuite la catégorie a
laquelle appartiennent les caractéristiques d’une équation canonique don-
née. La méthode qlie je vais suivre est la généralisation de celle qui a été
indiquée par M. Sophus Lie pour la détermination des courbes V planes
(woir page 66).

1. Soient x,, x;, x,, z, les coordonnées homogénes d’un point quel-

conque de 'espace.
Une transformation homographique infinitésimale quelconque est définie

par le symbole

13 &
Xf—:zgkg% avec Ek:2 ARi ;.

k=1 i=t

Cette transformation infinitésimale (et, par suite, le groupe a un para-
meétre qu'elle engendre) laisse invariants des points (x,, x,, «;, «,) et des
plans (u,, u,, u,, u,) de I'espace. Ces points et ces plans sont définis par
les équations (*)

13
Eakixi——_)\xka k=1,2,3,4,

i=1

&
E apiu=hu;, i =1,2,3,4,

k=1

@y —h Ay A3 @y
@91 @3y — h Qa3 Ay
O (2)= —=o.
a3 32 @3 — A as,
| an Ay [42% a,, — A

(1) Comptes rendus de I’ Académie des Sciences (1870).
(%) Transformationsgruppen (t. I, p. 580, 581, etc.).
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Remarquons qu’a une racine A qui n’annule pas les mineurs du troisiéme
degré correspondent un seul point invariant et un seul plan invariant.

Cela posé, a’égard de ces points et de ces plans invariants, nous allons
démontrer les théorémes suivants :

Tatorine 1. — Tout point incariant correspondant ¢ une racine '\ de
I’équation

(1) ®(2)=—-0

se trouve dans toul plan invariant correspondant ¢ une racine N diffé-
rente de \.

En effet, soient

(2) Nz =lan,  k=1,2,3,4

i

les équations qui déterminent les points invariants correspondant a la ra-
cine A, et soient

(3) Ea“u,,,: Nug, (=1,2,3,4

k

les équations qui déterminent les plans invariants correspondant a la ra-
cine 1.
De ’équation (3), on déduit

Z E apitpa;=»n E u;r;
ik i

_)f
E ll/(< Eakfxi> = A E U; x;

k i i

7\2 upr,=1» 2 u;x;,
"
(W — 7.)211,40,-: o.
i

Comme 2" est différent de A, cette égalité exige que

E Uy i =—= 0.

i

et, par suite,

ou bien

ou encore

Ce qu'il fallait démontrer.
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Taroreme 1. — Soit A une racine de Uéquation
(1) d(1)=o,

qui n’annule pas tous les mineurs du troisiéme degré. Pour que le point
invariant qui correspond a celte racine se trouve dans le plan invariant
correspondant & la méme racine, il faut et il suffit que la racine \ soit
une racine multiple.

Il est clair que nous pouvons, sans particulariser la question, supposer le
q ) y

point invariant M au sommet (z, = 0, £, = 0, 3 = 0) du tétraedre de ré-

férence, c’est-a-dire

Ay, — 0, A, — 0, A3, — O, ay, =M.

Le plan invariant P correspondant a cette racine est déterminé par les
trois équations

5 (ay —— W uy + as i, 4 @y Uy 4@, U, =0 |
(2) as iy 4 (@ya— A) Uy + azalty + AU, =0 ) a,, =A.
a,; 4 Qg ity + (a33— N ug+ aiu,==o

Ces équations ne déterminent effectivement qu'un plan invariant, car
il résulte de I'hypothése faite sur A que les déterminants du troisiéme degré
du Tableau des coefficients ne sont pas tous nuls. En outre, si D,, D, Dy,
D, désignent les déterminants du troisiéme ordre, obtenus en supprimant
successivement la premiére colonne, la deuxiéme, ..., les coefficients u,,
Uy, Uy, u, du plan invariant

(P) Uy Ty - Uy Ty + U3 Xy + UL, = O
sont déterminés par les équations
u;=pDy, uy=—pD,, s = pDy, w,=—pD,, p o,

Cela posé, pour que le plan (P) passe par le point (M), il faut et il suffit

que
i, —o
ou bien
a,— A @) a3y
Dg—_— @5 (122'-—)\ (2299 ==O0.
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Cette égalité exprime précisément que A est une racine multiple de
I'équation ().

Je vais maintenant démontrer un troisiéme théoréme, qui nous permettra
de diminuer considérablement le nombre des cas a distinguer dans la re-
cherche des courbes V de I'espace.

Taeoreme IIL. — Si léquation en '\ admet une racine qui annule tous
les mineurs du troisiéme degré, chacune des courbes qui admettent la
transformation infinitésimale X f est une courbe plane.

En effet, les courbes qui admettent la transformation infinitésimale X /'
sont déterminées par les équations différentielles

(1) L A TN N

Supposons qu'une racine A de I'équation en A annule tous les mineurs du
troisitme degré, et cherchons une intégrale particuliére du systéme (1)
ayant la forme

x; =AM, i=1,2,3,4;
les constantes A, sont données par les équations

(@n— M)Ay 4+ ap Ay + ajA; +apy Ay =o,
Ay Ay 4+ (@2 — 1) Ay + @y Az +ay Ay =—o,
a3 Ay + a3pAs 4 (ass — M)Ay +ay A =o,
Ay + @y Ay + ay Ay + (@ — 1A, =o,

Eu égard a I’hypothése faite sur A, ces équations admettent certainement
deux solutions distinctes

Ai=uay Aizﬁi’ i=1, 2,3, 4.

Si donc on désigne par a, b, ¢, d quatre constantes arbitraires, I'inté-
grale générale du systéme (1) ala forme

x; = (ao;+ bB;) e+ cio(t) + dib (1),

ol ¢; et d; désignent des fonctions linéaires de ¢ et d.
Considérons une courbe intégrale correspondant a des valeurs détermi-
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nées de a, b, ¢, d, il est clair que cette courbe est située dans le plan

aoy + b3y ¢ d x
aoy +bB, ¢y dy s

aoy -+ 0By ¢y dy x4
aoa, + 03, ¢ d, =z,

Ce qu’il fallait démontrer.

