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EXTENSION DE LA METHODE DE GRAFFE.

METHODE PRATIQUE

POUR LA

RESOLUTION NUMERIQUE COMPLETE

DES EQUATIONS ALGEBRIQUES OU TRANSCENDANTES;

PAR M. E. CARVALLO,

Professeur au Lycée Saint-Louis.

HISTORIQUE.

« Etant donnée une équation numérique, sans aucune notion de la
grandeur ni de la nature des racines, en trouver les valeurs numéri-
ques, exactes s’il est possible, ou aussi approchées qu’on voudra. Ce pro-
bléme n’a pas encore été résolu. Cest I'objet des recherches suivantes. »

Ainsi s’exprime Lagrange au commencement de son Mémoire Sur la ré-
solution des équations numeériques (1767). Posé par Viete (*), ce probléme
est ¢tudié d’abord dans des cas spéciaux par lui-méme, par Harriot, Oug-
tred, Pell, ete. Descartes 'aborde dans toute sa généralité et Pengage dans
une voie nouvelle par sa régle des signes, insuffisante il est vrai.

« Telle qu’elle est néanmoins (2), cette régle a été pendant deux siécles ce
quon a eu de micux. Les plus grands analystes, & commencer par Newton
et a finir par Lagrange, n’ont pu, malgré leurs efforts, faire un pas décisif
aprés Descartes. L’é¢quation aux carrés des différences (de Lagrange),

(1) De numerosa potestarum adfectarum resolutione.
() Borpas-DimouLiN, Le Cartésianisme, p. 122; 1843.
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simple en théorie, nécessite des calculs fatigants et quelquefois intermi-
nables. Fourier atteint presque le but. En 1820, il publie; une régle dont il
était en possession depuis plusieurs années. S'il échoue, ses .efforts aident
Sturm & réussir dans un théoréme qu'il donne en 1829. Ce théoreme exige
seulement une dérivée et une opération analogue a la recherche du plus
grand commun diviseur... Toutefois Uesprit a je ne sais quel pressenti-
ment qu’il existe quelque voie plus simple. »

Telle est en peu de mots, d’aprés Bordas-Démoulin, P'histoire de cette
belle théorie des équations, exposée par nos professeurs avec un si grand
talent qu’elle semble & leurs éléves'ceuvre d'un seul génie. Saisis d’admira-
tion pour tant de puissance, nous sommes entrainés par ce méme talent a
confondre notre pensée avec celle des inventeurs, si bien que I'idéal de Sturm
devient volontiers le ndtre: découvrir les racines par son théoréme, puis
en calculer des valeurs aussi approchées qu’on veut parla regle de Newton.
It cependant le pressentiment du savant philosophe est si bien justifié que
la réalisation en existait déja depuis six ans quand il publia son Livre
en 1843.

Dés 1837, en effet, le professeur Griiffe, de Zurich, estimant que la s¢-
paration des racines, poursuivie par ses devanciers, n’est qu'une méthode
de tAtonnements, a donné dans un Mémoire 4 1’Académie de Berlin une mé-
thode directe remarquable par la simplicité de principe et d’application. Elle
consiste & calculer une puissance des racines assez grande pour que leurs
rapports deviennent considérables. Ainsi grossies, les racines sont séparées
et immédiatement mesurables, comme les objets fins et rapprochés sont sé-
parés et rendus mesurables par le microscope. Cette idée remonte a Daniel
Bernoulli. Elle sert de base a la méthode que ce célébre mathématicien a
donnée « dans les Mémoires a I’ Académie de Saint-Pétersbourg, t. 111,
ou il enseigne comment on peut, & I'aide des séries récurrentes, assigner les
valeurs approchées des racines d'une équation algébrique quelconque ».
Malheureusement, cette méthode ne donne directement que la plus grande
racine. De plus, comme l'indique Euler dans son Introduction a I’ Analyse
infinitésimale, Chap. XVII, elle peut se trouver en défaut. Griiffe au con-
traire trouve toutes les racines. Il obtient ce résultat par une opération
plusieurs fois répétée, comme le micrographe augmenterait le grossissement
par une série de verres gradués. Cette opération, d’Arithmétique pure, est
si simple qu’elle n’exige aucune connaissance théorique; elle s'exécute sur
les coefficients de 'équation sans préparation préliminaire. Plus de difficulté
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telle que la recherche du plus grand commun diviscur; plus de thtonne-
ments dont la longueur indéterminée est incompatible avee les hesoins de
la pratique. Nous possédons enfin, comment Duhamel I'ignore-t-il? la mé-
thode qu’il réclame en 1866 (') « que tout le monde puisse appliquer avec
le méme succés ».

Seulement Griffe s’est borné a déterminer les racines réelles et les mo-
dules des racines imaginaires, quand ces quantités différent les unes
des autres.

Cest en effet tout ce que ses devanciers se sont proposé. Le célebre astro-
nome allemand Encke, admirateur de la méthode de Griffe, se préoccupe
des lors de la compléter. Dans ce but, il publie en 1841 un Mémoire de
soixante pages dans I'appendice a ' Annuaire de Uobservatoire de Berlin.
Ce Mémoire, laissé dans 'oubli malgré I'intérét du sujet et le renom de son
auteur, tomba par hasard sous les yeux de D. Miguel Merino, de I'observa-
toire de Madrid, qui cherchait depuis longtemps, mais en vain, dans les
livres francais, la méthode pressentie par Bordas et réclamée par Duhamel.
Il fut tellement satisfait de sa découverte qu’il publia en espagnol une tra-
duction libre du Mémoire (1879). Dans son enthousiasme, il reproche &
nos auteurs leur silence a I’égard du savant allemand ct en accuse « la pa-
resse d’esprit, la routine des écoles ct le patriotisme trés mal entendu ».
Mais a coté de ces séveres critiques, M. Merino ne justifie-t-il pas cet oubli
d'un travail relégué dans une publication astronomique, spéciale a un ob-
servatoire particulier? Lui-méme s’étonne de I'y trouver; il en juge la lec-
ture pénible. Pour le mettre a la portée des lecteurs, il a di séparer les dif-
ficultés dans des Chapitres distincts, puis ajouter des exemples et des
éclaircissements nombreux. Avee ces modifications, le livre espagnol a 260
pages. Il présente les qualités de clarté et de méthode que le traducteur re-
fuse au Mémoire original. Il y a plus, & coté de son admiration pour
la méthode de Griffe, M. Merino avoue que le complément d'Encke ne ré-
pond pas enticrement au desideratum.

Eten effet, dans sa recherche des racines imaginaires, Encke n’emprunte
au calcul de Griiffe que la connaissance du module. Par la il méconnait 'idéc
féconde de 'inventeur suisse. La théorie en devient compliquée; Iapplica-
tion exige des développements trigonométriques, la formation du plus grand

(1) Des méthodes dans les sciences de raisonnement, 2° Partie, p. 258.
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commun diviseur, et retombe ainsi, pour les imaginaires, dans les difficultés
de la méthode de Sturm. On le voit, s'il est permis d’apprécier la théorie
d’Encke parce qu’elle aborde pour la premiére fois avec succés les racines
imaginaires, il faut bien reconnaitre que le savant allemand n’a rien ajouté
de pratique ala méthode de Griffe, parce qu’il n’en a pas vu toute la
portee.

Dans ce Mémoire, je reprendrai le probléme d’Encke. Je démontrerai que
la régle de Griffe donne immédiatement et sans nouveau calcul les racines
imaginaires, comme les racines réelles; que la méthode s’applique sans
modification au cas des racines d’égal module. On verra méme que la dé-
monstration embrasse le cas non abordé jusqu’ici ol I'équation proposée a
ses coefficients imaginaires.

Dépassant ensuite le but poursuivi par Encke, je démontrerai que la mé-
thode s’applique avec un caractére de supériorité remarquable au cas ou le
premier membre de I'équation est une fonction holomorphe de I'inconnue.
Ce résultat s’étend d’abord au cas des fonctions méromorphes, comme la
résolution des équations entiéres s’é¢tend au cas ou le premier membre est
une fonction algébrique fractionnaire; puis il s’étend aux autres fonctions
en isolant les points critiques.

