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ANNALES

DE LA

FACULTE DES SCIENCES DE TOULOUSE.

SUR DE

NOUVELLES FONCTIONS HARMONIQUES

A TROIS VARIABLES

ANALOGUES AUX FONCTIONS THETAFUCHSIENNES;

PAR M. X. STOUFF,

Professeur au Lycée de Grenoble.

Dans son Mémoire sur les groupes kleinéens, M. Poincar¢ indique la for-
mation de groupes de substitutions a trois variables, analogues aux groupes
fuchsiens. On est naturellement conduit a chercher des fonctions satisfai-
sant a Péquation AV = o et subissant des transformations simples quand on
y soumet les variables aux substitutions de ces groupes. Nous désignerons
la conjuguée d’une quantité imaginaire par la lettre qui désigne cette quan-
tité affectée de I'indice o. Posons

1¢:x+y\/:, p=au+ b, A=cu—+d,
a, b, ¢, d étant quatre nombres complexes satisfaisant a 'équation
bc — ad =1;

Pexpression générale d'une substitution transformant en lui-méme le plan
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des xy est
ko -+ caty 32
e+ aay z

-~
S
z

g+ aa, 3
Les substitutions de cette forme dans lesquelles a, b, ¢, d sont des entiers
complexes, c’est-d-dire des quantités dans lesquelles la partie réelle et le
multiplicateur de i sont entiers, constituent un groupe important étudié par

M. Poincaré et par M. Picard. Je m’occuperai d’abord de celui-ci.
Soit S; une quelconque des substitutions de ce groupe. Posons

ri== Vi i+ @i 3,

n

_ i

Pnoi=— ~ga+1?
ry

P (o ag2%)

Pr1i = ranl

B 2(”0}’-1"““132)

P —
n2t —
\P , 2Il+1

gt (toppi+ @5t

r2”/+1

Pnki=—

(uopi+ @;s®)"

Prni=— r2 n+1

Ces fonctions satisfont a I'équation AV = o. Pour le démontrer, je décom-
q )]
pose la fonction g, en éléments simples. On a

‘ —_— l‘l’t(alouo—l_ bzo) -+ aza10~ ’

rE— by
—_—

ltofli—k ai52:
Qo

Il —k h n—k+h

Ot = (’z_‘bw["t Ech Lbzo [t ,
nit k p2n+t - "2 n—2k+20+1
a‘zo T io ri

ot C! désigne le nombre des combinaisons de & objets & & /. Les numéra-
teurs des diverses fractions qui forment le second membre ne contiennent
que z et y et satisfont évidemment a I’équation

PV eV
oz T 9yt
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ou, ce qui revient au méme, a

PV OV Y
ox? —@2 032

——= 0,

n—k+h

. . . . bia, b
i est une fonction homogéne, de degré n — k + A, de z + 2i%ia T %010

2a; a;y
biag,— a;by
20a; A

biajy+ a; by \? bia;,— a;bi\?
r,_\/a aw x_‘_ o i 10) +(y+ i%io P70}, o2 :
2a; a5 27a;a;,

—k+h
P‘:’ . biai0+ a; b,’o biaio— a; biO
=T est donc, par rapport a x + —aan y + ~saan &

et de y + , et 'on a

une fonction V, a indice négatif.
Je dis maintenant que la série

2 Dnkiy

i

ol la somme est étendue a toutes les substitutions du groupe, est conver-
gente pour n24. En effet, on a évidemment

modp; << 1y mod (a;5) < F;}

par suite
mod (u, p; + a;2*) < modu, modp; + moda;s?%
mod (¢ p;+ a;3%) < ry(mod u, + mod 3z),
(mod 1y -+ mod 5)*
mod g, < o :
1
Orona

ri=y\mod?(a;u + b;) + mod?*(a;s),
mod?(a;u + b;) > (mod b;— mod v moda;)?