Les courbes V planes ayant déja été déterminées, nous pourrons, dans la
suite, supposer que l'équation en A n’admet pas de racine annulant les
mineurs du troisicme degré. Nous commencerons par démontrer que
toutes les transformations X f, satisfaisant & cette condition, sont sem-
blables homographiquement a cinq d’entre elles. o

2. Soit X fune transformation homographique infinitésimale et suppo-
sons que I'équation A n’admette pas de racine annulant les mineurs du
troisitme degré. Je vais étudier successivement les cinq cas suivants :

Premier cas. — L’équation en A a quatre racines simples : A, A,, A;, A,.

Les théorémes I et IT montrent que les quatre points et plans invariants

Fig. 7.

C

forment un tétraédre ABCD ( fig. 7). La transformation X f est alors ho-
mographiquement semblable a

9
oz,

—ol——i—)\ of

oz 23320 + ko, 9

o2y + Ay df
Z,

qui laisse invariant le tétraedre de référence. Cette transformation est
d’ailleurs équivalente a

(M— )z, (;)f + (— M), gj‘-‘ + (As— 7\&)‘”3 df
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et, par suite, a

le:xlb%% +mx‘_,(—)d'?i +px35d5f-;, mZEp A, mpsZo.

(Les droites invariantes, qui correspondent & X £, sont les arétes du
tétraédre.)

Deuziéme cas. — L’équation en A a deux racines simples, A, et },, et
une racine double, 2,.

Les mémes théorémes I et Il montrent que :

1° A la racine double correspond un point invariant (C, D), et un plan
invariant P passant par (C, D) [ fig. 8 (*)].

Fig. 8.

CD

2° Aux racines simples A, el A, correspondent respectivement des poinls
invariants A, B situés dans P, et des plans invariants BCL, ACL, formant
avec le plan P un véritable triédre.

On peut dire que la figure formée par les points et plans invariants est
un tétraédre ayant deux faces confondues.

Soit O un point quelconque de CL. En effectuant une transformation ho-
mographique convenable, on peut faire coincider le tétraédre de référence
avec OABC. Soient

(OBC) z,=o, (OAC) z,=o, (OAB) x;=o, (ABC) x,=o

les équations des faces. La transformation infinitésimale X / prend la forme

dJd J af aJ
X'f= )“x‘d—i +12x2-0—£§ + (dss 4+ px‘)d;xs —;—)\sx‘d_‘li.

(1) Dans cette figure et les suivantes, les droites dessinées en traits pleins sont les droites
invariantes.
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Comme, par hypothése, la racine A, n'annule pas les mineurs du troi-
sieme degré, on doit supposer
B~ 0.

X f est semblable, homographiquement, & la transformation X'/, ou & la
transformation équivalente

d N J )
X"f=(h —})x, ()—;l + (— /.eri -+ pa _(Ji‘

d.rs ox,
Cette derniére est semblable a la transformation

: _ .9 of I .
(2) X?f—‘”‘az +r71x23—£ +x"d—xg’

il suffit, pour le voir, de remplacer dans X'/ la variable x, par M)

ce qui revient a déplacer le point O sur la droite CL.

(Les droites qui admettent la transformation infinitésimale X / sont ici
les arétes du triedre C et la droite AB.)

Troisiéme cas. — L’équation en A a deux racines doubles, A, et A,.

A ces racines correspondent respectivement deux points invariants (A, B)
et (C, D), et deux plans invariants passant par AC ( fig. 9).

Fig. g.

Soit O, un point quelconque du plan correspondant a A, et soit, de
méme, O, un point situé dans le plan correspondant a A,. Par une trans-
formation homographique convenable, on peut faire coincider le tétraédre
de référence avec le tétraédre O, O, A C. Soient

(0,AC) zy=o, (0,0,C) a,=o, (0,0,A) z;—o, (ACOy) x,—=o

les équations des faces. La transformation X / prend alors la forme

X' f= )\1x‘(% +(az,+ A xy+ lmc”%i2 “+ (@' x,+ hyas+ b’xk)% + hyx, 9
3

o,
Fac.de T. — V. B.16



B.122 DE 1ANNENBERG.

et, en outre,
ab' = o;
car, par hypothése, I'équation en A n’admet pas de racine annulant les mi-
neurs du troisiéme degré.
Remarquons que la transformation réduite
9

of Y af
0.172 —f—()\gfg b xg)g—"xs +)\g(l’5 5217:

Af=(hry+bay)

indique l'effet produit par la transformation X f sur les points du plan
2, = 0. Or on voit immédiatement que les éléments (points et droites) in-
variants, qui correspondent a A f, sont : un point simple A, un point
double (C,D), une droite double (AC, AD), une droite simple passant
par le point C. Cette derniére est représentée par

(L) : =0, (M— k) ay+ b, —o.

De méme, la transformation X'/ laisse invariante, dans le plan x, = o,
une droite M passant par A et représentée par

2,= 0, (Ag— M) &3+ a'zy=o.

En particulier, si I'on a choisi les points O, et O, sur les droites inva-
riantes L et M, la transformation X’/ a la forme plus simple

9, 9 i) of
My d_gT + (az+ M) 0—;; + (hozy+ b,xb)d—;f; + ke, d—;_;
ou la forme équivalente
P of of .. Of
X'f=(Mh—h)z pr [az; -+ (h— %) z,] oz, T bz, Pr

Si maintenant on remplace x,, x, respectivement par

()\1—“1-;& M —M)x,
a ’ b’ ’

la transformation X’/ devient

of of

—— $4 —_—
dxg 0.1/'3

(3) Xsf:x,(—;)f “+ (21 + x)

&y

Donc, dans ce cas, la transformation X f est semblable, homographique-
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ment, a X, /. (Les droites invariantes, qui correspondent & X f, sont au
nombre de trois.)

Quatriéme cas. — L’équation en A a une racine simple A,, et une racine
triple A,. A la racine triple correspond un point invariant (A, B, C) et un
plan invariant passant par ce point (théoréme II). A la racine A, corres-
pond un point invariant D situé dans le plan précédent, et un plan inva-
riant passant par A, mais non par D (voir théorémes I et II).