Je m’efforcerai de donner & I'exposition de la théorie une rigueur qui fait,
a mon avis, défaut dans I'ceuvre de Griffe et d’Encke, et qui est nécessaire
pour ouvrir a une méthode nouvelle les portes de I'enseignement. Clest
I'objet du § 11, qui m’est personnel et n’emprunte rien aux Mémoires cités.

On reconnaitra que je ne me suis pas livré & de vaines spéculations, mais
que, toujours guidé par un but pratique, j’ai appliqué chaque point de la
théorie & un exemple. Je n’ai méme pas craint de m’arréter aux détails qui
sont de nature a faciliter 'exécution des calculs.
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§ I. — Introduction & la méthode de Graffe. — Application.

1. Silon désigne par «, B, vy les racines de I'équation

(1) 22+ Ax*+Bxr+C=o,
ona
(2) a+B+y=—A, af+ay+By=+B8, afy =— C.

Pour fixer les idées, supposons provisoirement les racines réelles, dis-
tinctes, positives, et soit & > > v. Faisons enfin cette hypothése fonda-
mentale, que :

A Pordre d’approxzimation qu’on veut porter au calcul des racines,
B est négligeable devant a, ety devant B.

Si, par exemple, on veut les racines avec cing chiffres exacts, je suppose
que § est inférieur & une unité du cinquié¢me chiffre de «. Dans ces condi-
tions, les formules (2) se réduisent aux formules approchées

(3) a=—A, o =B, ofdy =—C,

et 'équation (1) sera résolue immédiatement par les formules
(4) a=—A,  f=-— 1=

Si 'hypothése fondamentale n’est pas réalisée par les nombres o, §, v,
elle le sera par les nombres *, 8%, v, pourvu qu’on prenne p. assez grand.
On formera donc I'équation aux puissances p des racines de Péquation
proposée; on calculera les solutions de la nouvelle équation au moyen des
formules (4) et, en extrayant les racines pi¢me de ces solutions, on ajira
celles de la proposée.

Telle est, en principe, la méthode de Griffe. Il est évident qu’elle s’ap-
plique a une équation de degré quelconque, que I'hypothése des racines
posilives n’est pas nécessaire. Enfin, nous verrons qu’elle s’applique aussi
bien aux racines égales et aux racines imaginaires.

Comme il serait malaisé de déterminer a priori le nombre p. et de former
d'un coup I'équation aux puissances w- des racines, il est préférable de
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former I'équation aux carrés des racines de la proposée, puis l’équation
aux carrés des racines de cette transformée, et ainsi de suite jusqu’a ce que
l'on arrive a une é(iuation qui satisfasse a 'hypothése fondamentale, ce
qu’on reconnaitra a des caractéres trés simples que nous donnerons plus
loin. De plus, dans la pratique, il est préférable de former I'équation aux
carrés changés de signes des racines; nous I'appellerons la lransformée
de la premiére.

2. Formation de la transformée aux carrés changés de signes des
racines. — Soit I'équation

(r) o:f(x) a4 Ay Apsx™24 . 4 Az + A'0:: o(2?) 2z q’(xz),
les polyndmes
o(x?) =Aj+ A+, . ., () = Az + A28 ..

représentant la somme des termes de degré pair et la somme des termes de
degré impair. Je pose

(2) y=—2a?

et jélimine x entre les équations (1) ct (2). Pour cela, je remplace dans
I"équation (1) * par — y. J'obtiens

(3) o=y)+xd(—y)=o.

Puis, de cette équation, je tire la valeur de # que je porte dans Iéqua-
tion (2). Il vient, aprés avoir chassé les dénominateurs,

(4) P (—=y)+y P (—y)=o.

Le systéme des équations (3), (4) est équivalent au systéme (1), (2).
L’équation (4) est de degré m, comme Iéquation (1), et donnera m racines.
Connaissant I'une d’elles, on pourra tirer de 'équation (3) la valeur corres-
pondante de x. Cette observation est inutile quand on sait que la valeur
de x est réelle et positive, car il suffit alors d’extraire la racine carrée
de — y; mais elle devient précieuse quand on ignore la nature des solutions
de I'équation donnée. Elle léve I'hésitation qui provient des deux racines
carrées de — y.

Quelle est maintenant la loi de formation des termes de ’équation (4)?
Cherchons par exemple les termes en y*?. L’un d’eux est le carré du terme
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de degré p dans ( — y), lequel répond au terme de degré 2p dans ¢(x*).
Ce terme est donc
LY et
Dans le développement du carré de o (— y), on trouve aussi les doubles
produits des termes équidistants de A,, y?. Les termes ainsi accouplés étant
affectés du méme signe, leur produit a le signe +. On aura donc dans
I'équation (4) les termes .

-+ ’Z«Agp_gAgp.q.g)/"’p“f— 2A2p_4Agp+5‘}/2P cees

Dans le [développement de y 2(— y), les termes de degré 2p provien-
nent des termes en y*#~' de $*(— y). Or ceux-ci sont les doubles produits
des termes en yP~' et yP, yP~2 et yP+' ... de ¢(—y). Comme les termes
de ¢ (— y) sont affectés alternativement de signes contraires, les doubles
produits sont affectés du signe —. De plus, le terme en y? de {(— y) ré-
pond au terme en x**' de f(x). Son coefficient est donc A,,,,. D’apreés
cela, les termes de degré 2p dans le développement de y ¢*(— y) sont

2 2
— 2805 1Ay VPP —205p 3 A0p sy

J'ai considéré, dans I'équation (4), les termes d’un degré 2 p. En consi-
dérant les termes d’un degré impair, on trouve la méme loi; savoir :

RicLe. — Le coefficient d’un terme quelconque de la transformée
égale le carré du coefficient correspondant de l’équation donnée, moins
le double produit des deux coeficients qui le comprennent, plus le double
produit des coefficients qui comprennent ceux-ci, et ainsi de suite jus-
qi’a ce qu'on arrive & un des termes extrémes de Uéquation.

3. Familiariser dés maintenant le lecteur avec la pratique de la méthode,
lui donner la mesure de sa simplicité, lui suggérer les questions a résoudre
pour établir la théorie sur des bases certaines, tel est le but important que
Jjatteindrai d’un coup par un exemple.

Soit I'équation proposée par Lagrange (')

xdP— x4+ 7 =o.

Voici, sans omelttre un seul chiffre, la reproduction fidéle du “calcul des

transformées successives :

(1) Traité de la résolution des équations numériques, Chap. 1V.
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z*. z°. z'. z".
2° -+ 1 o — 7 + 7
o + L.49 (1)

—+ 1.14 o

2t + 4.14 + 4.49 -+ 1.49
+ 2.196 -+ 3.2401
— 98 — 1372

22 + 1. 98 + 3.1029 -+ 3.2401
+ 3.961 + 6.1059
— 2058 — 471

23 “+ 3.7552 + 5. 588 + 6.577
+ 7.5700 -+14.3458
— 117 — 871

2b + 7.5583 -+11.2587 +43.333
—+15.3119 +22.6693

» — 371

28 +15.3119 +22.6322 +27.1109

+30.972 -+45.3995
> — 7
26 + 1 +30.972 +45.3988 ~+b54.1230

Exécuté avec la régle a calcul, il est disposé en Table a double entrée.
Les en-tétes 2, 2', 2%, ... qui affectent les lignes indiquent que ces lignes
présentent les coefficients de 1'équation ol I'inconnue est respectivement
x, — x*, — ', .... Quant aux puissances de l'inconnue affectées par les
divers coefficients d’une méme ligne, elles sont marquées par les en-tétes de
colonnes z?, x2, «', x°. Ainsi la lecture de la derniére ligne 2° nous apprend
que I'équation

5+ 30.972y%+ 45.3988y -+ 54.1230 =0

a pour racines les valeurs de — % ou — x®*. _
On voit qu’a partir de cette transformée, chaque ligne se déduirait de la

(1) A cause des élévations au carré répétées, les coefficients augmentent de facon a con-
tenir un nombre de chiffres trop grand pour qu'on songe a les écrire. Ainsi le dernier
nombre de la ligne 26 s’écrirait en 55 chiffres. Pour obvier a cet inconvénient, j'écris en ca-
ractéres gras et en avant des chiffres connus du nombre la caractéristique de son loga-
rithme, ou mieux le rang de son premier chiffre & gauche relativement au chiffre des unités
affecté du rang o.
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précédente en élevant au carré les nombres qu’elle contient, les doubles
produits se trouvant négligeables devant ces carrés. Sans doute, on est
arrivé a ce point ot chaque racine est négligeable devant la précédente
(n° 1 et 2) etl’on a, en désignant par a, b, ¢ les valeurs absolues des racines

a*=30.972, 64loga = 30,988, loga = 0,48418, a = 3,049,
(ab)®* = 45.3988, 64logab = 45,601, logb =o0,22833, b=1,692,
(abc)t*=54.1230, 64 logabe = 54,090, logc = 0,13259, ¢c=1,357.

