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DES

PRINCIPES FONDAMENTAUX DE L'HYDROSTATIQOUE

PAR M. P. DUHEM,

Maitre de Conférences a la Faculté des Sciences de Lille.

I. — Introduction.

1. Les principes fondamentaux de 1’Hydrostatique sont trop connus
pour qu'il puisse étre question, dans un écrit relatif & ces principes, de dé-
couvrir de nouvelles propriétés des fluides en équilibre. Le seul but que
I'on puisse se proposer est de relier ces propriétés d’'une maniére précise et
rigoureuse au principe qui domine la Statique tout entiére, c’est-i-dire au
principe des mouvements virtuels.

Je n’ai pas besoin de rappeler comment Lagrange, dans la Mécanigue
analytique, a montré le premier que le principe des mouvements virtuels
renfermait toute I’'Hydrostatique, précisant ainsi ce que Pascal avait déja
indiqué dans le Traité de l’Equilibre des ligueurs. De nos jours, M. J.
Moutier (*) a ajouté a I'analyse de Lagrange un perfectionnement impor-
tant; il a montré qu’en vertu du principe des mouvements virtuels, la pres-
sion devait étre normale a I’élément sur lequel elle agit, proposition
qu’avant lui on admettait comme une hypothése indépendante du principe
des vitesses virtuelles. C’est de la méthode de M. Moutier que nous nous
sommes inspirés dans ce travail.

Avant de chercher a déduire du principe des mouvements virtuels 'en-
semble des lois de 'Hydrostatique, nous allons rappeler briévement I’énoncé
de ce principe.

2. On sait que 'on donne le nom de déformation virtuelle d’un systéme
matériel & toute déformation infiniment petite compatible avec les liaisons

(1) Lecons professées a la Faculté des Sciences de Lille en 1888.
(?) J. MouTiER, Cours de Physique, t. 1.
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de ce systéme. Lorsqu’un systéme subit une déformation virtuelle, chacun
de ses points subit un déplacement qui porte le nom de moucement virtuel
de ce point.

Considérons un premier mouvement par lequel un point matériel passe
d’une position initiale (z, y, z) & une position finale infiniment voisine
(z + oz, y + 8y, 5 + 83); puis un second mouvement par lequel le méme
point matériel passe de la méme position initiale & la position finale
(¢ — 8z, y — 8y, s — 8z); ces deux mouvements sont dits inverses I'un de
l'autre; deux déformations infiniment petites sont inverses I'une de 'autre
lorsque les mouvements qui composent 1'une sont respectivement inverses
des mouvements qui composent 'autre.

Lorsque la déformation inverse d’une déformation virtuelle est elle-
méme une déformation virtuelle, chacune d’elles est dite répersible. 11
existe des systémes dont toute déformation virtuelle est réversible : tel est,
par exemple, le systéme formé par deux points matériels assujettis a de-
meurer & une distance invariable I'un de I'autre. On dit alors que ces sys-
témes ne renferment que des haisons ¢ résistance bilatérale. D’autres
systémes (') admettent des déformations virtuelles non réversibles. Par
exemple, dans un systéme formé par deux points matériels que réunit un
fil flexible et inextensible, on peut faire que la distance mutuelle qui sépare
ces deux points lorsque le fil est tendu diminue d’une quantité infiniment
petite; on impose alors au systéme une déformation non réversible. Lors-
qu'un systeme admet des déformations virtuelles non réversibles, on dit
qu'il renferme des liaisons @ résistance unilatérale.

Le principe des mouvements virtuels s’énonce de la maniére suivante :
Pour qu’un systéme matériel soit en équilibre, il faut et il suffit que,
dans toute déformation virtuelle de ce systéme, la somme des travaux
effectués par les forces données (*) soit nulle ou négatice. 1l est évident
que cette somme ne peut étre que nulle lorsque la déformation considérée
est réversible (?). 4

(1) Cette distinction est due a Gauss (Gauss Werke, t. V, p. 27. Voir aussi C. NEUMANN,
Ueber das Princip der virtuellen oder facultativen Verrickungen, Leipzig, Berichte
Math. Phys., t. XXI, p. 257; 1880). Les dénominations employées sont dues & M. Clausius
(La fonction potentielle et le potentiel, trad. Folie, p. 106) qui a exposé d’une maniére
trés précise les idées de Gauss sur le principe des mouvements virtuels.

(2) Le mot force donnée s'oppose ici a force de liaison.

(3) Sur cet énoncé du principe’des mouvements virtuels, voir Gauvss, Werke, t. V, p. 27
et 35; STuRM, Mécanique; Crausius, La fonction potentielle et le potentiel, trad. Folie,
p. 108; C. NEUMANN, Ueber das Princip der virtuellen oder facultativen Verruckiingen.
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Ce principe ainsi énoncé ne conduit & des conséquences exactes que si
les liaisons imposées au systéme n’entrainent aucun frotlement. Dans le
cas ol 'on admet Pexistence du frottement, on doit regarder les conditions
d’équilibre fournies par le principe des mouvements virtuels comme demeu-
rant toujours suffisantes, mais comme n’étant plus nécessaires.

3. Dans un grand nombre de cas, la force donnée qui agit sur un point
matériel quelconque (z, y, z) du systéme est déterminée en grandeur et en
direction par les égalités

aU
X_a—;,
Y— W’
Z:QE,

X, Y, Z étant les composantes suivant les axes coordonnés de la force en
question, et U une fonction uniforme de @, y, z. La fonction U prend alors
le nom de fonction des forces.

Il arrive aussi, dans un grand nombre de cas, que 'on peut écrire, pour
toute modification virtuelle du systéme, I’égalité suivante

2‘(X6x+Y3y+Z65):—69,

¢Q désignant la variation que subit, par I'effet de la déformation virtuelle
considérée, une certaine fonction Q déterminée d’une maniére uniforme
lorsqu’on connait les coordonnées de tous les points du systéeme. On dit
alors que le systéme admet un potentiel, et que Q est ce potentiel.

Lagrange a énoncé sur les systémes qui admettent un potentiel une im-
portante proposition, qui a été ensuite rattachée d’une maniére rigoureuse
aux principes de la Dynamique par Lejeune-Dirichlet (*). Cette proposi-
tion est la suivante :

Si un systéeme admet un potentiel et si, pour un ceriain élal du
systéme, ce potentiel présente un minimum, cet élat est un état d’équi-
libre stable.

Telles sont les propositions de Mécanique dont il nous était nécessaire de

(1) LesevNe-Diricnier, Journal de Crelle, t. XXXII, p. 85; 1846.
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rappeler 1'énoncé avant d’aborder l'exposé des principes de 1'Hydro-
statique.

II. — Définitions.

4. Considérons un corps remplissant un certain volume. En un point M,
de coordonnées z, y, z, ce corps a une certaine densité p, en sorte que la
masse d'un élément de volume dp renfermant le point M a son intérieur a
pour valeur p do. Cette densité p peut étre la méme quel que soit le point M;
le corps est alors hiomogéne. Elle peut aussi varier d’'un point a un autre; le
corps est alors Aétérogéne. Dans ce dernier cas, nous supposerons ou bien
que la densité p est une fonction continue de z, y, z, ou bien qu’elle est dis-
continue en tous les points de certaines surfaces.

Envisageons un élément du corps : tout déplacement, toute déformation
du corps doit laisser sa masse constante ; mais son volume et partant sa den-
sité peuvent dépendre des circonstances dans lesquelles il se trouve placé.
Le corps est dit alors compressible. 11 est incompressible si chacun de ses
éléments de masse garde un volume invariable.

Un corps auquel on peut imposer tous les déplacements virtuels, toutes
les déformations virtuelles qui laissent invariable le volume de chacun de
ses éléments de masse est dit fluide; le fluide est incompressible si ces dé-
formations virtuelles sont les seules qu’on puisse lui imposer; il est, au
contraire, compressible si I'on peut lui imposer certaines déformations vir-
tuclles qui fassent varier le volume de ses éléments de masse.