Soient O,0,A et ADO, les deux plans invariants ( fig. 10). Par une

transformation homographique, on peut faire coincider le tétraédre de ré-
férence avec le tétraedre AO,O,D. Soient

(Ol OlA) L3 == 0, (ADOQ) &L= 0,
(AO1D) Xy == 0, (01021)) L9g— O

les équations des faces. La transformation X f prend la forme

of

1‘1”3053
3

of

+ Ay, =
oz,

J ]
X’f: (7\23»"1 -+ auxu)b—x[- —+ (as + Ay, + Ay Zy) 0«1'/2 2
1
et, en outre,

@y Ay, 7 03

car, par hypothése, I’équation en A n’admet pas de racine annulant tous les
mineurs du troisitme degré.
Si I'on remplace , par x, + ax, (ce changement de variables équivaut
a une rotation du plan O, AD autour de AD), a étant une constante conve-
nablement choisie, la transformation précédente prend la forme
of

J d
Aoy + a,,,xk)(—)';fi -+ (“21‘7514‘7\24”2)()%2 +7\,x3-073 + Ay

9.
dz,
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ou la forme équivalente

d J a
X”f: a“xb()—:%f', -+ ay 2y d—ﬂi -+ ()1_‘ )\2)'773 dxf *
3

Les trois coefficients a,,, a,,, A, — %, étant différents de zéro, on peut
déterminer o, 8, de maniére que la transformation X” f devienne

NS U O,

4
oz, ' G,

(4)

quand on remplace z, et x, respectivement par ax, et Bx,.

Donc, dans ce cas, la transformation X / est réductible a la forme (4)
(par une substitution homographique). Les droites qui admettent la trans-
formation infinitésimale X /' se réduisent ici 4 deux.

Cixouiine cas. — Léquation en N a une racine quadruple \,. — A
cette racine correspond (théoréme IT) un point invariant (A, B, C, D) et
un plan P invariant passant par ce point (fig. 4). On sait d’ailleurs que,

Fig, 11.

parmi les droites du plan P qui passent par A, il en existe certainement
une AK qui admet la transformation infinitésimale X f ('). Cela posé,
effectuons une transformation homographique qui fasse coincider le plan

ay == 0,
avec le plan invariant P, le point

xr,=o, Xy =0, x,=0

(1) Cela résulte immédiatement de ce qu'un groupe homographique, & une variable z,
laisse invariant un point (au moins) de 'axe des z.
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avec le point invariant A, et la droite
Xy =0, ZX,= 0

avec la droite AK. Alors la transformation X / prend la forme

i) )
(M, + ay2,) ajf; Qg X4+ Dy 2y - Ay ) 5;%

af af
A3y Xy + Aga g+ M Ty Ay, ) == =+ M, =
+ (a2, 3202 123+ @y, )0$3+ Y2 S,
ou la forme équivalente
af af of
X' f=a,x, <"~ + (a,,x Ay, &) = A3 1+ Q322 A3, 00,) =+
f S (@ 2y + ay, 4)0‘1,2 + (as 2y 32 L2+ Q3 )d.z‘s

En outre, pour une raison déja donnée, on doit avoir
@y, Ay Q3057 0.

Je vais démontrer que la transformation X'/ est semblable, homogra-
phiquement a celle que I'on obtient, en supposant les trois coefficients a, ,,
@y, Ay, égaux & l'unité et les autres nuls. A cet effet, remplacons dans X' f
la variable x, par x, + ax, + Bx,. En choisissant « et 8 convenablement,
on arrive a mettre la transformation sous la forme

of VA

= 330y dun’
3

9
Ay C)—x[ + (@ &)+ ayay) 0.z,

Effectuons un nouveau changement de variables homographique ; rem-
placons z, par x, 4 px,, ot p est donné par

A3 P~ Ay, = 0.

La transformation infinitésimale précédente devient

ad af a
Ay xbd_xil -+ @y x4 a;x/; + a3y, 5{_—;

Enfin remplacons «,, «,, z, respectivement par ax,, Bx,, yz,; en choi-
sissant a, (3, y convenablement, on parvient a la transformation suivante

(5) Xsf:xbdid{;4v$1£x;+x2£[.

01‘3
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Ainsi la transformation considérée X f est, dans le cas actuel, sem-
blable a la transformation X; f. (La transformation X / laisse invariante
une droite et une seule.)

En résumé, une transformation homographique infinitésimale (de I'es-
pace a trois dimensions), pour laquelle I’équation en A n’admet pas de
racine annulant les mineurs du troisieme degré, est semblable homogra-
phiquement a 'une des cinq suivantes :

(1) 1f—x1 df +m$2()0f +p 300—‘!;,
(3) X3f:x1§7“£+(1'1+x2)g—2 + 5)—5—3,

)

of o9f df

Xsf:xkg(b—‘l

+ Xy 5— + Xy
EN ox;’

qui s’écrivent en coordonnées non homogénes de la maniére suivante :

) le—x"—fwnydfwvg—f mEpFr,  mpFo,
(2) Xof=afrmyLapsd mzon,

3) Xif=o gl + (2405 + o

(4) Xof = d£+ 223,

) Xf= Loy

3. Courbes gauches qui admelttent une transformation infinitési-
male homographique. — D’aprés ce qui précéde, nous pouvons affirmer
que toute courbe gauche, admettant une transformation homographique
infinitésimale, est une transformée homographique d'une courbe admettant
I'une des cinq transformations infinitésimales canoniques.

1° Cherchons d’abord les courbes qui admettent la transformation infi-
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nitésimale X, £, ces courbes intégrales de

de _dy  ds

- L=

xr  my p=z
bl b\ : :
c’est-a-dire les suivantes

y=Aazm, s =Bzxr.
Donc :
Toute courbe gauche admettant une transformation infinitésimale
homographique de la premiére classe est une transformée homogra-
phiq
phique de la courbe gauche

y=axm, 5= P mZ=pFI, mp # o.

2° De méme, toute courbe gauche admettant une transformation
infinitésimale homographique de la deuxiéme classe est une trans-
formée homographique de la courbe gauche

y=am, s=Lax, m#o et 1.

3° Toute courbe admettant une transformation infinitésimale de la
troisiéme classe est une transformée homographique de la courbe
gauche

ou

4° Toute courbe admettant une transformation infinitésimale homo-
graphique de la quatriéme classe est une transformée homographique
de la courbe gauche

5¢ Enfin la famille des courbes, qui admettent une transformation
homographique infinitésimale de la cinquiéme classe, est formée par
les transformées homographiques de la cubique gauche

as.

|-

‘y:?fc?, 5=

Nous allons voir que cette famille est celle de toutes les cubiques
gauches de 'espace.
Ainsi les courbes gauches qui admettent une transformatioa homogra-
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phique infinitésimale, courbes que MM. Sophus Lie et Klein ont appelées
courbes V, peuvént étre partagées en cinq catégories essentiellement dis-
tinctes. Je me propose d’examiner maintenant combien chacune de ces
courbes admet de transformations homographiques infinitésimales. Aupa-
ravant, je ferai quelques remarques au sujet des courbes V de la premiére
classe.