On reconnait immédiatement les signes des racines, soit en considérant
leur somme et leur produit, soit en mettant ’équation proposée sous la
forme (3), (n°3),

x(x*—17)+7=o.

On a ainsi, pour les racines, les valeurs

o =— 3,049,
B =+ 1,692,
y = +1,357.

4. La rapidité des calculs est, on le voit, surprenante, surtout si I'on ob-
serve que l'approximation obtenue est généralement suffisante pour les
besoins de la Physique et de I'art de I'ingénieur. On peut cependant encore

les abréger en posant @ = y\/7, puis divisant par 7 les deux membres de
I'équation en y, dans le but d’amener les deux coefficients extrémes a avoir
pour valeur I'unité. De cette facon, on évite la difficulté de former les carrés
des termes extrémes et les doubles produits de ces termes par les autres
termes. Ainsi, dans I'équation du troisieme degré, pour déduire chaqub
transformée de la précédente, on vient de voir qu’il y avait quatre opéra-
tions a faire avec la regle a calcul, les carrés des trois derniers termes et le
double produit du dernier terme par I'antépénultiéme. Avec la simplifica-
tion que je viens d'indiquer, les carrés des coefficients de 22 et z* se feront
seuls avec la regle a calcul, les résultats des deux derniéres opérations seront
immédiatement connus. Enfin, dans ce cas, comme il n’y a que des carrés
a former, on pourra avantageusement remplacer la régle a calcul par une
Table des carrés des nombres. Ces diverses simplifications réduisent le tra-
vail de moitié environ. Si I'approximation obtenue ne suffisait pas, on
trouverait rapidement des valeurs beaucoup plus approchées des racines
Il — Fac. de T. O.2
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par une méthode que j'exposerai plus loin et qui se rattache a la fois & celles
de Horner, de Lagrange et de Newton. On pourrait aussi faire de suite le
calcul précédent avec la précision demandée aux résultats; mais nous ver-
rons que ce procédé serait moins avantageux.

5. Passons maintenant & une simplification dont le caractére théorique a
une trés grande portée. Dés la transformée 2¢, on observe ce fait fonda-
mental que chaque coefficient de la colonne z? est le carré du précédent; le
double produit des coefficients qui le comprennent étant négligeable devant
ce carré, le coefficient de #* devient régulier. Cest I'indice qu’on a atteint
I'objet méme de la méthode, a savoir que les deux derniéres racines sont
négligeables devant la premiére. La premiére racine est séparée des deux
autres. Dés lors, si je désigne par A, B, Cles coefficients de la transformée 2*,
et par a, b, c les valeurs absolues de ses racines, les relations

a-+b+c=A, ab + ac + bec =B, abc =G

se réduisent &
a=A\, a(b—+c)=B, abc = C.

Les nombres a, b, ¢ s'obtiennent donc, au signe prés, en résolvant les

équations

z+A—o x2+Ex+9——0
-7 AT AT

lesquelles s’obtiennent en décomposant I'équation donnée

’+Ax?+Bx+C=o
en ces deux autres
3+ Ax2=—o, Az?+Bx 4+ C—o.

Ce résultat remarquable est tout a fait général. Il est le véritable prin-
cipe de la méthode de Griffe. C’est faute d’en avoir reconnu la généralité
que son ingénieux inventeur a di se borner a chercher les modules des ra-
cines. La méme cause a égaré son illustre successeur Encke dans ses re-
cherches sur le calcul des racines imaginaires. Sa méthode sort tout a fait
de lesprit de la méthode de Griiffe, ce qui en diminue la portée et en exclut
la simplicite.

Nous possédons maintenant toutes les notions qui serviront a établir la
théorie qui fait I'objet du paragraphe suivant.
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§ II. — Premiére extension de la méthode de Graffe. — Théorie de
la résolution numérique compléte des équations algébriques.

6. Définitions. — 1° Approximations dans les imaginaires. — Soit M

I'affixe de I'imaginaire z. Il est clair que la précision de la position du
g q p p ,

point M représente la précision de z. De 1a les définitions suivantes, ot I'on
désigne par M’ I'affixe de z’, valeur approchée de z.

L’erreur absolue de 2’ est 2’ — z. Elle est représentée par le vecteur MM'.

La grandeur de cette erreur est la longueur MM’ ou mod (2’ — z).
MM’ mod(s'—3)
OM ' mods

L’imaginaire, représentée par le vecteur MM, est négligeable devant z
quand son module est inférieur a la grandeur d’erreur absolue qu’on tolére

L’erreur relative de z’ est

sur z, ou bien encore quand %% est inférieur a l’erreur relative qu’on to-
lére sur z.

2° Ordre des racines. — Ces considérations conduisent a ranger les ra-
cines d’'une équation suivant I'ordre de grandeur de leurs modules, sauf a
laisser arbitraire I'ordre des racines qui ont méme module. Nous choisirons
l'ordre décroissant. Les racines et leurs modules seront représentés res-
pectivement par des lettres grecques et par les lettres romaines correspon-

dantes.

3° Racines séparées. — Je dirai que deux racines consécutives sont sé-
parées quand la deuxiéme sera négligeable devant la premiére.
4° Terme régulier. — Dans le calcul des transformées successives de

I’équation proposée,d’apres la régle (n°2), considérons les coefficients d'une
méme puissance de I'inconnue. S'il arrive qu’a partir d'un certain rang le
coefficient en question soit toujours le carré du précédent, les doubles pro-
duits qui s’y ajoutent étant négligeables devant ce carré, je dirai que ce
coefficient est régulier & partir de la transformée correspondante.

7. Nombre des transformées nécessaires pour séparer deux racines
consécutives « et 3. — Ce nombre ne dépend évidemment que du rapport
des racines et de la précision qu’on veut apporter au calcul. Je considére la
transformée aux puissances g des racines de la proposée. Nous voulons
qu’elle sépare les racines « et 8, c’est-a-dire que [* soit négligeable devant

b . .
v 2 ' i ’ ; -
¥, ou que — soit plus petit que I'erreur relative ¢ qu’on tolére sur la ra
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AL
b 3

1 a>lo !
IJ‘Ogb ge'

cine . On en déduit
ou

Je pose

log%:l, p=2", logi:k;

n sera le numéro d’ordre de la transformée cherchée,
k est grossiérement le nombre de chiffres exacts qu'on demande a la racine.
L’inégalité précédente devient
2" > k;
d’ou I'on déduit

logk (_:glog)\.

A
() "= log2 log2

Ainsi, la limite inférieure de 7 est la somme de deux nombres; le pre-
mier est fonction du nombre k des chiffres exacts demandés a la racine o,
'autre dépend de A, et par suite du rapport des racines a séparer. Voici
deux Tables donnant une suite de valeurs numériques de ces deux nombres :

Table I. Table II.
—— e — e ——
£ logk. a. cologd
log2 b log2
3 1,6 1,001 11,2
4 2,0 1,01 7,8
5 2,3 1,1 4,6
6 2,6 1,5 2,5
7 2,8 2,0 1,7
8 3,0 3,0 0
9 3,2 5,0 0,5
10 3,3 10,0 0,0
8. Remarques pratiqgues. — 1l résulte de la formule (A) et de ces

deux Tables les conséquences suivantes.