r;>\mod?b;— 2mod b; mod a; mod « + mod*@; (mod* « + mod*z);

en écrivant que la moyenne géométrique est plus petite que la moyenne
arithmétique, on a

mod? b; + mod? @; (mod? « + mod?z) > 2y/mod? « + mod?z mod b; mod a;,

r;>hy/modubimoda;,

A désignant une quantité positive indépendante de 7. Il suffit donc de
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prouver la convergence de la série

1

Ea
(mod b; mod a;) *
Considérons d’abord les substitutions ot @; a la méme valeur; dans la
série précédente, 'ensemble des termes qui correspondent & ces substitutions
peut se mettre sous la forme

T I

E
(moda;) * (modbd;)

1142—_1

Formons un premier groupe des termes ou la partie réelle et la partie
imaginaire de b; sont moindres que 2, un second groupe de ceux ou ces
deux quantités ne sont pas inférieures & 2 et sont moindres que 22, ...; les
sommes des termes des différents groupes sont respectivement moindres
que

I 22 1 (22)?
2n+r] n+l’ nrl T pxt’ T
(modae;) 2 12 (modea;) 2 2?2

Nous voyons que ces derniers termes forment une progression géomé-
. . 2 -2t .
trique dont la raison est 2~ * ; elle est convergente si

- >2’
2

et, comme 7 est entier, si n est 24. La somme des termes ol a; a la méme
valeur est, par suite, moindre que

n+1’

_ &
(moda;) *

O ne dépendant que de n. Le méme procédé montre que, pour n2 4,
0
N
(modai) 2

est convergente. Nous en concluons que

E%u

représente une fonction de z, y, z satisfaisant 4 'équation AV = o. Nous la
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el

: representerons par
Zoi-

Soit S; une substitution quelconque du groupe, et
S,‘Sj: Sg,

3;8; estla substitution obtenue en remplacant dans S; les valeurs de z, y, =
par les expressions que fournit la substitution S;.

Ona '

hitjo € Aj =

(@ bipj) pjo+ (@icj+ biaj)zzajo,
W o+ @) @y 32

NS =a; i s
()5, W) jo + @j@jo 3°

()8, = P Bjo+ @gs®azy _ (Uopg+ @e3®)ajo+ ng.io,
)S,=
T et apag st Pjlhjo = @j@jo 3

La relation
bjCj-— (ljdj: I
peul s’écrire
IJ-J'CJ‘—)LJ'(ZI‘: I.

On voit donc que la substitution S; transforme wu, + z* en

(hjprjo+ € aj95%) (Mot = €jo@;3%) + (65— X @) ()0 Cjo— K)o @jo) 32
(Ko + @ja;jo3%)

ou, en réduisant et en supprimant le facteur w;w;, + @;a@;,5* commun aux
deux membres,
Mhjo+¢€jo%?
Wy tjo+ @@y 5
mais
Uy i+ ;532 = a; (uu,+ 3%) + b;u,.

Cette quantité se transforme donc en

ai(hhjo+ €;Cjy3?) + bi(Rjoprj—+ cja;05)
B bjo+ @@ 5®

ou
hjolke + Cjo@gSt _ Cjo(Uoptg+ Ag3®) + djophy
P Pjo+ @ @jos? s o+ @j o5

r .
Enfin des calculs analogues montrent que 3; transforme 7; en -£. Par suite,
;

IV. — Fac. de T. A.o
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?nki deVient

[(Uof*g‘*‘ agc2)ajo+1¢g b~ k[(”o}*g'*‘ Ag3* )cjo+1~’~g /0]‘
,2Il+1

Posons

m— k- A— 1z+)
Jnl»m—z Cn_ pbp /z pdm pc N+

nous aurons

m=n

((Pnki) Sj =r; E Ajnkm Prmeg-

m=0

Sil'on fait varier i de maniére A obtenir pour S; une fois et une scule
chaque substitution du groupe, S, reproduit aussi une fois et une scule
chaque substitution de ce groupe, et, en ajoutant membre 4 membre toutes
les équations en nombre infini ainsi obtenues, il vient