4. Remarques relatives aux courbes N de la premiére classe. — Ces
courbes sont les transformées homographiques des courbes, en nombre
doublement infini, représentées par les équations

(1) y=xn, s=a? m==p A1, mz=pz£o.

Nous représenterons par le symbole (=, 8) la famille des courbes qui
correspondent aux valeurs

m=ao, p—=pB

des exposants m et p. L'identité de deux familles (o, B) et (2, §’) sera
exprimée par I'égalité
(o, B) = (o, B').
Sil’on effectue, dans les équations (1), successivement les transformations
homographiques suivantes :

x' =, y' =3, =y,
x' =y, Y =ua, 3=z,
X R 4 o=
€xr = .I," Ly = J:’ 3 = .Z"
on apercoit que
— — (L P\ __ —
(2) ()= (pym) = (s 2 ) ==y —p).

Cela posé, cherchons les familles (2, p) composées de courbes tracées
sur des surfaces du second degré (non décomposables).
Soit

Sflx,y,5)=Ax*+ Aly?+ AVz?
+2Bys +2B'sx + 2B'xy +2Cx + 2Cy +2C's +D=o

I'équation d’une surface du second degré passant par la courbe

(1) y =", =P, mzZpZ1, mZpZFo.
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Alors on a I'identité

Ax? 4 Alz2m - A" %P
+2Bam+tr - aB gP+! - oaB' 2+ - 2Cax + 2C' a2+ 20" 2P+~ D — o,

qui exige que deux des dix exposants
o 1, 2, p, m, p+1, m-+41, m-+p, 22p, 2m

soient égaux, c’est-a-dire que I'on ait (au moins) une des égalités

3) m=—1, m=—a2, m:%, m4-1=2p, m—4p=-2, m=ap,
p=—1, p=2, p=1, p+1=am, m—+p—=o, p—=am,
m-—+—p—i, p=m-+r1,
(4)

m:p—1—1.

Donc, si une famille (2, p) est composée de courbes tracées sur des sur-
faces du second degré, on peut affirmer que 'une des égalités précédentes a
lieu. Remarquons maintenant qu’en vertu des relations (2), toute famille
(m, p) pour laquelle une des égalités (3) a lieu est identique & une famille
(m’, p") pourlaquelle

m' =2,

De méme, toute famille (72, p) pour laquelle une des égalités (4) a lieu
est identique & une famille (m’, p") pour laquelle

pl=m 41,

Ainsi chacune des familles cherchées peut étre représentée par un des
deux symboles
F,=(2, p), Fo=(m, m +1).

La réciproque est évidente : une courbe d’une famille I, est tracée sur
une surface conique (ou cylindrique); une courbe d’une surface F, est tracée
sur une surface du second degré de la classe générale.

On peut se demander quelles valeurs il faut donner & p et m pour que
chacune des courbes considérées soit tracée sur deux (et par suite sur une
infinité) surfaces du second degré.

Considérons d’abord les courbes d’une famille (2, p)- Soit

(5) f(x,}’, 5):Ax2+Al‘}'e+...+D:O
Fac.de T. — V. B.1~
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I'équation d’'une surface du second degré passant par la courbe

(6) y=2x2 55— xP, pFo0, 1,2,
Les coefficients de f(x, y, z) sont déterminés par I'identité

Az?+ Azt + A'x?P + 2BaP+? 4 aBar+! + oB'2? +2Cx + 2022+ 2C"2P 4+ D =o.

Si les nombres
o, 1, 2, 3, 4, p, p+1, p+2, 2p

sont tous distincts, c’est-a-dire si aucune des égalités
(7) pP=—2 p=—1 P:%’ _p:f}’ P:3’ P:[i

n’a lieu, forcément il n'y a qu'une surface du second degré passant par la
courbe considérée, a savoir

‘y:w.

Siau contraire une des égalités (7) a lieu, la famille (2, p) est identique,
en vertu des relations (2), a I'une des deux familles

<{-’1:(2’3)’ ?2:(2’ 4)'

Dans le premier cas, la famille se compose de cubiques gauches; elle
contient méme, comme nous le verrons, toutes les cubiques gauches. Dans
le second cas, la famille se compose des transformées homographiques de la
biquadratique & point de rebroussement

y=a?, z=x* ou y—a Y=z

et contient, comme nous le verrons aussi, toutes les biquadratiques a point
de rebroussement.

Considérons maintenant les courbes de la famille (m, m + 1). Soit encore
SJ(z,y,5)=0
I'équation d’une surface du second degré passant par la courbe
8) y=2zm, 5= am+ mZ#—1, o0, I
Les coefficients de f(«, y, z) sont déterminés par l'identité

o— A.’l?"’-l— Alxzm . Al/xinH—z

+2Ba2mHi 4 o B gt o B a4 2 Cx + 20/ 2™+ 20V 2™+ 4- D



SUR LES EQUATIONS AUX DERIVEES PARTIELLES DU PREMIER ORDRE. B.131
Si les nombres

o, 1, 2, m, m—+1i1, m-+2, 2m, 2m-+i1, 2m-+2

sont tous distincts, c’est-a-dire si aucune des égalités

(9) m—=—2, m=—1, m=4*, m=—2

n’a lieu, il n’y a qu’une surface du second ordre passant par la courbe consi-
dérée, a savoir
s=axy.

Si, au contraire, une des égalités (9) a lieu, la famille (m, m + 1) est iden-
tique, en vertu des relations (2), a la famille (2, 3), c’est-d-dire la famille
des cubiques gauches.

En résumé, les familles (m, p) qui se composent de courbes tracées sur
des surfaces du second degré se partagent en quatre catégories :

La premiére comprend les cubiques gauches.

La seconde comprend les biguadratiques & point de rebroussement.

La troisieme comprend les familles (2, p) qui se composent de courbes,
dont chacune est tracée sur une surface du second degré et une seule,
la surface étant conique.

La quatriéme comprend les familles (m, m + 1) dont chaque membre
est tracé sur une surface dusecond degré et une seule, la surface appar-
tenant a la classe générale.