Pour séparer deux racines décuples 'une de l'autre, il faut deux a trois
transformées suivant que I'approximation demandée est de 4 & 8 chiffres
exacts. Si une racine surpasse 1o fois 'autre, le nombre des transformcées

n’en peut étre que diminué. Sile rapport %est compris entre 1 et 10, le
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nombre d’opérations est augmenté des nombres de la deuxiéme colonne de .

la Table II. Ainsi :

Pour séparer 2 racines dont le rapport est 1,5, il faut..... gtransf 5
Pour faire le calcul avec 5 chiffres exacts, il faat.......... atransf3
Total......... 5 transformées

Ainsi la cinquiéme transformée, c’est-a-dire celle qui donne les valeurs
de z*', séparera, parmi les racines de la proposée, celles dont les modules
sont au moins dans le rapport 1,5. On voit aussi que le nombre des trans-

. ’ . . a
formeées nécessaires augmente rapldement quand le rapport A S€ rappr oche

de 1. Pour% =1, il est infini. Il ne serait guére raisonnable de faire plus

d’une dizaine de transformées, c’est-a-dire de séparer des racines dont la
‘plus grande dépasserait la plus petite de moins de 75 de leur valeur; mieux
vaut les considérer comme égales dans une premiére approximation. Deés
lors, il n'y a pas lieu en général de porter une trés grande précision au calcul
des transformées successives. On y trouvera cet énorme avantage de pou-
voir exécuter toutes les opérations avec la regle a calcul ;\ en évitant ainsi
I'usage des Tables de logarithmes, le calculateur aura trés rapidement sé-

par¢ les racines qui peuvent I'étre avec cette approximation.

9. TukoriME. — Pour que les racines o
P

Sx)y=a"+ A,z "' +...+ A, a"P+...+ A, soient séparées, il faul

et a,., du polynéme

1 1
. /A k k . , . A ’ .
et U suffit que (f) soit négligeable devant <A,:z> pourtoutes les va-

leurs de k et de l. Le polyndme f(x) se sépare alors en deux fragments.
Le premier, obtenu en négligeant les termes quisuivent A ,, donne les p
premicres racines. Le second fragment, obtenu en négligeant les termes
qui précédent A ,, donne les m — p derniéres racines.

Je suppose a,,, négligeable devant a,.

Le coefficient A, égale la somme des produits p & p des racines. Le pre-
mier de ces produits est a,a,...«,. Un autre produit s’obtient en rempla-
cant, au moins, une des p premiéres racines par une des suivantes qui sont
négligeables devant les premiéres. Ce nouveau produit est donc négligeable
devant le premier, et I'on a, & I'approximation du calcul,

modA,=a,a,...a,.
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A,.; a pour premier terme «,a,...d%,... %,,; dont le module est
A1y .. ApQpiy ... Cpipe

Les autres termes sont du méme ordre de grandeur, ou d’ordre plus petit.
Le terme A, ne peut donc pas dépasser Uordrede a,a,...a,a,.,...0,.4,

ni AA’”’" dépasser V'ordre de a,,, ...a,., lequel est, au plus, de 'ordre de
’ ; r
(@psy)*. Enfin (A;“”") est, au plus, de I'ordre de a,,,. De méme <AA—”>
r A p—t

: b ’ I3 .
est, au moins, de 'ordre de @,. Comme a,., est supposé négligeable de-
1

1

* T A, N\, A <.

vanl a,, <Al’;+"> est négligeable devant < T > a la méme approximaltion.
p p—1

C.Q.F.D.

Réciproquement, je suppose que <%‘—’i>ksoit négligeable devant < AA” >7
P p—1
pour toutes les valeurs de k& et de /.

Soient K la plus grande valeur du premier nombre et L la plus petite va-
leur du second. Par hypothése, K est négligeable devant L. Dans f(x), je
donne & z une valeur

1
<o Ar )
@<nln <A 1>

p—
On a, en comparant le terme A ,z™ 7 4 un des précédents,

Ap—[ axm-p+l . Ap—[

! ‘
— = z'<n'.
A, zm=p A,

Si donc 1 est un nombre petit, tous les termes qui précédent le terme
A, z™F sont négligeables devant lui 4 I'approximation v. De méme, si I'on
donne a la variable une valeur x, telle que nz > K, les termes qui suivent
A, z™ P sont négligeables devant ce terme a I’'approximation . Dés lors,
I'équation f(x) = o peut-elle étre satisfaite pour une valeur de z dont
I'ordre de grandeur soit intermédiaire & ceux de K et de L? Non, car le
terme A 2™ ne se réduirait avec aucun autre. Les racines sont, les unes
d’ordre au moins égal & celui de L, les autres d’ordre au plus égal a celui
de K. II en résulte que, a la méme approximation ot K est négligeable
devant L, les premiéres racines satisfont a I’équation

am+ A"+, .+ A xmP—=o0
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obtenue en négligeant les termes qui suivent A ,. Elles sont au nombre de p.
Les racines d’ordre au plus égal a celui de K s'obtiennent de méme cn
négligeant les termes qui précédent A,, et sont en nombre m — p-

10. Méthode pour la résolution numérique compléte d’une équation
algébriquequelconque.— On forme lenombre de transformées nécessaires
pour séparer les racines qui sont distinctes a I'approximation du calcul
(n* 6 et 7). Deés lors I'équation se sépare en fragments, tels que chacun
d’eux donne les racines d’égal module. La détermination de ces fragments
résulte du théoréme du n° 9. La résolution de chaque équation partielle
pourra étre terminée comme il suit :

1° Supposons d’abord les coefficients réels, et imaginons qu’on ait divisé
les racines par leur module commun, de facon a ramener ce module a
I'unité. L’équation ne pourra plus avoir comme racines réelles que =1,
dont on se débarrassera s'il y a lieu; quant & ses racines imaginaires, elles
seront deux a deux conjuguées, et par suite inverses l'une de l'autre.
L’équation pourra donc étre traitée par la méthode des équations récipro-
ques. L’équation résolvante aura toutes ses racines réelles et pourra étre
résolue définitivement par une nouvelle application de la méthode de Griffe.

2° Supposons que I’équation partielle ait des coefficients imaginaires etne
rentre dans aucun des types que I’on sait résoudre. Ce cas bien exceptionnel
se rameéne au précédent, en multipliant le premier membre par le polynéme
conjugué. Il est vrai qu’on introduit ainsi comme racines étrangéres les
conjuguées de celles que I'on cherche, mais il sera facile de choisir, par une
substitution rapide et grossiére dans le premier membre de I'équation par-
tielle a résoudre (*).

Passant de la théorie a I'application, je donnerai d’abord quelques re-
marques utiles. Les unes simplifient la pratique de la méthode, les autres
avertissent le calculateur de la nature des racines. Puis je donnerai des
exemples.

(1) Mieux vaut employer I'élégante solution que voici, due a M. Goursat. Je posc
1+1i3 8 s T —1

Z=zr=ef dot s =—1
1— 12 z+1
ct peut étre résolue par la méthode de Griffe. Elle fait connaitre les valeurs de Pargument 6
de I'inconnue #. On évite ainsi les solutions étrangéres introduites par la méthode du texte.

J . . . .
= tang—. L’équation en z a toutes ses racines réelles
2
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§ III. — Pratique de la méthode.

L. Caracteres signalant les racines séparées. — Simplification. —
Pour que les racines o, et a,,, soient séparées & I'approximation ¢, et que
de ce fait I'équation se fragmente sur le terme A, il faut et il suffit que
I'inégalité

e

’

1
A,H_k\‘ Ap r
(l) ( Ap <€<AP‘1>

soit satisfaite pour toutes les valeurs de & et de /(n° 9). En particulier, si
Pon fait [ = k, on a I'inégalité nécessaire

=~

1

1
A k / A) k
) (o) <e(mm) o Asheasens

Ap—k.

Elle signifie que le coefficient A, est devenu régulier (n°6), et ce caractére
ne manquera pas de signaler les racines séparées. Si la théorie ne permetde
le regarder que comme un avertissement, jamais pour ainsi dire il ne trom-
pera dans la pratique, pourvu qu’on s’assure, non pas qu'un double produit
est accidentellement nul, mais que son influence a diminué progressive-
inent jusqu’a disparaitre (*). On le controlera par la condition (1) qui est
suffisante (n° 9). Celle-ci peut s’écrire

(3) %_[logA,,M* logA,] <loge + -;—[IogA,,—- logA,_,].