Un fluide peut étre en contact par une partie de sa surface avec un solide
invariable. Dans ce cas, on ne pourra lui imposer que des modifications
virtuelles laissant invariable la forme de sa surface de contact avec le solide.

Nous ne traiterons pas dans cet écrit de I’équilibre d'un systéme formé
par un fluide et un solide variable de position en contact avec ce fluide.
L’étude de cet équilibre constitue le probléme des corps flottants.

Nous admettrons qu’un fluide peut étre soumis & deux sortes de forces :

1° Des forces appliquées a ses divers éléments de masse; si do est le vo-
lume d’un semblable élément, et ¢ la densité en un point de cet élément,
nous désignerons les composantes de la force qui agit sur cet élément par
eXdv, oY do, pZde. X, Y, Z pourront étre des fonctions continues des
coordonnées x, y, 5 d'un point de 'élément dp, ou bien, comme la den-
sité p, présenter des surfaces de discontinuité;
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2° Des forces appliquées aux divers éléments de la partie déformable de
la surface qui limite le fluide, ou plutdt aux divers éléments d’une mem-
brane infiniment mince et parfaitement flexible, de densité arbitraire, qui
serait appliquée sur cette surface. Si dw désigne 'aire de 'un des éléments
dont il s’agit, et P dw la force qui s’exerce sur cet élément, nous dirons que
P est la grandeur de la pression en un point de I'élément dw. La direction
de la force P dw sera la direction de cette pression.

Nous allons chercher & quelles conditions un fluide soumis a ces deux
classes de forces peut étre en équilibre.

III. — Conditions d’équilibre.

5. Sinous imaginons un fluide en équilibre, sa densité en chaque point
a une valeur déterminée. Nous pouvons supposer que I'on impose & ce
fluide une déformation virtuelle dans laquelle chacun des éléments de masse,
tout en étant déplacé et déformé, gardera sa densité et partant son volume.
Sile fluide estincompressible, les déformations virtuelles de ce genre seront
seules possibles, et nous obtiendrons toutes les conditions d’équilibre en
appliquant le principe des mouvements virtuels & tous les déplacements de
cette sorte que 'on peut imaginer. Si le fluide est compressible, la classe
de déformations virtuelles que nous venons de définir ne comprend plus
tous les déplacements virtuels possibles, car on pourra en imaginer d’au-
tres dans lesquels le volume des éléments de masse déplacés subit des va-
riations; en appliquant donc le principe des mouvements virtuels a toutes
les déformations de la premiére classe, nous obtiendrons encore, dansle cas
des fluides compressibles, des conditions d’équilibre, mais nous pouvons
fort bien ne pas les obtenir toutes. Nous n’envisagerons pour le moment
que le cas des fluides incompressibles; nous reviendrons plus loin sur le cas
des fluides compressibles.

6. Sur la surface déformable d’un fluide, prenons deux éléments : 1'un,
AB (fig. 1) de surface w; l'autre, A’B’ de surface »’. De I'élément AB a
I'élément A’B’ tragons un canal infiniment déli¢, de forme quelconque, com-
pris en entier a l'intérieur du fluide. Ce canal est tracé de la maniére sui-
vante. On joint un point du contour de AB & un point du contour de A’B’
par une ligne continue présentant une tangente en chaque point, sauf peut-
¢tre en un nombre limité de points séparés les uns des autres par des lon-
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gueurs finies. On prend une surface qui soit la projection de AB sur un plan
normal a la courbe au point ot elle rencontre AB. On imagine que cette
surface se déplace, de maniére qu'un des points 0 de son contour décrive la

courbe et qu’elle reste normale & la courbe, et, en méme temps, qu’elle se
déforme d’'une maniére continue en restant infiniment petite. Lorsque le
point 6 arrive en un point ot Porientation de la tangente a la courbe subit
une discontinuité, on suppose que la surface tourne autour du point 0 jus-
qu’a étre devenue normale au nouvel arc de courbe. Enfin la déformation
de la surface est telle qu’elle devienne 4 la fin la projection de A’B’ sur un
plan normal a la courbe.

Dans cet éerit, le mot génératrice du canal s’applique 4 la courbe en
(uestion, Prolongeons les génératrices du canal que nous venons de tracer
d'une longueur infiniment petite au dela de I'élément A’B’. Par des sections
infiniment voisines les unes des autres, ab, cd, ef, ..., mn, partageons ce
canal en tranches d’égal volume; au dela de A’B’ menons une derniére sec-
tion pq, telle que le volume compris entre A’B’ et pg soit égal au volume de
chacune des tranches précédentes.

Cela ¢tant, imposons au fluide une déformation définie de la maniére sui-
vanle : le fluide qui occupait la tranche ABab vient occuper la tranche abed ;
le fluide qui occupait cette derniére tranche vient occuper la tranche cdef,
et ainsi de suite jusqu’a ce que le fluide de la tranche mnA’B’ soit refoulé
dans la tranche A'B’pgq.

Dans cette déformation, la masse fluide qui occupe chaque tranche change
de forme et de position sans changer de volume, en sorte que la restriction
que nous sommes convenus d’'imposer aux modifications virtuelles est res-
pectée; en outre, la modification virtuelle que nous venons de considérer
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est une modification réversible; car, en reprenant le systéme dans son état
initial, on pourrait, au lieu d’imposer & chacune de ses parties le déplace-
ment qu’elle a subi dans la modification précédente, lui imposer un dépla-
cement inverse. Par conséquent, la somme des travaux effectués durant
cette déformation par toutes les forces données appliquées au fluide doit,
pour I’équilibre, étre égale & O.

Calculons cette somme :

Soit do le volume de I'une quelconque des tranches en lesquelles le filet a
été partagé. Soit p la densité en un point d'une de ces tranches, de la
tranche cdef par exemple. La force qui agit sur cette tranche élémentaire
a pour composantes pX dv, pY do, pZdp. Désignons par dz, dy, dz les
projections sur les axes de coordonnées de la longueur infiniment petite com-
prise entre le point d’application de la force qui agit sur la tranche cdef et
le point d’application de la force qui agit sur la tranche suivante. Le travail
de la force que nous venons de considérer sera

pdv(Xdzx +Ydy +7ds).

Pour obtenir le travail des forces appliquées aux divers éléments de volume
du fluide, nous aurons & faire la somme d’autant de termes analogues a celui-
la qu’il y a de tranches entre AB et A’B’. Cette somme aura pour valeur

do fp(Xdx + Y dy + 7L ds),

P'intégrale étant une intégrale curviligne étendue & une ligne qui passe par
tous les points d’application des forces qui sollicitent les éléments de volume
du canal considéré. On peut, si I'on veut, supposer que cette intégrale
s’étend & une génératrice ASA’ du canal, génératrice qui différe infiniment
peu de la ligne précédente.

Prenons un point O sur I'élément AB; par ce point, menons une paralléle
OP a la direction de la pression en un point de 'élément AB, une normale
ON aI’élément AB, normale dirigée vers 'intérieur du fluide, enfin une pa-
ralléle OD & la tangente en A & la ligne AA’, cette tangente étant menée
également vers I'intérieur du fluide.

Prenons de méme un point O’ sur ’élément A’B’. Par ce point menons
une paralléle 0P ala direction de la pression en un point de I'élément A’ B,
une normale O’N’ a la surface A’B’, cette normale étant dirigée vers l'inté-
rieur du fluide, enfin une paralléle O'D’ 4 la tangente en A’ 4 la ligne AA’,
cette tangente étant dirigée également vers l'intérieur du fluide.
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La force qui agit sur I'élément AB = o a pour valeur Pw. Si nous dé-
signons par ¢ la longueur dont se déplace le point O, parallélement a OD,
lorsque AB vient en ab, le travail effectué par cette force est

P we cos(POD).