Enfin remarquons que les courbes de la premiére et de la quatriéme caté-
gorie constituent la famille des transformées homographiques des loxodro-
mies de l'espace. En effet, les courbes des deux catégories considérées
peuvent étre obtenues en appliquant toutes les transformations homogra-
phiques aux courbes suivantes

y:Axm’ :_____Axm+1’ ”2#0,],_]’
c’est-a-dire aux courbes définies par

3=y,

(1) m—1
m -+ I

dzs =xdy — ydx.
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Or, par la substitution homographique

. [] .
z' 4 iy e — iy - 5

1—z g 1— 3 1— 3
le systeme (1) se transforme dans le suivant

( x’2—|—y’2+ 32—,

2 — S
( ) .m lds:x’dy/—-)”dxl; ( )

l__
m —+1

qui représente les loxodromies de la sphére S correspondant aux méridiens
passant par I'axe des z'. Les courbes de la premiére et de la quatrieme caté-
gorie sont donc les transformées homographiques des loxodromies (2). 1
résulte évidemment de 14 que ces courbes constituent la famille des trans-
formées homographiques de toutes les loxodromies de I'espace.

5. Nombre des transformations infinitésimales qui laissent invariante
une courbe V. — Considérons d’abord les courbes V de la premiére classe.
Pour déterminer le nombre des transformations infinitésimales qu’admet
une de ces courbes, il suffit évidemment de chercher combien la courbe

(1) y =", 5= xP, mFEpFI1, mpFo
admet de ces transformations. Soit

Xf:z()ﬁ£+n%/ +C%§

une transformation homographique infinitésimale laissant invariante la
courbe (1). Les polynémes £, , { s’obtiennent en écrivant que les relations

n=mx"1¢, { = paxP1E

sont vérifiées en chaque point de la courbe (1). Donc les coefficients de
£, v, { sont définis par les identités suivantes :

by+ by 2 4+ byx™ + byxP = mx™ 1 (ag + a, & + ayx™+ azxP) 4+ (m — 1) 2" (hx + px™ - vP),

Co+ CL I + M ezl = pxPl(ay + @, & + a,x™ + azxP) + (p — 1) 2P (hx + pa™ + vaP),
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qui peuvent prendre la forme

by+ by +(by— ma,)x™ 4 byx?
(2) =mx" 1 (ay+ ayx™ + azxP) + (m — 1)z" (hx + pa” + v xP),
2

Co+ €1 & - Cax™ + (C3— pay ) xP
=pxPt(ay+ a, ™ + azxP )+ (p — 1) 2P (hz + pa™ + v xP).

Nous sommes alors conduits a distinguer plusieurs cas.

Premier cas. — La courbe (1) n’est pas située sur une surface du second
degré. Dans ce cas (voir n°4), si I'on considére les termes de I'une quel-
conque des identités (2), on apercoit que les exposants de = dans ces termes
sont tous distincts. Par suite,

by=— ma,, 3= pa,;

quant aux autres coefficients de &, v, ¢, ils sont tous nuls, sauf @,. Donc la
courbe (1) n'admet alors qu’une transformation infinitésimale (homogra-
phique), a savoir

.Y of of
X‘f_ldx my +P"d_"

Deuxiéme cas. — La courbe (1) est une cubique gauche.
La courbe est alors (voir n° 4) une transformée homographique de la

courbe
a? x3
(3) Y= s=g
Un calcul analogue au précédent montre que la cubique (3) admet trois

transformations homographiques infinitésimales, 4 savoir

1’1 9o 9
X/ = +“’d Yo
Xzf—x +2y f+3ndf
_ 9f of . 9of of o 9f

En appliquant & cette cubique les '? transformations homographiques de
P’espace, on obtient donc une famille de cubiques dépendant de douze para-
metres essentiels, c’est-a-dire la famille totale des cubiques gauches de
P’espace. Nous parvenons donc a ce résultat déja annonce.
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L’ensemble des transformées homographiques de la cubique gauche

se compose de toutes les cubiques gauches de ’espace.
Troisiéme cas. — La courbe (1) est une biquadratique a point de re-
broussement. Nous avons vu qu’elle est alors une transformée homogra-

phique de

(4 y=at  s=at.

En répétant sur ces équations les calculs et raisonnements qui précedent,
on voit d’abord que la courbe (4) n’admet qu'une transformation homo-
graphique infinitésimale, ensuite que 'ensemble des transformées homogra-
phiques de (4) se compose de toutes les biquadratiques a point de re-
broussement.

Quatriéme cas. — La courbe (1) est tracée sur une surface de second
degré S et une seule.

La courbe est alors (voir n°® 4) une transformée homographique de

R | P70, 1,2,
(9) Y=, 3 =xb, ; R
,P¢—2,—1,§’§, 5947
ou de
mz—1,0,1,
(6) y=x", s=ay, 3 a
\ m;é_29 3 2 2

Remarquons d’ailleurs que, si une transformation homographique laisse
invariante la courbe considérée, elle laisse également invariante la surface S.
En effet, si elle transformait S en une autre surface S', la courbe en question
serait l'intersection de deux surfaces du second degré, ce qui est contraire a
I'hypotheése.

En ayant égard & cette remarque et aux inégalités (5) et (6), on trouve
facilement que la courbe (1) n’admet qu’une transformation homographique
infinitésimale.

Passons aux courbes V de la seconde classe, €’est-a-dire aux transformeées
homographiques de la courbe

(1) y=am, z =L, m3£o,1.
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Soit X/ une transformation infinitésimale (homographique), qui laisse
invariante cette courbe. Les relations

.n:’nxm-lz) x{:i

doivent étre vérifiées en chaque point de la courbe (1) : donc on doit avoir
les deux identités en
(2) bo+ byx + byx™ + by L x
2
=mam (4, +a, & + ax™+ ayLx) + (m —1)(Ax + pa™+ v L x)x™,
( @(co+ iz -+ cra™+ ¢y L)

(3) 2

=ay+ax + ayx™+ a; Lz +(x — xLx)(hx + pa™+ v L x).