Comme il ne s’agit ici que de comparer 'ordre de grandeur des rapports
de 'inégalité (1), il suffit de remplacer ces logarithmes par leurs caractéris-
tiques. Revenons a 'exemple de Lagrange (n° 3). Dés la transformée 2%,
le coefficient A, de x2 est régulier, et 'on a

(2%) A,=17.5583, A,=11.238;, A,=13.333.

De plus, les opérations étant faites avec la régle a calcul, on a sensible-

(1) Sile terme A, demeure régulier pendant un certain nombre de transformées, ou si,
dans ces transformées, il est devenu régulier par diminution progressive de l'influence des
doubles produits, on peut affirmer que, sauf des cas trés spéciauw, les racines a; et apy
sont séparées. Cette exception possible m’a déterminé a ne pas publier les recherches que
j"ai faites dans cette voie.
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ment
loge =— 3.

Avec ces nombres, I'inégalité (1) donne

Ir—y
, S—3+7.
et 3(13—7)
Ces ctonditions sont réalisées; donc la premiére racine est bien séparée
des deux autres.
On peut donc simplifier le calcul (n°® 3) en s’arrétant a la transformée 2*.
La premiére racine est donnée par I’équation, réductible au premier degré,

P+ A x?=o0;
les deux autres, par I'équation du second degré,
A2+ Ay + Ay—o.

12. Caractéres auxquels on reconnait la nature des racines. — Me
bornant au cas ou les coefficients sont réels, j’examinerai trois hypothéses
sur la nature des racines et les caractéres qui en résultent pour les transfor-
mées successives :

1° Les racines sont toutes réelles. — Alors les transformées, i partir
de 2', ont toutes les racines négatives; par suite, les coefficients sont posi-
tifs. C’est le cas de I'exemple (n° 3). Si les valeurs absolues de toutes ces
racines sont de plus distinctes, tous les coefficients deviendront réguliers.

2° L’équation a une racine multiple réelle, séparée des autres. — Soit
a,= a,, une racine double. Les coefficients A,_, et A,,, sont réguliers;
quant au coefficient A, il-a pour valeur principale

A1ty . Op g (Gp—tpy) =2a,0,...ap_,a,.

Je passe au calcul du terme correspondant de la transformée suivante.
Jai d’abord le carré du coefficient précédent

(1) +h4ata;...a;  a;

puis, avec le signe —, le double produit des deux termes qui le com-
prennent

J— 2 42 2
(2) 200y Oy g GOy Uy Ap Ay = — 2aT Q5. . .a_ al.
IIl. — Fac. de T. 0.3
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Les autres doubles produits sont négligeables. La somme algébrique des
termes (1) et (2) est

2 2 2
+2ala;...a,.

En résumé, les termes A,_, et A, sont réguliers. Le coefficient A ,, sans
étre régulier & proprement parler, n’est pas non plus entiérement irrégulier,
le carré de ce coefficient subissant une correction de double produit égale
a la moitié de ce carré, végale aussi au résultat de la correction.

La méme analyse s’applique & une racine d’un degré de multiplicité quel-
conque.

3° Considérons enfin un couple de racines imaginaires. — Soient «,
et a,,, ces racines de module @, et d’argument 0. Je les suppose séparées
des autres : les coefficients A,_, et A, sont réguliers; de plus, on a

Ap= ooy ooy (0p—+ Otpry) =2, ay. . . Ap_y @p COSH.
Pour le terme correspondant de la transformée, on aura

haiaj...a;cos*d)

2 o2 2
—a2alal...a f

p— 242 2
b —2alal...a}cos20.
P

Les angles 0, 20, 220, ... varient rapidement, de facon a passer souvent
d’un cadran a un autre. Aussi le terme A, change-t-il souvent de signe.
C’est la un trait caractéristique des racines imaginaires.

Les relations précédentes, quise vérifient exactement a partir de la trans-
formée qui sépare les racines, sont seulement approchées, mais de plus en
plus & mesure qu’on approche de cette transformée finale. Cela dispense de
calculer les transformées suivantes pour constater que les caractéres en
(uestion persistent.

Je vais maintenant donner quelques exemples.

13. Premier exemple. — A partir de la premiére transformée, I'équa-
tion a une racine double.
Soit I'équation

23— x?—2x +2=0.

Le calcul, disposé comme dans le premier exemple (n° 3), est fait éga-
lement avec la régle a calcul.
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23— x*— 22+ 2=0.

zs. z’. z'.
20 -+ 1 — i — 2
-4 1 ~ie 4
+ 4 4
21 -+ -+ 5 —+ 8
+ 1.25 -+ 1.64
— 16 — 4o
22 + 0.9 + 1.24
+ 1.81 + 2.576
— 48 — 288
23 -+ 1.33 -+ 2.288
-+ 3.1089 + 4.829
— 576 — 169
2% -+ 2.513 + 4.660
-+ 5.2633 + 9.436
— 1320 — 7
28 —+1 -+ 5.1313 -+ 9 429

a0,

-+ 2.256

-+ 4.6553

“+ 9.4295

L’ensemble des transformées présente le caractére des racines toutes

réelles. La transformée 2° montre que, pour la derniére racine, onac = 1:
b ) 9

de plus, le coefficient de z* est sensiblement égal 4 la correction du double

produit; doncles deux premiéres racines sont égales. Leur valeur commune

est donnée par 'une des deux relations

2a*=15.1313, a®>®*=9.429,
P’autre servant de vérification. On en déduit

a2 =4.6565, loga =o,1503,

32loga = 4,8172, a—1,414.

Vérification. — Pour fixer les signes, on substitue dans I'équation mise

sous la forme

x(xt—2)=a?— 2,
laquelle montre clairement que les racines sont

g ==+ /2 ==1,414, y=+1.

14. Deuxiéme exemple. — Je considére I’équation plus difficile pro-
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posée par Fourier ('),

2%

de la, en désignant par a, 3, v les racines réelles, par re

E. CARVALLO.

2" — 228 — 32+ fa?—bx +6=—o.

Jépargne au lecteur le calcul des cinq premiéres transformeées; il reste :

.

-+ I

= I

xs. xs. &Zi. xs. x°. xt.

o — 2 [ — 3 -+ 4 — 5

-+ 4 — 2 — 2 -+ 29 — 14 — 23
+ 1.20 + 1.78 -+ 1.54 -+ 2.589 + 3.1386 —+ 3.1537
-+ 2.244 + 3.510 — 4.366 + 5.385 + B.250 — 6.123
- h.494 + T.446 — 9.247 +11.1534 -+11.886 +11.674
+ 9.235 +45.2233 —18.751 +22.2797 -+23.564 —24.4556
+18.552  +30. 498 +37. 564 -+44.784 +47.318 +49.2073
—15. 4 +28. 4 —38.1250 +41. 9 -+47.256 —48. goo

—22. » +33. » —40.» —b4hk. »
- » — »

+18.5516  +30. 502 —37. 686 -+44.785 +47.574 +49.1173
-+ 1 + 2.732  + 4.1495
+ 5.536 -+ 8.2335
— 4.299 — 8.1184

-+ 5.506 -+ 8.105
~+1414.256 +16.1102
— 8. 2 —15. 662
—+1 -+144.2558 +15. 440

x°.