m=n

(an) Sj - ’72 Ajnk/nan'

m=0

On voit que les n + 1 fonctions Z,; (k=o,1, ..., n) deviennent, lors-
qu'on y fait la substitution S;, abstraction faite du facteur r;, des fonctions
linéaires homogénes de leurs valeurs primitives. C’est & de pareilles fone-
tions que M. Poincaré a donné le nom de fonetions zétafuchsiennes. On
sait, d'ailleurs, que ce géométre a appelé fonction thétafuchsienne, unc
fonction ©(z), telle que

@(——aj; = §J> = (y;5+9;)" O(3).
Viz+0;

Notre systeme zétafuchsien, obtenu dans le cas de trois variables, offre

une analogie compléte avec le systéme

0(z), 50(s), ..., 320(s).

II1.

Les groupes de substitutions & trois variables qui laissent invariables le
plan des zy, transformés par une substitution convenable, laisseront inva-
riable une sphére de rayon 1 ayant pour centre I'origine. Nous nomme-
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rons cette sphére sphére fondamentale. Voici d’abord I'expression générale
des substitutions qui ne changent pas la sphére fondamentale.
Soient @, b, ¢, d, &', V', ¢, d’ huit nombres réels satisfaisant & I'équation

aa' + bb'+ cc' +dd' = o.

Soient z, y, z les trois coordonnées d’un point, et

X= bx+dy+cs—da,
Y=—ax+cy—dz—10b,
L = de—by—az—¢c,
U=—cx —ay +bs—d;
X'= bar+dy+cds+a,
Y=—dz+cy—ds+0b,
7= dxr—0by—as+ec,
U=—cx—ay+bs+d.

La substitution aura pour expression

z in XY — YX'— ZU'+ UZ

Xe+ Y 2202

in XU'—YZ'+ZY'— UX'

4 X+ Vi Zir 0

X7+ YU-ZIX'—UY"
X2+Y2+Z2+ U‘)

On vérifie aisément I'identité
(1) XX'+ YY'+ ZZ/+ UU'= o,
cl 'on voit, a 'aide de cette identité, que x* + y* + z* se transforme en

X24-Y2 4724 U
X2+ Y2+ 22+ U

Si, dans cette fraction, on développe le numérateur et le dénominateur et
st 'on suppose x?+ y*+ 3% égal a 1, on voit qu’'elle se réduit a I'unité.
Notre substitution laisse donc bien invariable la sphére de rayon qui a
origine pour centre. Je me propose maintenant de former la substitution T
produit d’une substitution donnée S par une autre substitution donnée S,.
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Posons, pour abréger,
R} =X} +Y}+Z2] + U3,

M,=—aX|+ Y|+ cZ, +dU,,
Ny=—bX|—aY,—dl + cU,,
Py=— cX|+dY, —al|—bU,,
Qi=—dX| — cY| + bZ,— al,.

On trouve que X, Y, Z, U se transforment respectivement en

1

—E;(M‘X1+ N1Y1'+‘ P1Z1+ QiU,—a’Rﬁ),
1

‘[% (N Xy — MY, — Q,Z,+ P, U, — 0'R?),
1

I

(P, Xy +Q, Y, —M,Z,— N, U;— ¢'R}),

=

1

(QX;— P Y+ N Z,— M, U, — d'R?).

=

2
1

Soient
M=—aX,+ Y, + T+ dU,
N=— X, —aY, —dl+ U,
P=—cX,+dY,—al,— U,
Q=—d'X,— 'Y, + b7, — a'U,

X2 4+ Y2+ Z2+ U? devient
”I;—‘l [(M;+M)*+ (N;+ N+ (P, + P)*+ (Q, + Q)*[.