La force qui agit sur I’élément A’B’= o’ a pour valeur P'w’. Si nous dé-
signons par ¢’ la longueur dont le point O’ se déplace parallélement a D' O,
lorsque A’B’ vient en pq, le travail effectué par cette force est

—P'w'e cos(P'O'D’).

La somme des travaux de toutes les forces appliquées au liquide est
maintenant aisée & former. En égalant cette somme 4 O, nous trouvons
Pégalité

N
Poc cos(POD) — Plu/el cos (P'O'D') + dvf o(Xda + Y dy +Lds)=o.
A
Cette égalité peut se transformer de la maniére suivante :

Si nous désignons par N le diédre formé par les demi-plans PON, DON,
et par N’ le di¢dre formé par les demi-plans P’O’N’, D’ O’N’, nous aurons

cos(POD) =cos(PON) cos(DON) -+ sin(PON) sin(DON) cosN,
cos(P'O'D’) = cos(P'O'N") cos (D'O’N’) + sin (P'O'N’) sin(D'O’'N’) cosN'.

D’autre part, nous aurons
dv = we cos (DON) = '’ cos (D’ O'N’).
L’égalité précédente deviendra donc, en supprimant le facteur do,

(1) P [cos(PON) —+sin(PON) tang(DON) cosN ]
— P'[cos(P'O'N") + sin (P'O'N") tang(D'O’'N’) cosN']

. A’
—i—f e(Xdx +Ydy +71ds)=o.
A
Telle est I'équation fondamentale que nous allons discuter.

7. Sur la ligne AA’ prenons deux points M et M’. Soit S un point de cette
ligne située entre M et M’. La ligne AA’ ayant été choisie a volonté al'inté-
rieur du fluide, on aurait évidemment pu substituer a I'arc MSM’ un autre
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arc MS'M’, quel que soit d’ailleurs cet arc, pourvu seulement qu'il soit tout .
entier situé a 'intérieur du fluide. On aurait pu recommencer les calculs
précédents en substituant un canal ayant pour génératrice la ligne
AMS' M'A’ au canal ayant pour génératrice la ligne AMSM'A’. Au lieu de
I'équation (1), on aurait obtenu une nouvelle équation dont les deux pre-
miers termes eussent été identiques aux deux premiers termes de I'équa-
tion (1). Seulement le troisieme terme, au lieu d’étre I'intégrale curviligne

fp(de+Ydy+st),

prise le long de la ligne AMSM'A’, eiit été la méme intégrale curviligne
prise le long de la ligne AMS' M’A’; ces deux intégrales doivent étre iden-
tiques. ‘

Si, pour abréger, nous désignons l'intégrale curviligne

fp(de+Ydy+Zd5),

prise le long d’une certaine ligne par la seule désignation de cette ligne
mise entre parenthéses, nous pourrons écrire, d’aprés ce qui précéde,
N (AMSM/A’) = (AMS'M'A’).

Mais on a

(AMSM/A’) = (AM) + (MSM') -+ (M’A’),

(AMS'M/A’) = (AM) 4+ (MS'M’) 4 (M'A’).
On a donc

(MSM") = (MS'M"),

égalité qui peut s’énoncer ainsi :

L’intégrale curviligne
fp(de—i— Ydy + Ldz),

prise le long d’une ligne quelconque située enticrement & Uintérieur du
flurde a une valeur qui peut bien dépendre de la position des extré-
mités de celle ligne, mais non de sa forme.

Les propriétés connues des intégrales curvilignes permettent de trans-
former cet énoncé en cet autre :

Il existe une fonction W de x, y, = uniforme, finie el continue en tous
IV. — Fac. de T. C.o
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les points de Uespace occupé par le fluide, telle que Uon ait

/ oW
pX=— dor
(2) pY=— %%V’
PZt—%V’

ce qui peut encore s’exprimer en disant que les forces qui agissent sur les
particules du fluide admettent une fonction des forces — W.

Cette premiére condition, sans laquelle I'équilibre du fluide est impos-
sible, a été, on le sait, découverte par Clairaut M.

8. Désignons par W la valeur de la fonction W (=, y, z) au point A et
par W' la valeur de la méme fonction au point A’. Nous aurons

A
f p(Xdzx +Ydy +72Zds) =W —-W/,
A

et I'égalité (1) deviendra
(3) P [cos(PON) <+ sin(PON) tang(DON) cosN ]+ W
— P'[cos(P'0'N) + sin (P’ O’N') tang (D' O'N') cosN'] — W' = o.

La forme de la ligne AA’ est arbitraire; les directions OD, O’D’ sont
donc arbitraires. L’égalité (3) doit rester vraie quelles que soient ces deux
directions. Ces deux directions dépendent des quatre variables arbitraires
(DON), N, (D'O'N"), N". Les quantités P, P', W, W’ sont indépendantes

de ces variables. Par conséquent, on voit que, si P n’est pasnul, la quantité
cos(PON) + sin(PON) tang (DON) cos N
doit étre indépendante des angles N et (DON), ce qui exige que 1'on ait
sin(PON) = o,
et que, si P' n’est pas nul, la quantité

cos(P’O’N") + sin(P'O’N’) tang (D' O'N’) cos N’

(1) CramAuT, Théorie de la figure de la Terre.
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doit étre indépendante des angles N’ et (D’O’N"), ce qui exige que l'on ait
sin(P'O'N') = o.

On voit donc que toute pression qui n’est pas égale a O doit étre nor-
male a l’élément auquel elle se rapporte. Clest la proposition démontrée
pour la premiére fois par M. J. Moutier.

Jusqu’ici P et P’ représentaient deux quantités non affectées de signe.
Maintenant que nous savons qu'une pression est normale & I'élément auquel
clle se rapporte, comptons comme positive une pression dirigée vers l'inté-
rieur du fluide, comme négative une pression dirigée vers I'extérieur. Si
nous observons que, dans le premier cas, cos(PON) a pour valeur 1 et que,
dans le second cas, cos(PON) a pour valeur — 1, nous voyons sans peine
que le produit de la valeur absolue de la pression par cos(PON) est tou-
jours égal & la pression en grandeur et en signe. Moyennant cette re-
marque, jointe aux résultats précédents, I'égalité (3) peut s’écrire

%) | P+W=P+W,
et s'énoncer ainsi :

La somme de la pression et de la fonction W (i, y, z) a la méme va-
leur en tout point de la surface déformable qui limite le fluide.

9. La modification virtuelle dont nous avons déduit les résultats préceé-
dents était une modification réversible. Nous allons achever de déterminer
les conditions d’équilibre en considérant une modification non réversible.
YVoici comment nous définirons cette modification.

Nous prendrons un filet infiniment délié ( fig. 2) partant du contour d’un

¢lément de surface MN pris en un point quelconque a l'intérieur du fluide
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et aboutissant & un élément AB de la surface déformable. Nous prolongerons
méme ce canal un peu au dela de ’élément AB.

Par des sections infiniment rapprochées les unes des autres, ab, cd,
ef, ..., mn, nous partagerons ce filet en tranches infiniment petites de méme
volume. Nous ménerons méme au dela de AB une derniére section pg, dé-
tachant une tranche ABpg de méme volume que les précédentes. Puis nous
amenerons le fluide de la tranche MNab dans la tranche abed, le fluide
de cette derniére dans la tranche cdef, ... jusqu’au fluide de la tranche
mnAB qui viendra occuper la tranche ABpgq.

Dans cette modification, toutes les masses élémentaires qui ont été dé-
placées ont conservé leur volume, comme dans la modification précédem-
ment étudiée; seulement la continuité du fluide a été détruite; la tranche
MNab, pleine avant la modification, est vide aprés. La nouvelle modifica-
tion n’est pas réversible; si nous ramenons le systéme dans I’état ou il était
avant cette modification, il ne nous sera pas possible de donner ensuite aux
diverses parties qui le composent un déplacement inverse de celui que nous
leur avons donné dans cette modification, car le fluide de la tranche abMN
serait empéché de se mouvoir par le fluide qui environne le filet. Par con-
séquent, selon la remarque de Gauss, lasomme des travaux effectués durant
cette modification par les forces qui agissent sur le fluide n’est qu’exception-
nellement égale a O; en général, elle est négative.