—+ 6
“+ 36
“+ 3.1296
+ 6.1680
+142.28922
+24.797

+49.635
-+ 4.809

—+ 9.654

+19. 428

En regardant les signes des transformées successives, on voit que les deux
premiéres racines sont réelles, le couple suivant imaginaire; la racine sui-
vante réelle et le dernier couple imaginaire. Les cinq premiers termes de la
transformée 2° donnent les modules séparés des quatre premiéres racines;
les derniers, a partir de x*, forment une équation du troisieme degré. J'y
ai ramené a I'unité le coefficient du premier terme «*; puis, pour séparer la
racine réelle des deux autres, j’ai poussé jusqu’ala transformée 2°. On déduit

1]

, s les racines

(1) Traité de la résolution des équatians numériques, page 111.
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imaginaires,
(M) loga®* =+ 18,7416 logc?*® =11,4079
log(ab)t =+ 30,7007 log2(cs)?® cos256w—=15,6435
(r) log2 (abr)® cos640 —=— 37,8363 log (cs?)?5¢ =19,6314
log (abr?)e =+ 44,8949

Voici d’abord le calcul des racines réelles déduit des égalités (1) : |

64loga =18,7416 loga =o0,2922 a=1,960
(2) ? 64logb —=11,9591 logb —=o0,1869 b—1,538

a56logec =11,4079 logc = o0,0451 ¢ =1,109

Pour déterminer les signes de ces racines, je dois substituer les valeurs
obtenues dans I’équation proposée mise sous la forme (n° 2)

x(xt—o2xt— 32— 5)+ f2*+ 6 —o0.

D’apres cela, v est visiblement positif. De plus, le produit des trois ra-
cines ¢étant négatif, une des racines « ou B est positive et 1'autre négative;
c’est visiblement la premiére qui est négative. On a donc finalement

(3) a=—1,960, B =+1,538, Yy =-+1,109.

Pour les modules des deux couples d’imaginaires, on déduit des éga-
lités (1) .
log(r?)%*=14,1942 log(s?)?%¢—=8,6235
(4) logr = 0,1091 logs —=0,0168

r = 1,286 s = 1,039

Veut-on les arguments? On peut obtenir d’abord cos646 et cos256w
ainsi ‘

log ré¢ = 17,0971 log s23¢ = 4,3117
logare =+ 17,3981 log 2 5236 =+ 4,6127
(3) { logar® cos640 =— 17,1356 ' 10g25%5 cos 2560 = -+ 4,356
log cos646 =—0,7375 log cos 256w =+ 1,6229

640 = 56°, 1+ 180°+ £.360° 256w = 65°,2 + k', 360°

(*) Conformément & un usage des astronomes, je place le signe du nombre devant son
logarithme. Il ne peut pas en résulter de confusion, puisque le signe du logarithme porte
toujours sur la caractéristique seule.
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Pour lever I'indécision qui résulte des élévations au carré répétées, on
peut remonter les transformées successives jusqu'a 'équation proposée en
écrivant chaque équation sous la forme (n°2)

z ¢(2%) + §(2*) =o

et y remplacant 2* par la derniére valeur obtenue. Dans I'exemple actuel,
ou le nombre des couples d'imaginaires ne dépasse pas deux, on peut encore
s'adresser aux relations entre les coefficients et les racines, savoir

s a+f +y-+o2rcosd -+ascosw =o,
(6)

1 1 I 5
( — 4+ =+ - +2r-1cosfd + 2s~1cosw =+ =-
a By 6

On en tirerait les valeurs de 0 et de ».
On obtient

(7) 0=59°95, w=72°8.

L’équation proposée est complétement résolue par les formules (3), (4)

et (7).

15. Troisiéme exemple :
(1) Z*+4,0022° + 14,018 0122 + 20,038 022 + 25,070 05 = 0.

Voicl le calcul de la transformée 28 de cette équation :

xt. xd. xt. x'. z°.
27 +1 —45.2234 + 90.1952 —134.785 -+479.1236
“+1 -+90. 499 +180.381 -+269.616 +358. 1528
—90.3904 —180.351 —269.483
+1435. »
28 -1 +90.1086 +179.30 +269.133 +358. 1528

Les signes (—) des coefficients de x* et ', dans la transformée 27,
prouvent que I’équation proposée a deux couples de racines imaginaires.
De plus, I'influence des doubles produits ne manifeste aucune tendance a
disparaitre dans le terme en 2. Le premier couple n’est donc pas prés d’étre
séparé du second (n° 8). Nous devons regarder les deux couples comme
ayant le méme module (n°7). Dés lors, pour résoudre I’équation proposée,
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je ramene d’abord le module des quatre racines a I'unité en les divisant par
J q p

leur module commun r = {25,070 05 (n° 10).
Jobtiens la nouvelle équation

(2) Yr=41,7885 y¥+ 2,7997y%+1,9885y +1=o0.

Appliquant la méthode des équations réciproques (n° 10), je groupe les

termes équidistants des extrémes, je divise par y* et je pose y + -

—_—
= J

9
il vient pour I'équation résolvante

(3) 32+1,78855 + 0,7997 = 0.

A une racine re® de I'équation (1) répond la racine e% de I'équation (2),
et la racine 5 = €%+ ¢~% = 2 cos0 de I'équation (3). Or cette équation (3)
a une racine double, car on a

P _

5 =+0,894 25
pZ
" =+ 0,799 68
g =+ 90,7997
2

On a done, pour I'argument commun des deux couples de racines,

cosfh —=— —=—0,44712, log cos =—T1,65042,

6 =180°— (63°26'30").

P
2

1
2

Ce n’est la, en réalité, qu'une approximation; les racines ne sont pas ri-
goureusement égales ; leurs valeurs, connues a priori, sont

—1,001= 2,003/ —1, ——1,000-'_:2,000\/——1,
d’eu I'on déduit pour les arguments

800— (63°26'47"),  180°— (63926/5").
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§ IV. — Méthode d’approximation.

16. Soit a la valeur approchée, réelle ou imaginaire, obtenue par une
premiére application de la méthode de Griffe pour une des racines dis-
tinctes ou non de I'équation

(1) o=f(x)=Ajxm+ Ajx"™ 1 +...+A,.

Cette valeur suffit, dans la plupart des cas, aux ingénieurs et aux physi-
ciens. Mais, comme il n’en sera pas ainsi dans toutes les recherches, il im-
porte de donner une régle mécanique, un moyen sir et rapide d’obtenir
une valeur aussi approchée que 'on veut, sans qu’il soit nécessaire de se
préoccuper de certaines conditions théoriques, comme dans la méthode
de Newton, par exemple.

Je pose

(2) r=oa-+ 5,
il vient

(3) o=f(a+3z)=f(a)+ ?f’(a) + %f”(a) .ot —;’—r;f'n(a).

On verra que cette ¢quation est toujours trés facile & résoudre, avec
telle approximation que 'on veut; qu’on sait toujours a I'avance exac-
tement quel est Peffort & faire, quels sont les nombres & calculer pour
n’exécuter aucun calcul superflu. Mais, comme la formation de I'équation
en z serait difficile par la formule (3), il importe d’abord de donner pour
cette opération un procédé pratique. Je reproduirai, dans ce but, I'analyse
qu'a donnée D. Miguel Mérino dans son excellente exposition de la mé-

thode de Horner (*).

17. Méthode pour obtenir le développement de I’équationo = f (2 + z).
— Il sagit de calculer, au moyen de « et des coefficients A de I'équation (1),
les coefficients B de la formule

(4) Sf(a+3)=Byzs"+ Bz"'+...+B,,_15 + B,.

Pour cela, dans la formule (4), je remplace z par sa valeur x — o tirée

(1) Page 244.



RESOLUTION NUMERIQUE DES EQUATIONS. 0.25

de (2). Il vient
(5) Sf(z)=By(zx —a)"+B,(z —a)" ' +...+ B, (x —a) + B,,.

Cette formule met en évidence les conclusions suivantes :

1° St Pon divise f(x) par x — a, le reste représente B, et le quotient
représente By(x — )" '+ B,(x —a)"*+...+ B, ,(z — ) +B,_,.

20 Si lon divise ce quotient parx —a, le nouveau reste representeB,,_,,
le nouveau quotient représente By(x —a)™* + B, (x—a)"*+...+ B,,_,,
et ainst de suite.

Or la division du polynéme f(z) par # — « se fait par la régle bien
connue que Voici :

1° Le premier coefficient du quotient est A,.

2° Chagque coefficient du quotient se déduit du précédent en le multi-
pliant par a, et ajoutant le coefficient du terme du dividende qui a méme
degré que ce terme précédent du quotient.

3° Le reste s'obtient en formant un terme de plus par la méme régle.

Ainsi le calcul de I’équation en z se fera d’une fagon uniforme; je vais
montrer par un exemple la disposition qu’il convient d’adopter dans ce
calcul.