Posons
M, =—aX, +bY,+ 2, +dU|,
N =X, —a'Y, —d'T, + U,
P, =— X, +dY, —a'l, — U,
Q =—d'X,— Y, + b7, —alU,.
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X', Y, Z se transforment en
I ’ U ' ’ !
]:'_{;(M1X1+ N111+ PIZI+ Q1U1+aR%),
]
1 - ’ ’
I—{—z (lel _'MIIYi'— Q1Z£+ PlUt“" bR?)’
1

1

(PX; +Q, Y, —M\Z,— N, U, + cR}),

=)

| -

(Q,X, — P,Y,+ N,Z,— M, U, + dR}).

=
Lo

Posons aussi
M'=—aX, + bY,+ cZ,+dU,,
N'=—bX,— aY,—dZ,+ cU,,
P=—¢X,+dY,—al,— bU,,
Q'=—dX,— ¢Y,+ bZ,— al,,

X2 Y2472+ U2 devient

(M} — M)+ (N} — N>+ (P, — P")?+ (Q, — Q)™

Enfin, en formant, & 'aide des résultats précédents, les expressions de x,
¥, 3, on trouve que les quantités X, Y, Z, U; X', Y', Z, U’ relatives i la

substitution T sont respectivement

M,+M, N,+N, P,+P, Q+Q; M, —M, N, —N, P, —P,

Q, — Qs

les huit entiers relatifs a cette méme substitution s’expriment donc par les

formules
A=—da+bb+ ce,+dd,— aa + b, + cc| +dd,,
B=—"%a —ab —dc+ cd— ba, —ab, —dc| + cd|,
C=—ca+db—adc,—bd,— ca, + db, — ac, — bd},
(2) D =—da— ¢'by+ bley— a'd,— da, — cb| + bc'| — ad,
2

A =aa;— bb,— cey — dd, — d'ay + b'b, + ¢, +d'd),
B' = ba,+ ab, + dc, — cd;— b'a’, + o'V, — d'c, — 'd,
C' = ca;—dby+ ac,+ bd, — c'ay +d'b| — a'c, — b'd,
D' =da,+ ¢by— be,+ ad, — d'ay — ¢'b + b'c), — a'd.

Nous aurons encore besoin de la relation suivante; soit 8s un

¢lément
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d’arc, ¢s’ son transformé par une substitution S, on a

8s'-a,2+ b2t dr— g — bt — 2 — d?
- X2+ Vi 72+ U2

0s.
Nous supposcrons désormais, ce qui est permis,
a?+ 0?2+t d?—a?— D2 — =1,

Considérons un groupe discontinu de ces substitutions, et désignons
par S, une substitution quelconque du groupe. Soit

Ri=VX;+Y;+ 72+ UL

I

. , , e
La fonction |, et par conséquent I'une quelconque de ses dérivées par-

tielles par rapport a a;, b, ¢;, d;, a;, b, c,, d; satisfaita ’équation AV = o.
Je dis que la série

. 1
¥ (i)
da} 90f oct od; 9a obF ocY od”

i

est convergente pour n2 5.

En effet, M. Poincaré a indiqué, dans son Mémoire sur les groupes klei-
néens, comment on peut partager la sphere fondamentale en polyedres par
des surfaces sphériques orthogonales a cette sphére, de sorte que chacun de
ces polyédres contienne un représentant de chaque point donné. Imaginons
dans l'intérieur d'un de ces polyédres une petite sphére n’ayant aucun point
commun avec la sphére fondamentale, et dont nous désignerons le volume
par V; soit V; le volume de la transformée de cette sphére par la substitu-
tion S,. La somme de tous les volumes V; est moindre que le volume de la

sphére fondamentale, et par conséquent finie. La série
2 Vl'v

étendue A toutes les substitutions du groupe, est donc convergente. Or on a

dx dy ds
vie [ [ [

I'intégration étant étendue a tous les points de la premiére sphére. Dési-
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gnons par &, 1;, {; le point que la substitution S, transforme dans le point

infini. On a
R? = (a? + b + ¢ + d) [(2o— &)+ (yo—00)*+ (20— £)?],

Le point (§;,1;,{;) est extéricurala sphére fondamentale. Soit (x,, ¥, %)
un point pris & lintérieur de la petite sphére considérée. Il résulte de la
forme précédente de R} que