Cette somme se compose :

1° Du travail des forces appliquées aux diverses tranches du filet. Sil'on
désigne par do le volume de I'une quelconque de ces tranches, ce travail a
pour valeur )

A
dvf p(Xdx +Ydy+ ZLds)
M

ou bien, en désignant par W la valeur de la fonction W(z, y,3) en A et
par W' la valeur de la méme fonction en M,

de(W'— W),
20 Du travail de la force Pw appliquée a I'élément AB. Soit ¢ la lon-
gueur A p. Par un point O de AB, menons une normale OP a AB et une

paralléle OD & la tangente en A & la courbe MA, ces deux lignes étant di-
rigées vers l'intérieur du fluide. Le travail de la force Pw sera

— Pwe cos(POD),
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P étant affecté d’un signe conforme & la convention arrétée précédemment.

Mais we cos(POD) représente le volume do de la tranche ABpg. En écri-
vant donc que la somme des travaux virtuels effectués dans la modification
considérée est nulle ou négative, on trouve

do (W' — W —-P)<o.

Or do est essentiellement positif. Cette condition peut donc étre rem-

placée par la suivante
(5) P+W—W'o.

Le point M, auquel se rapporte W', est un point quelconque pris a 'inté-
rieur du fluide; choisissons-le infiniment voisin du point A; W — W’ de-
viendra infiniment petit, puisque la fonction W est continue a I'intérieur du
fluide, et la condition (5) deviendra

P>o,

ce qui, en vertu de nos conventions sur le signe de la pression, signilie que,
si la pression en un point de la surface déformable d’un fluide en équi-
libre n’est pas nulle, elle est dirigée vers Uintérieur du fluide.

D’autre part, désignons par W, la plus grande valeur que prenne W 4
I'intérieur du fluide (en admettant qu'il en existe une), et supposons que le
point M soit I'un des points ou W atteint la valeur W,. En vertu de la
condition (5), nous devrons avoir

(6) P+W2>W,.

La valeur constante que la somme de la pression et de la fonction W
prend sur la surface déformable du fluide est au moins égale a la va-
leur la plus grande que la fonction W prenne a Uintérieur du fluide.

10. Les deux classes de modifications virtuelles que nous venons d’étudier
nous ont fourni un certain nombre de conditions d’équilibre. Ces conditions
sont nécessaires. Sont-elles suffisantes? Nous allons faire voir que, si I'on
impose aux divers éléments de masse du fluide une déformation et un dépla-
cement quelconques qui ne fassent pas varier le volume de ces éléments, le
travail effectué¢ durant la modification virtuelle ainsi produite par les di-
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verses forces appliquées au fluide est nul ou négatif. 1l résultera de la que,
si le fluide est incompressible, les conditions que nous avons trouvées suffi-
sent a en assurer I’équilibre.

Soit un point de coordonnées x, y, z pris a l'intérieur du fluide. Dans la
modification virtuelle que nous considérons, la particule fluide qui se trou-
vail initialement au point de coordonnées x, y, z subit un déplacement dont
les projections sur les trois axes sont ¢z, 8y, 63. Nous poserons

oxr = u ot,
oy = dt,
4z = wdt,

5t étant une quantité infiniment petite qui a une méme valeur positive pour
tous les points du systéme. Nous nous restreindrons a ’étude des déforma-
tions dans lesquelles chacune des trois quantités «, ¢, w est une fonction de
£, v, 5 uniforme, finie, continue, admettant des dérivées partielles du pre-
mier ordre en tous les points de 'espace occupé par le fluide.

Considérons un élément de masse du fluide. Avant une modification quel-
conque, 1l occupe un volume

dw =dxdy ds.

Il est facile de voir qu’aprés la modification il occupe un volume

du oy 0w\ | B
do + d0dw = [l—+—<0—x— + 5}—/—!— E)ot]dxd_} ds,

en sorte que l'on a

N __[odu av ow\ « ~
(7) odo — (5; -+ v -+ E) otdx dy ds.

Démontrons cette proposition.

Soit & une surface fermée qui se déforme et vient en ¢’. Son volume 0

augmente de
aezaf[fdwdyds.

On peut I'évaluer autrement. L’élément do vient en do’. Sic est la dis-
tance normale des deux éléments comptée positivement lorsque ds’ est a



DES PRINCIPES FONDAMENTAUX DE L’HYDROSTATIQUE. . C.b

I'extérieur de la surface g, il est facile de voir que

06 = Ss da.

Mais on a, en désignant par n la normale intérieure a la surface,
e =—2dt[ucos(n,x)+vcos(n,y)+ wcos(n,z)].
On a donc

0 =—dt S[u cos(n, x) + v cos(n, y) + wceos(n, z)] do.

S [ucos(n, x) + v cos(n, y) + w cos(n, z)]do

du dv  Odw
__fff<%+5;+m:>dxdydz.

On a donc, en égalant les deux expressions de ¢,

‘ du  do  ow
aff'/dxdyd‘,_étfff<%+@+E)dxdyda.

Si l'intégration s’étend au volume dz dy dz lui-méme, on trouve

du  dv Iw
6dxdydz._6t<d_x + 00

ay > dx dy dz.

C. Q. F. D.

Si, comme nous le supposons, chaque élément de masse garde dans la
modification un volume invariable, nous aurons, en vertu de I'équation (7),

Jdu av ow

(8) (’—&/}?—(—@—4—(%w

Dans la'déformation considérée, les forces appliquées au fluide qui rem-
- plit I'élément de volume dx dy dz effectuent un travail

(Xdx + Ydy +Z0sz)pdx dy da.

Sil'on remplace X, Y, Z, au moyen des égalités (2), par leur expression
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en fonction de W, ce travail peut s’écrire

oW AV AV AN
— <d—xu+ oy 0+ Fz—e‘))ozdxd‘yd;,

et la somme des travaux des forces appliquées aux éléments de masse du
fluide a pour valeur

P rOW OW W\ ]
‘—6[/ff<'d‘.£-u—l—w"+E—(V)dxd)’dg,

I'intégrale triple s’étendant au.volume entier du fluide.

Désignons par (n, ), (n,y), (n, 5) les angles que fait avec les directions
positives des axes coordonnés la normale & I'un des éléments dw de la sur-
face déformable, cette normale étant dirigée vers I'intérieur du fluide. Les
composantes de la force qui agit sur I'élément dw sont

P cos(n, x) dw, P cos(n,y)dw, Pcos(n,s)dw;
le travail de cette force est
Plucos(n, z) + v cos(n,y) +wcos(n, s)] ot dw,

et le travail de toutes les forces qui agissent sur la surface déformable du
fluide est

ot S Plucos(n, z) + ¢ cos(n,y) + wcos(n, s)] dw,

la sommation s’étendant a tous les éléments dw de la surface déformable du
fluide.

La somme des travaux virtuels effectués dans la déformation considérée
par toutes les forces appliquées au fluide est

(9) 6‘6’:65% SP[ucos(n,x) + ¢ cos(n,y)+wcos(n, 5)]dw

_/ff<%—‘2715+%T?—),V—-v—k%lyw)d.wdydz;.'

Telle est la quantité qu'il faut démontrer étre toujours nulle ou négative.
Pour faire cette démonstration, nous allons, conformément a une méthode
fréquemment employée en Analyse, transformer l'intégrale triple en inté-
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grale double. Mais auparavant une remarque est nécessaire. Dans le dépla-
cement considéré, il peut arriver que le fluide reste continuj alors, apres le
déplacement, le fluide occupe un volume a connexion simple comme avant
le déplacement. Au contraire, durant ce déplacement, il se peat que des
cavités se creusent dans la masse fluide. Dans ce cas, avant le déplacement,
le fluide occupait un espace & connexion simple, limité par une surface
fermée o5 apresle déplacement, il occupe un espace 4 connexions multiples,
limité, d’une part, par la surface ¢ déformée et devenue o’ et, d’autre part,
par les surfaces X, X', ... des cavités creusées dans son intérieur.