18. Application de la méthode pour la formation de f(u + z) a un
exemple. — Reégle pratique. — Reprenons I'équation

(1) f(z)=2*—gx+7=0.
Nous avons obtenu la racine approchée (n°3)
a=—3,049.

Pour rendre plus commode I'usage de la Table de multiplication de
Crelle, je remplace cette valeur-par — 3,05. J'applique les résultats précé-
dents a la formation de I'équation f(a + z). J'obtiens le calcul suivant
dont la disposition est expliquée par la régle pratique ci-apres :

1L — Fac. de T. 0.4
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Ao A, A, A,
+1 o -7 + 7
— 3,05 -+ 9,3025 — 7,02 2625
—+1 — 3,05 + 2,3025 — 0,02 2625 = B3
— 3,05 +18,605
“+1 — 6,710 +20,9075 = By
— 3,05
. —+1 — 9,15=D0,
—+1 =B,

Résultat :
S(a+3)=35"—9,1352+ 20,90755 — 0,02 2625.

RiGLe prATIQUE. — Ecrire sur une premiére ligne les coefficients du
polynome f(x); laisser une ligne en blanc et la souligner. Dans la troi-
sieme ligne, le premier coefficient cherché sera le méme que dans la
premiére; puis, pour en calculer un coefficient quelconque, multiplier
le dernier nombre obtenu a la troisiéme ligne par la valeur approchée
de la racine (o = — 3,05); écrire le produit a la deuxiéme ligne dans
la colonne suivante et ajouter les deux nombres qui se trouvent alors
dans cetle colonne. Souligner le dernier coefficient obtenu & la troi-
sieme ligne. On passera de méme de la troisieme a la cinquieme ligne
en négligeant le coefficient souligné, et ainsi de suite. Ces coefficients
soulignés sont ceux de U'équation en s.

19. J’ai maintenant a résoudre 1’équation
(2) 58— 9,155%+ 20,9075 3 — 0,022 625 —0;

seulement celle des valeurs de 5 que je cherche est voisine de o0,001. Je suis
conduit & multiplier par 1000 les racines de I’équation, pour que z soit
évalué en unités du premier chiffre inconnu de la racine. I1 vient

(3) 38— 915052 + 20 907 5005 — 22 625 000 = 0.

Sije néglige les deux premiers termes, je connaitrai z avec trois chiffres;
car ces termes altérent seulement les cing derniers chiffres du terme
constant. J'ai ainsi

422625

z = o907 =-1,081 (Régle a calcul);
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d’oli 'on déduit pour « la valeur
— 3,05
-+ 1081

x—=—3,048919

Si cette approximation ne suffit pas, on négligera seulement le premier
terme. On pourrait alors connaitre z avec sept & huit chiffres exacts, en ré-
solvant par la méthode de Griffe I'équation du second degré obtenue. On
s’aiderait avantageusement de la Table de multiplication de Crelle.

Mais il est encore plus rapide de remplacer z par sa valeur approchée
dans le terme en z?, ou bien encore de chercher la transformée en
u =5 —1,08 de 'équation (3) en négligeant le premier terme, enfin de ré-
soudre I'équation en u, limitée aux deux derniers termes. Dans cette deuxi¢me
maniére de procéder, la méthode coincide ici avec celle de Newton.

Voici ce nouveau calcul, en se bornant & chercher trois chiffres pour «.
Les deux membres de 1'équation (3) ont été divisés par 1o”. Les calculs
sont faits par tranches de trois chiffres (systéme & base 1000) avec les

Tables de Crelle :

Ao A, A,
— 4.915 -+ 2,09 075 — 2,26 250
» — 99 -+ 2,25 694
— 4.g915 -+ 2,08 976 — 0,00 556 = B,
- 99
— 4.915 -+ 2,08 877 =B,
— Z.915 =By

De I on déduit pour «, évalué en unités du premier chiffre cherché,

556 o
u=— 308,877 — 2,66 (Régle a calcul).
On obtient ainsi pour x
— 3,04 892
-+ 266

xr —=—3,04891 734

Il importe de bien remarquer que tout ceci n’est pas un résumé des cal-
culs, obtenu en supprimant les opérations fastidieuses : ¢’est la reproduction
fid¢le de mon calcul méme, sans omettre un seul chiffre.
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20. Calcul des inverses des racines. — Simplification. — L’équation
~aux inverses des racines admet les mémes coefficients que I'équation don-
née, de sorte que la transformée finale permet aussi bien de calculer les
inverses des racines que ces racines elles-mémes. Quand le terme constant
de I'équation est ramené a l'unité, I'inverse de la plus petite racine de la
derniére transformée est égal au coefficient du terme en x. Cette remarque
nous sera particuliérement utile dans le paragraphe suivant pour la résolu-
tion des équations transcendantes. Il est, dés lors, intéressant de voir com-
ment il faut modifier notre méthode d’approximation pour calculer la cor-
rection & porter, non plus a la racine, mais a son inverse. Soit donc « la
valeur approchée de I'inverse d’une des racines de I’équation

(1) Ad+Az+ A2+ ..+ Az T+ Az =o.

Je pose

Al

I’équation (1) devient
(2) A+ Aem—t 4+ A, E+A,=o.

Pour calculer la correction z, je remplace & par sa valeur a + 5 dans
I'équation (2). Le développement de ’équation en z s’obtient par la régle
pratique (n°18). Iln’y aura donc d’autre changement que celui qui consiste
arenverser 'ordre du calcul, ¢’est-a-dire & commencer par le terme constant
del’équation (1), et ce changement lui-méme disparait sil’on a eu soin d’or-
donner I'équation (1), comme je I'ai fait, par rapport aux puissances crois-
santes de z, au lieu de 'ordonner par rapport aux puissances décroissantes.
Il importe d’ajouter que, la racine que I’on cherche de I'équation en 5 étant
voisine de o, ce seront les derniers termes de I’équation en z qui influeront
particuliérement sur le calcul de cette racine. On pourra donc s’arréter
dans le sens vertical du calcul précédent quand on arrivera au coefficient
d’une puissance de z, telle que le terme correspondant de I'équation soit
négligeable, ce qu’on apercevra rapidement si l’on a soin d’exprimer z en
unités du premier chiffre inconnu de la racine x.
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§ V. — Deuxiéme extension de la méthode de Graffe. — Résolution nu-
mérique compléte d’une équation transcendante dont le premier membre
est une fonction holomorphe de la variable.

21. Définition du probléme. — Une équation transcendante est suscep-
tible d’une infinité de racines. Ainsi I'équation

e*—=rp(cosg + ising)
a des racines en nombre infini données par la formule
z=1logp +i(¢ +2km)

et obtenues en attribuant a & toutes les valeurs entiéres de — o0 & + oc.

Il est clair que la résolution numérique ne peut pas embrasser cette infi-
nité de solutions dont les modules dépassent toute limite, et I'on ne congoit
guére que la Science appliquée puisse poser un pareil probléme. Nous di-
rons donc que la résolution numérique compléte consiste a trouver toutes
les racines comprises dans un cercle donné aussi grand qu’on voudra, et
avec telle approximation qu’on voudra.

22. Théorie. — Soit f(x) une fonction que je suppose d’abord holo-
morphe dans tout le plan. On peut la développer suivant la formule de
Taylor

) S(@)=f(0) + 2 f(0) + T () ...+ T fr(0) + R,

Je suppose f(0)#0; s'il en était autrement, je considérerais la fonc-

f(z)

x

Dés lors, on peut trouver un rang n pour lequel R sera négligeable de-
vant f(o) pour toutes les valeurs de x comprises dans le cercle donné. Je
dis que, dans le calcul des racines cherchées, on peut négliger R. En effet,
supposons qu’on veuille vérifier qu'un nombre « est racine de f(z) au
moyen du développement (1). Le terme f(o0) se réduira avec la somme
des suivants. Or, si ¢ est I'erreur relative tolérée sur z, ces termes sont af-
fectés d’erreurs relatives égales a e, 2¢, ..., ne. L’erreur relative de leur
somme est au moins ¢, c¢’est-a-dire que I’erreur absolue sur cette somme
est au moins ¢ f(0). Le terme R n’influe donc pas sur la vérification consi-

> qui serait holomorphe, comme la premiére.

tion
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dérée; donc ce terme n'influe pas non plus sur le calcul des racines a I'ap-
proximation demandée. L’équation, ainsi limitée au terme de degré n,
pourra étre résolue par la méthode de Griffe. Les calculs se font ici en
commencant par les termes de degrés les plus faibles. On s’arrétera a la
premiére racine qui se trouvera sortir du cercle donné.