En égalantles coefficients de ¢ , dansles deux membres de I'identité (5),
on trouve
by=mazx" '+ (m —1) 02,
d’ou

(o) b;=o, a;—o, ¢ —=o,

car, par hypothése,
mz~o, m,
L’identité (3) donne de méme
C3x == — Aax®— pam+t
ou

C3+ Ao -+ pzm=o,
ce qui exige que

(8) c;=h=p=o.
Les identités (2) et (3) deviennent alors

bo+ b2 + byx™ = mam-t(ay+ a,x + a,x™),

Z(Co+C1x + ™) = a,~+ ayx + a,x™.
De la on déduit, eu égard aux hypothéses faites sur 7,

by— ma, Co— ay, C2—0
et, par suite,
bo+ bz — m =1 (a, -+ a,x™),

» 2 — .
CLT = Ay + a,x™;
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d’ot

bo -+ bl(lf — mclxm+1’
c’est-a-dire
(y) by—=b,—=c,=o,
ce qui entraine les égalités

(6) Ay —= Ay — 0.
Les relations (), (8), (v), (¢) donnent
t=a,x, n=ma,y, {=a,.

.La courbe (1) n’admet donc que la transformation homographique infi-
nitésimale
Xf:x% —|—m3~'dt—£ + d—]:
Remarque. — Parmi les courbes V de la deuxiéme classe se trouvent les
transformées homographiques des hélices de I'espace. Ceci résulte de ce
que la courbe

(C) zy =1, x = €3,
qui correspond & m = — 1, se transforme, par la substitution linéaire
r=2a'+ iy, y=a' — iy, s =15,

.

en la courbe suivante
x' = coso, v'=sing, =0,

qui est évidemment une hélice.

Considérons enfin les courbes de la troisitme et de la quatriéme classe.
Ces courbes sont les transformées homographiques de la courbe

Yy = xs, z—=e%
ou de

2y = x?, z=—=e%,

Des calculs identiques & ceux qui ont déja été faits plusieurs fois mon-
trent que chacune de ces courbes n’admet qu’une transformation homogra-
phique infinitésimale.
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Quant aux courbes V de la cinqui¢me classe, elles ont déja été étudiées;
car les cubiques gauches appartiennent aussi a la premiére classe.

En résumé, toute cubique gauche admet trois transformations homogra-
phiques infinitésimales. Les cubiques gauches sont les seules courbes gau-
ches admettant plus d’une transformation homographique infinitésimale.

6. Caractéristiques des équations canoniques. — Nous avons déja vu
que les caractéristiques des équations canoniques (1), (1), (1LI), (IV) sont
des droites. Je me propose maintenant d’indiquer la nature des caractéris-
tiques des autres équations canoniques.

Caractéristiques de Uéquation

) ds +x;l;’—,ydx:<%>L, nZ-—1, 0, 1, 2.
Supposons d’abord
n 7= 3.

Les caractéristiques sont alors données par les équations (voir p. 79)

1 2 \™ o 53—
m(m—1) n 2n —1 m—1
m-—-——— ou n=— .
axz\m' gy n—i m—2
7 = o+ — — =
m—1 n n

Considérons, en particulier, la caractéristique correspondant aux va-
leurs
Elle a pour équations

n e n—1

(Co) (2n—1)3 =2y, y:er:‘ avec k— n—g_l <S> .
En lui appliquant toutes les transformations du groupe G de I'équa-
tion (V) (voir p. 81), on obtient toutes les caractéristiques de I'équa-
tion (V). Or on voit quela courbe G, est une courbe V de la premiére classe

. n n . P e

et de la famille < ) + 1) (voir p. 128). Donc les caractéristiques
n—I1 n—1I1

sont des courbes V de la premiére classe. Examinons si ces caractéristiques

peuvent étre des cubiques gauches; il faut, pour cela, que 'on ait une des

Fac. de T. — V. B.18
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égalités suivantes (p. 131) :
n

n I
= 2.

= =
2 n—I

n n I
—_— =,
2 n—iI

n—i ’ n-—1

Les deux derniéres égalités sont impossibles, eu ¢gard aux hypotheses

faites sur 7.
Les deux premiéres sont équivalentes aux suivantes

wie

— 1 J—
n=4, n=;:

Ainsi, pour que les caractéristiques de I'équation (V) soient des cubiques
» P q q q q

gauches, il faut et il suffit que

e

ou n —

i

yJ—

Dans tous les autres cas, les caractéristiques sont des courbes V de la

premiére classe et de la quatriéme catégorie (voirp.131). On peut dire que,
dans tous les cas, les caractéristiques sont des transformées homographi-
) grap

ques d’une loxodromie.
Remarquons d’ailleurs que les deux équations

ds+xdy —ydr
dx o

sont homographiquement semblables, car la somme des deux exposants est

dz dx

2
dy \ ds+axdy —ydz _(dy\?
’ —\dz

égale & I'unité (voir la note p. 82).
Soit maintenant

o=

n_—

Les caractéristiques sont alors (p. 80) données par
1
B=8(s—xzy)—2ay— L(a+8x), y—l—zy—l—m:o
Comme précédemment, il suffit, pour étudier la nature de ces courbes, de

considérer une caractéristique particuliére, par exemple
16y +1=o0, 8z +Lx=—o,
qui est une transformée homographique de

xy =1, =L,
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Donc les caractéristiques sont des courbes V de la deuxiéme classe ct en
particulier (voir p. 136) des transformées homographiques d'une hélice.

Caractéristiques de I’équation (VI).
ds +axdy —ydr e%

(VD) dx

SiI'on se reporte au calcul qui a été fait (p. 86), on voit que les carac-
téristiques de cette équation sont représentées par

F(a+oa2zx)—o2y(a—+2x)-+234+2xy=0,
() ,
Flla+ox)—2y=y.

Ces courbes peuvent étre considérées comme oblenues en appliquant les
transformations du groupe de I'équation (VI) a la caractéristique particu-
liere C,,

=4y
(Go) L2z —a?, 2xr—e " , (a=B=y=0).

Or cette derniére est une transformée homographique de 1’hélice
xr; = coSQ, Y=o, 5y =sing;
il suffit, pour le voir, de poser

. 1 . __ 4= x4y .
mts= oy mimis= oy W

On voit donc que les caractéristiques de I'équation ('VI) sont aussi des
transformées homographiques d’une hélice.

Caractéristiques des équations canoniques (VII) et (VII'). — Consi-
dérons d’abord I’équation

(VII') (ds +axdy —ydx) +4h(yds: — sdy)dz —=o, h=o, 1.

Les caractéristiques de cette équation peuvent étre représentées (voir

P- 94),

ay +z a—ax \" (1—n)y n N .
(1) \/ﬁ%—:(fx}"*'Z) =0, ay+ % By hn(n—1)=h(2n—1)2.
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Considérons en particulier les caractéristiques pour lesquelles
o= ')/ — O.
Ces caractéristiques sont représentées par
(2) nz=(1—n)xy, xy!~2" —const.