Pour pouvoir embrasser a la fois tous les cas dans nos calculs, nous sup-
poserons que 'intégrale triple s’étend & un espace a connexions multiples,
limité par une surface extérieure o et par des surfaces intérieures X, X', .. .,
toutes ces surfaces subissant dans le déplacement virtuel des déformations
quelconques. Nous déduirons de cette hypothése générale les hypotheses
relatives aux cas particuliers qui nous intéressent, en supposant ou bien que
les surfaces X, ¥', ... renferment chacune un volume nul au commencement
comme a la fin de la modification, ou bien que chacune de ces surfaces ren-
ferme un volume nul au commencement de la modification et un volume
infiniment petit a la fin.

Donc, dans le calcul que nous allons faire, nous pourrons supposer que
la modification virtuelle ne crée aucune cavité a I'intérieur du liquide. Nous
pourrons, par un artifice entiérement analogue, supposer qu'il ne s’en crée
pas non plus entre le liquide et le solide.

Cela étant, si nous portons toujours la normale & une surface vers I'inté-
rieur du fluide en contact avec cette surface, il est facile de voir que nous
ayons

<~

j [(0“ 0‘: ¢ —+ ()0\:‘ w> drdyds

=— S Wlucos(n,x) -+ v¢cos(n, v)+weos(n,s)]ds
— S Wlucos(n,x)+ ¢cos(n,y)+wcos(n,s)]d

— S Wlucos(n,a)-+v¢cos(n,y) +wcos(n,s)]d

_/“ffw("” 3: ?):>(lr(z’)fd-.

IV. — Fac. de T. C.3
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L’égalité (g) deviendra donc
(10) as::atg P Lucos(n, ) + 0 cos(n, ) +weos(n, 5)]do
—+S“ﬂumﬂmx)+vwﬂmy%+Wwﬁmzﬂw
+ SW[u cos(n, ) + ¢ cos(n, ¥) + wcos(n, 5)] dX

-+ SW[u cos(n,x) + vcos(n,y)—+ wcos(n,z)] d¥

du  dv  Idw

Mais cette égalité (10) va subir de notables simplifications.
En premier lieu, 1’égalité (8)

du v oW _
oz Toy "oz °

fait disparaitre le dernier terme.

La surface o, a laquelle s’étend la deuxiéme sommation, se compose de
la surface déformable w et de la surface de contact w’ du fluide avec les so-
lides invariables qui peuvent I'environner.

Mais, le long de la surface w’, on a

wcos(n,x) -+ vcos(n,y)+wcos(n,s)=o.
En effet, la quantité
ot{ucos(n, )+ vcos(n,y)+ wcos(n, s)]

représente la distance qui existe aprés le déplacement entre la nouvelle po-
sition de I'élément do’ de la surface du liquide et la surface du solide, cette
distance étant comptée positivement si dw’ est a I'extérieur du solide.

Or cette distance ne peut étre négative, car le liquide ne peut pénétrer
dans le solide; elle ne peut étre positive, car, contrairement a I’hypothése,
il se serait formé une cavité entre le solide et le liquide. Elle est donc nulle,
et 'on a, en tout point de ',

wcos(n,x)+ vcos(n,y)+wcos(n,s)=o.
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On peut donc supposer que la scconde sommation s'étend seulement & la
surface o et réunir les deux premiéres sommes en une seule

S(P 4+ W) [« cos(n,z) + v cos(n,y) -+ wecos(n, 3)] dw.

Mais nous avons vu (n° 8) que (P + W) alaméme valeur en tous les points
de la surface w. Si nous désignons cette valeur par @, la somme précédente
pourra s’écrire

a S [wcos(n, z) + ¢cos(n,y)+ wcos(n,s)]do.

Désignons par 80 'augmentation subie pendant la déformation par le
volume qu’enferme la surface a. 1l est bien facile de voir que 'on a

00 = — 6tS[u cos(n, x) + v cos(n, y) + wcos(n, s)]ds
= 8tS[u cos(n, x)+ ¢ cos(n,y)+ wcos(n,s)]do.

ILa somme des deux premiers termes de I'expression (10) de oz adonc pour

valeur
— adf.
L'intégrale

SW[u cos(n, x) + vcos(n, y)+wcos(n,s)]dE
s’étend a une surface T qui, dans toutes les hypothéses qui nous intéressent,

renferme un volume nul ou infiniment petit. Si nous désignons par A la va-
leur de W en un point de ce volume, cette intégrale pourra s’écrire

A S[u cos(n, x) + vcos(n,y)+ wcos(n,s)] d=.

D’ailleurs, quelle que soit la surface X, si I'on désigne par 60 I'accroisse-
ment subi pendant la modification par le volume qu’enferme cette surface,
on aura

00 = d¢ S [ cos(n, ) + ¢ cos(n, ¥) + wcos(n, 5)] d2.

Le troisicme terme de ’expression (ro) de 8c a done pour valeur

A 00.
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De méme, si I'on désigne par A’ la valeur de W en un point du volume
infiniment petit enfermé dans la surface ¥’ et par 80 I'accroissement de ce
volume, le quatriéme terme a pour valeur

. . . A’ 66/’
et ainsi de suite. '

Si l'on réunit tous ces résultats, 'égalité (10) devient

(r1) 06 =A00+ A'00'+...—adl.

Supposons en premier lieu que la modification virtuelle imposée au fluide
soit une modification réversible; par l'effet de cette modification, aucune
cavité ne se creuse a l'intérieur du fluide. Les volumes 0, @', ... restent
identiquement nuls. D’ailleurs, dans ce cas, 20 représente 'augmentation
du volume occupé par le fluide, et cette augmentation est nulle, puisque
chaque élément de masse garde dans le déplacement un volume constant.

On a donc
06 — o.

Supposons en second lieu que la modification virtuelle imposée au fluide
soit.une modification non réversible. Des cavités se creusent dans la masse
fluide. 30, €0, ... sont les volumes de ces cavités. L’accroissement du vo-
lume occupé par le fluide est

30 — (00 + 00 + .. .).
Cet accroissement devant étre nul, on a
00 =100 + 30’ +. ..,
ce qui permet d’écrire I'égalité (11) de la maniére suivante :
36 = (A —a) 90 + (A’ — a) 00/ +. . ..

Les quantités 80, ¢, ... sont essentiellement positives. D’autre part,
d’aprés ce que nous avons vu au n°® 9, la valeur constante a que prend
P + W sur la face déformable est au moins égale a la plus grande des va-
leurs que prend W a I'intérieur de 'espace occupé par le fluide. Les quan-
tites (A — a), (A’ — a), ... sont donc au plus égales a o, et ’'on a

0G<o.
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'

Ainsi, st Pon impose au fluide une modification virtuelle quelcongue
qui laisse incariable le volume de ses divers élements de masse, le travail
effectué par les forces qui agissent sur le fluide est nul si la modifica-
lion est réversible, négatif ou exceptionnellement nul si la modification
n'est pas réversible.

Cette proposition montre que les conditions que nous avons (rouvées
aux n*7 et 8, nécessaires pour Uéquilibre d’un fluide quelconque dénué
de frottement, sont en méme temps suffisantes pour I'équilibre d’un
Jluide incompressible.

1V. — Pression a Uintéricur d’un Jluide. Forces qui peucent assurer

Uéquilibre d’un fluide.