¢ désignant la plus petite, et ¢' la plus grande des normales communes & la
petite sphére et a la sphére fondamentale; donce

dxd} dz dxdyds
fff R fff Ry,

A\ .
> R?o

S

Si donc la série

est convergente, la série
oV

ou, puisque ¢, ¢, V ne contiennent pas i, la série
2%
R}’

' N1 . .
est convergente. La série E VR Uest @ fortiori pour n > 6.
i0
On reconnait aisément, en formant les dérivées partielles successives
I . v ey v
de s+ par rapport & a;, b;, c;, ..., qu'une dérivée d’ordre 2 a pour numéra-
L

teur un polynéme de degré 7, soit par rapport a x, y, 5 entrant explicite-
ment, soit par rapport 4 X, Y;, Z;, U;, et pour dénominateur R}"*'; cette
dérivée peut donc se mettre sous la forme

SA s XPYIZIUS
R27+!
1

(p+qg+r+s=2n-1),

Apgrs Ctant un polyndme en z, y, =, par suite indépendant de 7. Or



A6 X. STOUFF.

NPY?Z;U; est évidemment moindre en valeur absolue que R?. La valeur
absolue de la dérivée partielle considérée est donc moindre que

1 -l
W z andqul-x-
12

Or, pour n + 126, c’est-a-dire pour n2 3, la série

E ;
n+l
R+

est convergente. 1l en est donc de méme de la série que nous avons en vue.
Nous pouvons donc poser, sous cette condition,

" (&)

(? S8y s — ; > , . yr ?')
sy = 00 9b% oc! od’ da ob, ocY 9’

ot o désigne une fonction de x, y, 5 salisfaisant a I'équation 0g = o.

. I . . . 1
Or, si dans & on fait la substitution S;, S; appartenant au groupe, R

R;
se transforme en %{, S, désignant le produit S;S;. On pourra donc poser
ok
R, R,

cn sous-entendant que dans le premier membre R; est exprimé en fonction
des nouvelles coordonnées, et dans le second R; et R, en fonction des an-
ciennes. Prenons les dérivées partielles des deux membres, en observant
que les coefficients de la substitution S, sont des coefficients linéaires, ho-
mogénes des coefficients de la substitution S; données par les formules (2).

On aura

1
; J <F>

Ri 9a%0b? oct od? da ovP ocY od

() o) ) k)
B P B B A B

/" day T 7 ey /7 od,
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les puissances indiquées sont des puissances symboliques. Nous aurons
donc

1
Ty (Papyswpys) ;== 2 Ajaproafy Pabysw @ yd-

Les A étant des coefficients constants fonctions des coefficients de S, et
la sommation étant étendue dans le second membre aux fonctions ¢ (ui
I

. Les fonc-

correspondent & toutes les dérivées partielles d’ordre n de R
i

tions g forment donc un systéme zétafuchsien.

I1I.

La construction de fonctions subissant par les substitutions d’un groupe
des transformations plus simples parait présenter d’assez grandes diffi-
cultés. Il n’est possible de trouver d’expressions analytiques que dans cer-
tains cas particuliers. Sil'on considére, par exemple, la fonction elliptique

. 2K . .
sn(u, k), la fonction sn<—n—; logz) est une fonction fuchsienne de = dont le
LY
groupe est engendré par la seule substitution s in 5 ¢%, g élant égala e %,
La fonction

27 ‘ZK )
F(x, y, 5) ::f sn ;[710%[37‘*‘1.()’ CoSw zsinw)]\» o
0

satisfait & I’équation AF = o, ne change pas de valeur par la substitution
( in xq2

x
(1) Cyoin Yo

5 in 3q%
et enfin ne présente que des poles simples.