En appliquant & ces caractéristiques les transformations du groupe G de
l'équation (VII), (p. 95), on obtient (') toutes les caractéristiques de
équation (VII'). Or chaque courbe (2) est une transformée homogra-
phique de la courbe

5 =zy, xr =yl

Donc les caractéristiques de 1'équation (VII) sont des courbes V de la
premiére classe et de la premiére ou de la quatriéme catégorie. Cherchons
pour quelles valeurs de % les caractéristiques sont des cubiques gauches. Il
faut pour cela (voir p. 131) que I'une des égalités suivantes ait lieu

2n —1=—2, on—1=—14, an—1=1, 2n —1=2

ou

c’est-a-dire

h— ou h——3.

&l

Dans tous les autres cas, les caractéristiques sont des courbes V de la
premiére classe et de la quatriéme catégorie. On peut dire aussi que les ca-
ractéristiques sont, dans tous les cas, des transformées homographiques
d’une loxodromie.

Comme I'équation VII dérive de I’équation (VII) par une transforma-
tion homographique (p. r1oo), il en résulte que les caractéristiques
de (VII) sont aussi des transformées homographiques d'une loxodromie.

On peut obtenir simplement les caractéristiques de 'équation (VII) en
effectuant la transformation déja utilisée (p. 100) dans le systéme (2) ou
le systéme équivalent

n(xy +z)=xy, s =xdy —ydz,

(1) Cette opération fournit une famille de courbes ne contenant que trois paramétres
essentiels, car la famille (2) admet deux transformations infinitésimales de G, a savoir X, f

et X[,f.
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ce qui donne
(3)

n(x?+y?+ 32 1)=2'+ y?

di'=2a' dy’ —y'dz,

et en appliquant ensuite aux courbes (3) toutes les transformations du

groupe de (VII).

Caractéristiques de U’équation canonique (VIII). — Sil’on se reporte
au calcul quia été fait (p. g5), on voit que les caractéristiques de 'équa-
tion (VIII') peuvent étre représentées par

s S5, s ayes
\/xy—i—z ay+3z  (xy-+3)

:y.

~__ . . . P I X
En remplacant dans ces équations x, y, 5 respectivement par i

on obtient les caractéristiques de I'équation (VIII); on trouve ainsi

ay—z =
x4+ a e — 1 xy + 3
- ’

Vay o+ zra (@wrap !

En particulier, considérons les caractéristiques pour lesquelles
a=y=o,
c’est-a-dire les courbes représentées par
(Go) xy +s4+x=o0, e\ xz=const

En appliquant & ces courbes les transformations du groupe de I'équa-
tion (VIII), on obtient toutes les caractéristiques de 1’équation ( VIII). Or,
les courbes G, sont des transformées homographiques de la courbe

3=y, xr=-eY.

Donc les caractéristiques de I'équation (VIIT) sont des courbes V de la
troisi¢me classe.
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(1)

(1IT)

(IV)

(V)

(VI)

DE TANNENRERG.

TABLEAU DES EQUATIONS CANONIQUES.

dz? + dy*+ dx? = o,

(&,_ n_ iiz
dz) — dz’

nz —1,0,1,2,

ds +zdy —ydz _ (dy\”
dx —\dz /)’

ds +xdy —yde iy

dx
— e*r,
dx

(VI) a(dz +ady —ydz)?+(dz +yds —sdy)+ (dy +sdxr — xds)*=o,

(VIII)

a o, azZ1.

(ds +ady —ydz)*+bhdz(dz +y ds —zdy) =o.

Note. — L’équation (VII) peut étre remplacée par la suivante

(ds +zdy —ydz) +4h(yds —sdy)dz =o, h#o, 1.
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NOTE

REDUCTION DE PLUSIEURS EQUATIONS CONNUES A LA FORME CANONIQUE. TRANS-
FORMATION PONCTUELLE FAISANT CORRESPONDRE AUX TANGENTES D'UNE SURFACE
DU SECOND DEGRE LES DROITES RENCONTRANT UNE CONIQUE.

1. Comme exemple d’équation aux dérivées partielles admettant un groupe, je
choisirai I'équation pour laquelle les normales aux surfaces intégrales sont tan-
gentes & une sphére (1)

(1) (2 —px—qy)P=0-+p2+ q2)(x2+~y2+32—1). (MoxGE ).

Je me propose de montrer que cette équation dérive par une transformation
ponctuelle de I'équation canonique

(1) 1+ p2+ g2=o.

A cet effet, je considére I'équation associée a I'équation (1), qui est évidemment
(2) dx®+ dy? + dz = (v do + y dy + 3 dz)?.

Effectuons la transformation
(3) x =rsinfcosy, y =rsinbsind, % = rcosb,

L’équation (2) se change en la suivante

dr?—+ r? di? + r2sin20 d{2 = r2 dr?
ou

—_ 2 )
(%) T2 et do? o sin?6 dy2 = o.

r2

Posons
t/I —r2 dr — (_i_e ,

r

c’est-a-dire

. .1 —

(5) Larcsm;—q-‘/l—r?:{p.
L’équation (4) devient

(6) dp?—+ p? dB2+4- p? sin20 dY2 = o

(1) Je suppose le centre de la sphére & P'origine et le rayon égal a l'unité,
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ou bien

(1) dx"?+ dy'* + dz'?= o,

en posant

(7) z'=psinfcosy, y =psinbsiny, 3 = pcos0.

Si donc on effectue dans I'équation canonique (I) la transformation ponctuelle

o
N~ O
~N o

<,

ol p et 7 sont définis en fonction de z, ¥, 5 au moyen des relations

. 1 —_—
iare sin+ Vi—r:

r=yzityr+ a2, s=e ,

on trouve précisément I’équation (2 ). Ce que nous voulions démontrer.

Cette réduction de I'équation (2) a la forme canonique permet d’intégrer cette
équation.

Je ne parlerai pas des résultats de cetle intégration, qui sont connus depuis
longtemps.