11. Un fluide étant en équilibre, partageons-le en deux parties par une
certaine surface S passant par un point M choisi arbitrairement a son int¢-
rieur. Puis, en supposant que chacune des particules fluides qui se trou-
cent d’un certain cété de la surface S continue a étre soumise au.r
mémes forces données que par le passé, supprimons tout le fluide situé
de 'autre coté de cette surface, de fagon que cette derniére devienne libre-
ment déformable. Le fluide restant ne sera plus, en général, en équilibre.
Mais, si le fluide est incompressible, on sera assuré de maintenir cet équi-
libre par des forces convenablement appliquées aux divers ¢léments de la
surface S. Ces forces nous sont données par les théorémes précédents. Si
P'on entoure le point M par un élément do tracé sur la surface S, la force
P dw supportée par I'élément » sera normale & la surface S et dirigée du
coté de cette surface ot se trouve le fluide qu’on a conservé. De plus, en
désignant par — W la valeur de la fonction des forces au point M et en
conservant a la lettre « la signification qu’elle a au n° 10, nous aurons

(12) P+W=a.

Les conditions d'équilibre seront réalisées.

En effet :

1° La pression sera normale;

2° Elle sera positive ou nulle, car @ est au moins égal a la valear de W
au point considéré;

3° En tout point de la surface déformable, on aura P -+ W = «:
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1° Les forces continueront a vérifier les relations

. oW
PX - o
. O0W
pPY=— o’
A\Y

~ & l'intérieur du fluide, puisqu’elles n’auront pas changé

5° Enfin @ sera au moins égal a la plus grande des valeurs de W dans la
partie restante du fluide.

I'égalité (12) montre que la quantit¢ P dépend uniquement en gran-
deur de la situation du point M et nullement de P'orientation de I’élément
dw ou de la forme de la surface S. De la le nom de pression au point M qui
lui a été donné.

On voit que la condition a2 W indique que la pression est positive ou
nulle en tout point intérieur au fluide.

A Ulintérieur d’un fluide compressible, nous nommerons pression la
quantité P calculée par la méme régle que pour les fluides incompressibles.

[’égalité (12), qui définit la pression au point M, entraine les égalités
suivantes

o oW _
0x or
o _IW
dy oy 7
o oW
s Js -

en vertu desquelles les ¢galités (2) deviennent

1 0P .
A TR
1 oP
3 -— =Y,
(13) ?pd‘y
1 0P
pos

Ces derniéres égalités sont trés fréquemment employées. On leur donne le
nom d’équations fondamentales de I’ Hydrostatique. ’
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12. La notion de pression en un point pris 4 'intérieur d'un fluide pré-
sente une grande importance dans 1’étude des fluides compressibles.

Un fluide est compressible si la densité de chacun de ses éléments de
volume varie avec les déplacements et les déformations imposées & la masse
fluide dont il fait partie. Cette densité est donc fonction : 1° d'un certain
nombre de paramétres o, B, ... qui varient d’un élément de masse & un
autre, mais qui, pour chaque élément de masse pris en particulier, gardent
une valeur invariable; 2° d'un certain nombre de parameétres qui varient
non seulement d’un élément de masse & un autre, mais aussi pour un méme
élément de masse avec les déplacements et déformations que 'on fait subir
4 la masse fluide. Dans I'étude de 'Hydrostatique, on se limite au cas ot il
n’existe qu'un seul paramétre de la seconde classe et oll ce paramétre est la
grandeur de la pression au point ou se trouve I'élément considéré, en sorte

que I'on a
(14) p=®(e, B, ..., P).
Si les paramétres a, B, ... ont la méme valeur pour tous les éléments de la

masse fluide, la relation précédente devient simplement

(14 bis) p =P(P).

Ce cas particulier, qui a une grande importance, sc nomme le cas des fluides
compressibles homogénes.

13. Un fluide ne peut pas étre en équilibre sous 'action de forces quel-
conques. Les forces qui agissent sur un fluide ne pourront I’amener a I’état
d’équilibre s'il n’est pas possible de vérifier les équations

{ AL
\P’“— rrk
oW
/ —_
(2) PY—— dya
AN
N

par un choix convenable de fonctions de x, y, z pour g et W. De ces équa-
tions on déduit

d 0
d—)",(PZ) -—E(PY),
P 9,
3z (PX)—TT(PL),

0] J
%(PY) :(—);(pX)
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ou bien

. (P OV (X 0y 00Xy

Telle est I'égalité que vérifient néeessairement, dans I'état d’équilibre, les
composantes X, Y, Z de la force rapportée a Punité de masse. Pour étudier
les conséquences de cette égalité, nous avons deux cas a distinguer.

1° Il peut arriver que X, Y, Z soient des fonctions de x, y, 5 indépen-
dantes, dans leur forme, de la disposition qu’affecte la masse fluide. Clest
ce qui arrive, lorsqu’on envisage un fluide soumis a I'action de la pesanteur,
alattraction suivant une loi quelconque d’un ou de plusieurs corps fixes, . . ..
Nous nommerons ce cas le cas des forces extérieures.

2° Il peut arriver, au contraire, que chacune des quantités X, Y, Z soit,
pour un arrangement déterminé de la masse fluide, une fonction de x, y, ,
mais que la forme de cette fonction varie avec 'arrangement attribué a la
masse fluide. Clest ce qui arrive, par exemple, lorsque les diverses parti-
cules du fluide exereent les unes sur les autres des attractions, comme dans
les deux probléemes de la figure des planétes, de la figure d’équilibre des
fluides soumis & la capillarité et, plus généralement, toutes les fois que le
fluide est soumis a 'action de forces intérieures.

Il est presque impossible de rien dire sur le second cas sans avoir précisé
par quelque hypothése la maniére dont les fonctions de x, y, 5 qui repré-
sentent X, Y, Z dépendent de la configuration du fluide et de 'arrangement
de ses parties. Au contraire, I’étude générale du premier cas peut étre
poussée assez avant. Pour le moment, nous nous bornerons & considérer ce
premier cas.

* Le fluide est donc soumis & des forces extérieures, telles que les quantités
\, Y, Z soient des fonctions de z, v, z complétement indépendantes, dans
leur forme, de 'arrangement des diverses parties du fluide. Si X, Y, Z ne
vérifient pas identiquement ’égalité (15), il est inutile de pousser plus loin
I'étude de ces forces. Elles ne peuvent maintenir aucun fluide en équilibre.

Si, au contraire, X, Y, Z sont des fonctions de z, y, z qui vérifient iden-
tiquement 1'égalité (15), on sait, par I'étude des équations différentielles,
qu’il existe une infinité¢ de fonctions de z, y, = qui, mises & la place de ¢,
transforment ’expression

o(Xdr+Ydy + 7.ds)

en la différentielle totale d’une fonction (— W) de «, ¥, 5. Cette fonction
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pourrait n’étre pas uniforme a 'intérieur du fluide. Les facteurs intégrants
en question seraient a exclure, ou bien, par des coupures, il faudrait rendre
la fonction uniforme. Chacune de ces solutions correspond alors a un état
d’équilibre d’un fluide.

14. Parmi les forces qui vérifient I'égalité (15), citons celles pour les-
quelles il existe une fonction V(z,y, z) uniforme, finie et continue en tous
les points du fluide, telle que I'on ait

f«_ OV
X=—%,
‘ .oV
(16) ;\_—5,
P

Nous donnerons a la fonction Vle nom de fonction potentielle (*), employé
tout d’abord par Green dans un sens plus restreint.
Ces forces sont les seules qui puissent maintenir en équilibre un fluide
- homogéne et incompressible, car ce sont les seules pour lesquelles I'expres-
sion
o(Xdr +Ydy + Zdz)

devient une différentielle totale, p étant une constante.

D’une maniére plus générale, ces forces sont les seules qui puissent
maintenir en équilibre un fluide homogéne compressible ou non com-
pressible. _

En effet, pour un fluide homogéne et compressible, la densité est fonc-
tion seulement de la pression et en est une fonction continue, et, comme la
pression ne ditféere de W que par le signe et une constante, on devra avoir,
dans Iétat d’équilibre,

p=2(W),

® désignant une fonction continue de W. On aura donc, dans1'état d’équi-
libre,
(W) Xdzx+Ydy+27Zds)=—dW

(1) Nous admettons ici entre la fonction potentielle et le potentiel la distinction établie
par Clausius (La fonction potentielle et le potentiel, Paris, 1870).