Pour les groupes les plus généraux, il parait nécessaire de recourir a des
méthodes analogues a celles qui ont été données par MM. Schwarz et Neu-
mann pour la démonstration du principe de Dirichlet.

De lorigine des coordonnées comme centre, décrivons quatre sphéres S,
S, S,, S,avecdesrayons R, R', R, R (fig. 1), R’ et R| étant respectivement
égaux & Rg? et & R, ¢* et R, étant compris entre R et R’. Soit £ une surface
comprise tout entiére entre les deux sphéres S’ et S,. Je suppose que l'on

IV. — Fac. de T. A3
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sache résoudre le probléeme de Dirichlet pour les volumes V et V, limités
parX, Set S5 X, S, et S|. Je me propose de montrer comment on peut

Fig. 1.

former une fonction harmonique, finie et continue, prenant des valeurs
données sur X et se transformant en elle-méme par la substitution (1).

Je m’appuierai sur une proposition bien connue. Si la valeur d'une fone-
tion harmonique et continue dans un volume donné est nulle sur une partie
déterminée de la surface qui limite ce volume, le maximum de sa valeur
absolue sur une surface contenue tout entiére.a l'intérieur de ce volume et
n’atteignant en aucun point la surface, est moindre que le maximum de la
valeur absolue de la fonction sur la surface limite multipliée par une con-
stante positive A inférieure a 1; A dépend seulement de la surface limite, de
la partie de cette surface sur laquelle la fonction est nulle et de la surface
intérieure.

Formons une fonction g, prenant sur X les valeurs données, sur S des va-
leurs prises arbitrairement (9, ) et les mémes valeurs aux points correspon-
dants de 5'; soient (9,) les valeurs que prend g, sur S,. Formons une fonc-
tion ¢, prenant aux points correspondants de S, et de S| les valeurs (9,) et
les valeurs données sur X. Soient (9,) les valeurs que prend cette fonction
sur S'; nous formerons une fonction 9, prenant sur S et S’ les valeurs (¢, )
et les valeurs données sur X, et ainsi de suite. Je dis que la fonction g,, a
une limite quand k croit indéfiniment. Il suffit de prouver que la série

Qo+ (02— 09) + (9 — 03) +. ..+ (Par— Par-2) +---

est convergente. En effet, le maximum de la valeur absolue de 9, — @44
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est moindre que le maximum de la valeur absolue de (9.)—(%as-2)-
D’ailleurs, en remarquant que Qus— Qa_sy Pok_t — Fak—s SONL nuls sur X,
on a

max (@) — (Par—2)] << hmax[(9a—1) — (922-3)],

max [(@ar—1) — (P2r—3)] < Amax [(@az—s) — (92—s)]s

Aeth, étant des constantes positives moindres que 1 dépendant, la premiére
des surfaces X, S,, S', la seconde des surfaces X, S, 3'. La série converge
donc comme une progression géométrique ayant pour raison AA,.

On démontrerait de méme que 9,4y, a une limite. Enfin on voit immé-
diatement que les valeurs de la différence @.x— 9assy sur S, et sur S’ ten-
dent vers o. Donc la fonction ¢,x— 9,44 tend vers o dans le volume limité
par S,, par & et par X. Les limites de g, et de @4, sont donc deux fonc-
tions qui sont le prolongement I'une de I'autre. Désignons par ¢ la fonction
ainsi obtenue; elle prend sur X les valeurs données et aux points correspon-
dants de Setde S/, de S, et de S les mémes valeurs. Il en résulte qu’elle
se reproduit par la substitution (1). En effet, soit ¢’ ce que devient ¢ par la
substitution (1), la fonction 9 — ¢ est nulle sur S’ et sur S'; donc elle est
nulle dans le volume limité par ces deux sphéres, et la fonction prolongée
est nulle dans tout I'espace.