2. Parmi les équati;ms, qui sont des transformées ponctuelles de
dz?+ dy?+ dz?= o,
se trouvent évidemment toutes les équations du second degré non décomposables
Sfldx, dy, dz) = Adxr+ A'dy?+...=o,

a coefficients constants.
Cela posé, considérons I’équation aux dérivées partielles pour laquelle les tan-
pose€, qu p q
gentes aux courbes intégrales sont les normales aux surfaces homofocales

22 2 2
& a+u+b+u+c—l—u_x()'
Cette équation a pour associée la suivante
(2) ader(yds—yds)+bdy(sde —xds)+cdis(xdy —ydr)=o

ou bien
(b—c)xdyds+ (c—a)ydsdr + (a—b)zdrdy =o,

(1) Consulter, au sujet du complexe déterminé par ces normales, le Mémoire publié par
M. Darboux dans le Bulletin des Sciences mathématiques, t. 11, année 1871.
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ou encore

(3) (b—c)?+(c—a)—‘%+(a——b)%=o.

Par la transformation
.Z‘,=.Q{1/‘, )"=-ﬁ,}’y 5'2(57
I'équation (3) se change en la suivante

L, b—ec c—a a—b _ P ¢ g foga
) P @ gy —o ou (b—c)dy' dz'+ (¢ —a) dz' do'+(a—b) dx' dy' = o.

En vertu de la remarque que nous venons de faire, cette équation dérive par
une transformation ponctuelle de I’équation

dz">+ dy'?+ dz?=o.

Donc 'équation aux dérivées partielles considérée est une transformée ponc-
tuelle de I'équation canonique
1+ p2+g?=o.

L’équation (2) peut aussi étre considérée comme définissant un complexe té-
traédral, les faces du tétraédre étant les trois plans de coordonnées et le plan de
infini. Tout complexe tétraédral est d’ailleurs une transformée homographique de
celui-la. Donc :

Toute équation aux dérivées partielles, pour laquelle les tangentes aux
courbes intégrales déterminent un complexe tétraédral est une transformée
ponctuelle de Uéquation canonique

1+p2+g2=o0.

3. Transformation ponctuelle faisant correspondre aux tangentes d’une
surface du second degré les droites rencontrant une conique. — Enfin consi-
dérons I’équation aux dérivées partielles associée a I'équation

(1) dae?+dy*+dzt+(yds—szdy)+ (sdr—2dzs)*+(xdy —ydr)=o0 (1)

Les tangentes aux courbes intégrales de cette équation sont tangentes a la

(1) Cette équation peut aussi s’écrire
(dz+yds—zdy)2+ (dy +sdr —zdz)2+ (dzs+x dy — y dx)2=o.

C’est sous cette forme que nous 'avons rencontrée plusieurs fois dans ce travail (en particu-
lier, voir p. 100).

Fac. de T. — V. Blg
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sphére
(2) 2?4 yi4 224 1=0.

. Ee . 2ot s > M ) T
Je dis que I'équation aux dérivées partielles considérée dérive encore de
e . o
I’équation 1 + p2+- g2= o, par une transformation ponctuelle, ou, ce qui revient
auméme, que I'équation (1) est une transformée ponctuelle de I'équation

(3) dX24-dY?2+ dZ72 = o.

In effet, effectuons dans 1'équation (1) la transformation ponctuelle
VA
»a=gr U=s(X.Y,2),

» désignant une fonction indéterminée. L’équation (1) a pour transformée
(dX2+ dY? + dI2+ dU2)(X2+ Y2+ Z2+ U2) — (XdX+YdY+ ZdZ + U dU )= o.

Pour que cette équation soit identique a I'équation (3), il suffit que U satisfasse
a I’équation

(X2 Y24 2+ U2) dU2 = (X dX + Y dY + ZdZ + U dU )2

ou

dU = dy/X2 - Y2+ 72+ L2}

il suffit donc de prendre U de maniére que

Vi Y2 224+ U2= U —1,
c'est-a-dire
N2 Y2 72—
- .

(5) —U=

L fonction U étant délerminée par I’équation (5), la transformation (4) change
P’équation (1) en I’équation (2), ce que nous voulions démontrer.

Remarque. — La transformation précédente offre ceci de curieux, qu’elle
change les droites tangentes a la sphére (2) en droutes rencontrant le cercle
imaginaire de l'infini. Cette transformation est un cas particulier d’une transfor-
mation plus générale, faisant correspondre aux tangentes d'une surface du second
degré S les droites rencontrant une section plane C de cette surface. Voici cette
transformation (*).

Considérons la transformation ponctuelle qui fait correspondre a chaque point
M(x, y, 5) de Despace les sommets m et m' des deux cénes qui passent par la

(1) Cette transformation a été utilisée par M. Darboux dans ses recherches sur les
cyclides.
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conique C et la conique K intersection de S avec le plan polaire de M (fig. 12).
Cette transformation jouit bien de la propriété en question.

En effet, soit A le pole du plan de la conique C. Les deux points m, m’ doivent
évidemment se trouver sur l'intersection des plans tangents & la surface S aux
points d’intersection des deux coniques C et K, c’est-a-dirc sur la droite con-
juguée de l'intersection des deux plans C et K. Or cette droite est précisément la
droite AM : donc les deux points m, m' se trouvent sur AM. Cela posé, consi-
dérons une droite quelconque MN tangente en N & la surface S et faisons passer
un plan par le point A et la droite MN. Ce plan coupe la surface S suivant une

Fig. 12.

conique H et la conique C en deux points P et Q. 1l résulte immédiatement de la
remarque qui vient d’étre faite que les points m et m' qui correspondent & un
point M de la droite MN doivent se trouver aux points d’intersection de AM avec
les droites NP et NQ. On peut donc dire que la transformation considérée fait
correspondre aux points de la droite MN les points des deux droites NP et NQ et,
par suite, & 'ensemble des tangentes de la surface S, 'ensemble des droites ren-
contrant la conique C.

Supposons en particulier que la surface S soit la sphére représentée par I'é-
quation

() B2 241 =0,

et que la conique C soit le centre imaginaire de I'infini. Soient m(z, y, ) et
M(X, Y, Z) deux points correspondants. Pour trouver les relations qui lient les
six quantités (z, ¥, 5, X, Y, Z), il suffit d’écrire que la sphére de rayon nul

E=X)p+(n =Y+ ({—Z)=0

passe par lintersection de la sphére S avec le plan polaire du point M, c'est-
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a-dire que les deux équations

2t +yn+3{+1=0,
E—=XP+(n—Y)2+ (L —Z)P=8+n+ L+

représentent le méme plan. On obtient ainsi les équations

P
7T —=xr—Yy -7’

Il

w8
IR
u

qui sont identiques, comme je I'ai annoncé, aux équations (4) et (5).

ETC.
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