IV. — Fac. de T. C.4
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ou bien
Xdx +Ydy +7Zds=—dV,

en désignant par W, une valeur arbitraire de W et en posant

W
Ve[ ~iudW,
S, 7w

ce qui équivaut aux égalités (16) et démontre la proposition énoncée.
Mais on peut aller plus loin. En vertu des égalités (16), expression

Xdx+ Ydy +1ds

admet pour facteur intégrant 'unité et est alors égale & — dV.
Il en résulte que la forme la plus générale de son facteur intégrant p est
(17) p=s(V),

J représentant une fonction continue, ou discontinue seulement pour des
valeurs isolées de V. Sil'on accepte ce facteur intégrant et si I'on désigne
par V, une valeur arbitraire de V, on a

v
(18) W= F(V)YdV =F(V)

Vo

ct, par conséquent,
(19) S P=—F(V)+a.
Les surfaces définies par 'équation

V = const.

jouissent donc de la double propriété d’étre des surfaces d’égale densité
[ égalité (17)] et des surfaces d’égale pression [égalité (18)]. On a donné a
ces surfaces remarquables le nom de surfaces de niveau, dont I'origine est
dans I'étude des fluides & surface libre.

15. On donne le nom de fluide & surface libre a un fluide limité par
une surface déformable qui ne supporte aucune pression. L’égalité

P+ W=a,

qui a lieu, en général, pour tous les points de la surface déformable qui li-
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mite un fluide, devient, dans ce cas,
W =—a.

La surface libre d'un fluide jouit donc de cette propriété que la fonction W
a la méme valeur en tous les points de cette surface. Cette propriété en en-
traine une autre; soient, en effet, dx, dy, dz les projections d’un élément
linéaire tracé sur la surface W = a. Nous aurons

oW AV oW

-")—J;dd‘-"" 0—y‘d)’+—d-?d320

ou bien
p(Xdr+Ydy +74ds)=o.

Comme la densité n’est pas nulle, cette égalité démontre qu’en tout point
de la surface libre d’un fluide, et plus généralement en tout point d’une
surface W = const., la force est nulle ou normale a la surface.

Si les forces agissant sur le fluide admettent une fonction potentielle V,
nous avons, en vertu de I’égalité (18),

W= vf(V)dV:F(V).
Vo

La surface libre du fluide est donc une des surfaces V = const.

On donne le nom de surface de niveau, dans le langage de chaque jour,
a la surface libre des liquides pesants. La pesanteur étant une force qui
admet une fonction potentielle, cette surface de niveau est une surface pour
laquelle la fonction potentielle de la pesanteur est constante. Il est naturel
d’étendre ce nom de surface de niveau a toute surface définie par 'égalité

. V — const.

Comme, en général, les surfaces W = const., les surfaces V = const. jouis-

sent de la propriété d’étre en chaque point normales & la direction de la
force. :
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IV. — Stabilité de Uéquilibre d’un fluide & surface libre soumis
a des forces extérieures qui admettent une fonction potentielle.

16. Considérons un fluide soumis a des forces extérieures admettant
fonction potentielle V. On a

ov
X==%
)
Y———" d_)’"
9V
z — 7 95

Formons I'expression

(20) Q:fffdexdydz,

une

et cherchons la variation qu’elle subit lorsqu’on impose au fluide une modi-
fication qui laisse invariable le volume de chacune de ses masses élémen-

taires.

Soient 8z, 8y, ¢z les composantes du déplacement d’un point de la par-
ticule de masse p dx dy dz. Avantle déplacement, cette particule fournissait

a Q un terme
oVdzdyds.

Apres le déplacement, elle fournit 4 la nouvelle valeur de Q un terme

av ov av
si 'on suppose que le déplacement n’ait pas altéré sa densité. .
La variation de Q est donc la somme des expressions telles que

Al AL i}
p((%ax—a—wéya—ggé..)dxdyd..

fournies par les diverses particules du liquide, ce qui peut s’écrire

asz—fff <-—6x+ By—i—g‘—r&)dxdym

ou bien, en désignant par ¢ le travail élémentaire accompli durant la

mo-
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dification considérée par les forces qui agissent sur les divers éléments de

volume du fluide,
0 — — J&.

Par conséquent, la fonction Q définie par I'égalité (20) représente le po-
tentiel des actions qui s’exercent sur les divers éléments de masse du {luide,
du moins pour les déplacements qui laissent invariable le volume de cha-
cun de ces éléments.

Si la surface déformable qui limite le fluide est une surface libre, il n’existe
aucun travail virtuel des forces appliquées aux divers éléments de la surface
qui limite le fluide, et dés lors celui-ci admet un potentiel défini par I’éga-
lité (20), du moins si on le regarde comme incompressible. Il suffit, pour
que I'équilibre soit stable, que ce potentiel Q soit minimum.

Nous aurons
AQ—=0Q + 2Q+....

Il faut montrer que I'on a
AQ > o.

Or on a ¢Q = o, 4 moins qu'il ne se soit formé une cavité en un point ot
W< a, cas auquel on a 8Q>>o. Il suffit donc de montrer que I'on a
8*Q > o pour tout déplacement sans formation de cavité ou pour tout dé-
placement avec formation de cavité en un point ot W = a.

17. La variation premiére de Q nous est donnée par ’égalité

asz_fff <_5 +—a d—Yé;)dxdyds.

La variation seconde est donnée par I'égalité

02V kA% iEAY
20 . .
6Q_fffp[ <dx" 5x+———-~dxdy5y+———d 0'6v>6‘1

0*V Vv dV

»V PV PV N\ )
Posons, comme au n° 10,

0x = u ot,

oy = v o,

0z == wd¢,
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S étant une constante infiniment petite, et u, ¢, w des fonctions de z, ¥y 5
uniformes, finies et continues, admettant des dérivées partielles du premier
ordre par rapport a x, v, z. Nous aurons

. v FvV_ eV
Q= o /f[[ < ()J'd_}/ mw)pu

+< 0*V *V oV )
d.}’ dx d},z 0)—, J3 W)p(
2 2 9 N -

<% u -+ %(7—}— (%"—_Y)- ﬂ’)pu)J dx(l)f[[;.

Des intégrations par parties permettent de transformer cette égalité en
la-suivante :

2 ——ar S[n cos(n, x) 4 vcos(r, y)+ wecos(n,s)]

><<u—q‘—’ vdv+wﬂ d
oz oy 0z )P 4°

" aV d(pu?) adV Q(puv) = 0V d(puw)
5 ar awx) gt gwewr) , 7Y
o .] ,[f[ oz 0w dy Ox + 0z Tz

dV d(pvu) aV d(pv?) oV d(pew)

T ox oy - dy ady * 9 ay

dV d(pwu) 9V d(pwe) OV d(pw )
or 95 Tay 95 T T:

] da dy ds.

. N . . . . ' . A
Le signe b indique une sommation qui s’étend a tous les éléments do des

surfaces déformables qui limitent le fluide, y compris celles qui prennent

naissance si le fluide se creuse de cavités; (n,x), (n,y), (n,z) sont les

angles que fait avec les trois axes coordonnés la normale & I'élément do,

cette normale étant dirigée vers I'intérieur de I'espace rempli par le fluide.
Lintégrale triple qui figure au second membre peut s’écrire

ov dV ov dp ap dp .
/ff(u —I—c dg><u0—~+06}+u5—>dxd) ds
dV ()V dV\ /du Jdv adw
—i—ff/ (u +w_3?><(—)_‘—t+bj 9z >d rdy ds.

Mais on suppose que chaque élément de masse garde un volume inva-
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riable. On a donc [égalité (8)]

Jdu
dx

av aw

+.dy 9z ¢

et, par conséquent,

02Q = — ot? S[u cos(n, x) + vcos(n,y) —+ wcos(n, z)]

< ud_V+‘)l_)X+wd_‘.,>d
ox oy "Wz )Y
OV OV _oVN[ do . dp dp
— ot? i — —_— — Y e —— rdz.
6tffj<udx+00y Wdz)(”r)x—‘_‘dy_‘ nd;>a’xd)a’

Désignons par ¢ la grandeur du déplacement d’une particule, par (e, ),
(g, ), (g, 2) les angles que la direction de ce déplacement fait avec les trois
axes de coordonnées et, lorsqu’il s’agit du déplacement d’une particule si-
tuée au voisinage immédiat de la surface limite, par (¢, 7) I'angle que la di-
rection du déplacement fait avec la normale & la surface limite au point ou
se trouve la particule, cette normale étant dirigée vers'intérieur de l'espace
occupé par le fluide. Nous aurons

u St =t cos(s, x),
v ot =cecos(e, y),

w ot —E&cos(e 3),

cos (g, n) = cos(&, &) cos(n, ) —+ cos(&, y)Cos(n, y)+ cos(e, 5)cos(n, =)

et, par conséquent,
| 0z

32Q=— S _
_fff_ﬂ

Jdx
dp

| dx

cos{&, x) +

cos(e, z) + Al

cos (&, &) +

dy

dy
dp

3y

cos (e, y) +

) av
cos (&, y) +

cos (& V) +

d3

03
dp

0z

cos (¢, 3)

cos(e, 5)

cos (g, z)

oe* cos (g, n) do

etdrdyds.

Le déplacement ¢ imposé a une particule d'un point ot la valeur de la
fonction potentielle était V est la densité primitive du fluide ¢, & un point ou

la fonction potentielle a pour valeur V + ?%f e et ol la densité primitive du

]
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{luide avait pour valeur e+ %5 . Ona

%l; = gcos(s,x) + g:}f cos(e, )+ %—Zcos(s, z),
z—g = % cos(e, x) + 3—;— cos (s, v) + 3—? cos(s, 3)
et, par conséquent,
(21) 6?Q:—Sp%§cos(s,n) da—[f ﬂfﬂ‘} etdrdyds.

Nous avons a chercher les conditions nécessaires et suffisantes pour que
cette quantité soit positive, quels que soient les déplacements imposés au
fluide.

Voici une premiére condition nécessaire.

Les surfaces V = const. sont des surfaces d’égale densité [égalité (17)].
Pour que 82Q soit toujours positif, il faut que le cété d’une surface vers
lequel V va en croissant soit aussile coté vers lequel ¢ va en décroissant.

Supposons, en effet, qu'il en soit autrement dans une certaine région du
fluide. En tout point de cette région, le produit %—Z g—g serait positif, de
quelque maniére que soit dirigé le déplacement ¢, ou nul si ¢ est sur la sur-
face. Supposons alors que I'on donne des déplacements infiniment petits
aux diverses particules du fluide qui se trouvent dans cette région, en lais-
sant immobile tout le reste du fluide et en ayant soin, si cette région confine
a la surface terminale, de ne donner aux particules de cette surface que des
déplacements tangents a la surface. La quantité ¢*Q se réduirait alors a

'intégrale
_fff"v "Pgdxd) ds

étendue a larégion considérée et serait certainement négative, sil’on a soin
que le déplacement de chaque point n’ait pas lieu sur la surface de niveau
(ui passe par ce point.

Nous trouvons ainsi une condition nécessaire pour que la quantité ¢*Q
soit constamment positive; cetle condition est en méme temps suffisante.
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in effet, si clle est réalisée, 'intégrale

ff 0 dpa"dxdydu

est négative dans tout déplacement du fluide. 11 est ais¢ de voir que Iinté-
grale

S p%lj g2 cos(e, n)do

est, dans tout déplacement du fluide, nulle ou négative.

Iin effet, cette intégrale peut se partager en deux intégrales semblables :
I'une relative & la surface déformable du fluide, Pautre qui limite les cavités
dont le fluide a pu se creuser.

Envisageons d’abord la premiére intégrale.

Nous savons que, sur la surface déformable d’un fluide quelconque, P+wW
doit avoir une valeur au moins égale 4 la plus grande des valeurs que prend
W & I'intéricur du fluide. Dans le cas envisagé ici, ot le fluide a une surface
libre, P = o, W a une valeur constante sur la surface, et cette valeur est
supérieure ou égale & toutes celles qu'il prend & lintérieur du fluide. 1l en

. W s - . .
résulte que %— est une quantité négative ou nulle si le déplacement ¢ est di-

rigé vers 'intérieur du fluide, et nulle si le déplacement ¢ est tangent & la
surface libre.
Mais on a [égalité (17)]
p=s(V)
et [égalité (18)]

.
W:/v: F(VYdV =F (V).

On a donc

d\V
=5

La quantité f(V), qui représente une densité, est essentiellement positive;

w / "
IW et 2V ont done le méme signe; A positif ou nul
de e de

pour les déplacements dirigés vers l'extéricur du fluide, nul pour les

les deux quantités

déplacements tangenticls, négatif ou nul pour les déplacements dirigés

vers l'intéricur du fluide. D’autre part, cos(n, ¢) est négatif pour les dé-

placements dirigés vers l'extérieur du fluide, nul pour les déplacements
IV. — Fac. de T. C.5
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tangentiels, positif pour les déplacements dirigés vers U'intérieur du fluide.

. 0V L .
Le produit 5= cos(e, ) est donc négatif ou nul en tous les points de la sur-
&

face; par conséquent, 'intégrale

Sp %V_—e? cos (e, n) do,

étendue a la surface libre, est nulle ou négative.

Envisageons maintenant la méme intégrale étendue 4 la surface limite
d’une cavité infiniment petite qui sc serait creusée dans le fluide par suite
du déplacement. ‘

D’une maniére générale, si nous désignons par W la valeur de la fonc-
tion W en un point de la surface déformable d'un fluide, par P la pression

au méme point, par W' la valeur de la fonction W au point ou s’est creusée

la cavité, nous avons
P+WzxW'.

Dans le cas actuel o le fluide est terminé par une surface libre, on a

P = o et, par conséquent,
W2w.

S1 W était supérieur & W', la formation de la cavité aurait entrainé, comme
nous I'avons vu, un travail virtuel négatif. Ce cas doit, comme nousl’avons
vu, étre exclu des recherches sur le signe de ¢2Q. La cavité n’a pu se for-
mer que si W = W’. Mais, comme en aucun point & l'intéricur du fluide la
fonction W ne peut avoir une valeur supérieure 4 la valeur qu’elle prend
sur la surface libre, il en résulte qu’en tous les points du fluide W est au
plus égal & W’. Donc, sil'on envisage un déplacement quelconque partant

. . , . ., , W
du point ou s’est formée la petite cavité, pour ce déplacement oW est cer-
P p » P p ) e

tainement négatif ou nul. D’apreés ce que nous avons vu tout a I’heure, il en
A \ . Cye
est de méme de ‘3— D’autre part, en chaque point de la surface qui limite

la petite cavité, le déplacement est forcément ou tangentiel ou dirigé vers

I'extérieur de la cavité; cos(e, n) est donc positif ou nul, et le produit

%g— cos(¢, n) est négatif ou nul. L’intégrale

A% y
S P cos(e, n)e do

est négative ou nulle.
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Par conséquent, pour que la fonction Q soit minimum, il faut et il
suffit que la variation subie par la densité o lorsgu’on passe d’un point
4 { P P
a Uautre a Uintérieur du fluide soit de signe contraire a la variation
que subit la fonction N, les conditions d’équilibre étant d’ailleurs rem-
plies. Nous trouvons ainsi la condition suffisante pour que P'équilibre d'un
fluide & surface libre soit un équilibre stable.