Ce qu’on vient de dire s’applique évidemment au cas ou f(x) n’est holo-
morphe que dans un certain cercle, pourvu qulon ne cherche que des ra-
cines comprises dans ce cercle.

23. Application. — Calcul de =. — Soit a trouver, a I’approximation

de la régle a calcul, la racine comprise entre o et Z.[: de I'équation

I .
1 - —=Sslhx.
(1) -

. ° . ™ .
A T'avance on sait qu’on doit trouver x = B Cet exemple servira donc,

en quelque sorte, de vérification a la théorie; il montre aussi comment la
méthode de Griffe fournit une infinité de maniéres de calculer le rapport
de la circonférence au diametre. L’équation (1) s’écrit
(2) — z —+ z il cosfux;
2 6 120  Ho4o ’
x" est plus petit que 1, cosfx également; donc, quand on opére avec la
régle & calcul, le dernier terme est négligeable devant 3. Je chasse le déno-
minateur 2 et je fais tout passer dans le premier membre. Il vient
x3
3 0=1—2& + o — —-
(3) 3 60
Je réduis les fractions en décimales et j’applique la méthode de Griffe,
en ayant soin de pousser aussi loin que possible un calcul nécessaire d’une
colonne et de ne faire un calcul & une colonne suivante que sl est nécessité
par le calcul d’une colonne précédente. De cette facon on évite des calculs
qui seraient inutiles ici, puisque 'on cherche, non pas les cinq racines de
I'équation (3), mais seulement la premiére. Voici ce calcul :
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0. x. xe. xs. xt. z°.
20 41— 2 0 + 1.3333 o — 2.1666
+~ 4 + o + 1.1t + o
o -+ 0.1333 o + 2.1111
» 0o 666 »
2! -+ 4 -+ 0.1333 + 11777 + 21111
-+ 1.16 -+ 0.1777
— 2666 — 1423
—+ 29
22 -+ 1.1333 + 1.377
+ 2.17797
- 7

23 —+1 “+ 2.1770
De la derniére transformée on tire

8logx = 3,752 03,
logxz —T71,71900,
x — 0,5236.
Verification :
6x —=3,1416.

On le voit, le calcul se trouve plus précis que nous n’avions demandé.

24. Caractéres de supériorité de la méthode. — Application a I’ As-
tronomie et & la Physique. — L’artifice qui consiste & ne faire un calcul
d une colonne que lorsqu’il est nécessité par une colonne précédente con-
stitue le plus remarquable caractére de supériorité de la méthode. 11 rend
en effet superflue, dans la pratique, la précaution, si utile a la théorie, de
fixer d’abord le nombre des termes & conserver dans la série. Par 1a on
évite une perte de temps, un effort d’intelligence et le risque d’aller trop
loin par une évaluation trop large. Mais, il y a plus. Voulons-nous mainte-

oy . i ' . < . .
nant la deuxiéme racine w — g de I'équation (1)? Il n’y aura rien a re-

commencer. Tous les calculs exécutés pour trouver la premiére racine sont
nécessaires pour chercher la deuxiéme. Il y aura seulement & ajouter des
termes aux colonnes; peut-étre des colonnes nouvelles? Mais toujours mé-
caniquement et & mesure des besoins, jusqu'a ce que le coefficient de «2,
devenu régulier, fasse connaitre la deuxiéme racine cherchée.
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On prévoit aisément les importants services que doit rendre la méthode
précédente en Astronomie et en Physique, ol I'on rencontre des équations
transcendantes, développables en séries. En Astronomie, par exemple,
on résoudrait I'équation bien connue

u—esinu— nt

par rapport & u, comme je viens de 'expliquer, en se bornant 4 la plus pe-
tite racine.

25. Extension de la méthode d’approximation. — Supposons qu’avec
la précision définitivement demandée a la racine, la série puisse étre limitée
au terme de degré n (n°22). L’équation s’écrira

o=Ay+ Az + A, ...+ A,a".

A cette équation algébrique, je peux appliquer la méthode d’approxima-
tion du § IV; mais il convient ici de commencer le calcul par les premiers
termes, qui sont les plus importants, et par suite de calculer la correction
qu'il faut porter a la valeur approchée de I'inverse de la racine. Par la on
évite, comme plus haut (n°24), la détermination a prior: du rang n ou il
faut limiter la série; car, dans la pratique, il suffira de s’arréter quand on
constatera que l'influence des termes suivants disparait. Si 'on se reporte
a la notation et a la disposition de calcul qui précédent (n° 18), on voit
qu'il faudra s’arréter dans le sens horizontal quand le terme A, , deviendra
négligeable devant le produit par « du dernier nombre obtenu (*). D’aprés
une remarque précédente (n® 20), le calculateur peut aussi s’arréter juste
a temps dans le sens vertical. De cette facon, il n’exécutera que la partie
strictemeat nécessaire des calculs.

26. Application a I’équation ; = sinx. — D’aprés le calcul précédent
(n° 23) on a, pour la valeur approchée de x,

cologx = 0,281 00,

I
;:I,gogg.

(1) On peut se demander ce qui arrive quand on dépasse le terme A, ou il convient de
s'arréter, en supposant A, négligeable. Au lieu de I'équation f(a + 5) = o qu’on aurait
obtenue, on obtient, dans cette hypothése, I'équation (z + «) f(a + &) = o, laquelle admet
les mémes racines que la premiére.
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Pour faciliter les calculs par la Table de Crelle, je remplace cette valeur
par

a—=1,9I.

Jobtiens le calcul suivant dont la disposition est expliquée par ce qui

précéde (n 18, 19, 20); je cherche g chiffres & —:

x°. . z°. . z', ’ Zc.
+1 — 0.2 o -+ 1. 333 333 333 33 o — 2. 166 666 666
+ 191 —1. 1719 — 328 329 + 3. 955 827 666 - 182 563 084
+1 — 2. 9 — 1. 1719 =+ 3. 500433333 -+ 3. 955 827 666 -+ 3. 15 896 418
-+ 191 + 347 62 + 6311 213 -+ 1206 397 51 230 60 49
—+1 + 0.182 -+ 0. 330 43 -+ 0.6316 217 333 -+ 1.1207 353 34 -+ 1. 230 620 39
-+ 191 - 716 16 -+ 200 + 512 -+ 1207
-+ 0.373 + 1.1046 6 -+ 1.263 -+ 1.632 -+ 2.1437
xs. x'. xZt. x°.
o + 4. 396 825 396 0 — 6. 55 117
+ 3. 303 621 584 —+ 5799 1727 —+ 2. 118 343 564 - 226 036 207
+ 3 303 621 58§ -+ 3. 6195 998 1+ 2. 118 343 565 + 2.225 981 090 = By
-+ 4404 849 4 + 84138422 1607 162 18
-+ 4. 4405 153 o +1. 84144617 -+ 2.1607 280 52 = B
-+ 2746 + 608 -
-+ 2.3186 -+2.692 = B;
—B -
z= Bss = —4.141

Deuxiéme correction :

-+ 2.692 ~+ 2.160 728 052 -+ 2.225 981 ogo
— 97 572 — 226 488 977
— §,141 + 2.692 -+ 2.160 630 480 — 5. 507 887
_ 75979 %
u—=+17 606 =17.316.

III. — Fac. de T.

0.5
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' . . ]
On déduit de ces deux corrections, pour =

o =-+1,91
5= o141
0=+ 316

= 1,909859316

~ . , 6 . .. . .
Cette valeur doit représenter —; si donc on la divise par 6, on doit re-

1 .
trouver la valeur connue de — On obtient, en effet,

1 1
e —=0,318 309 886 = .
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§ VI. — Application & la Physique.

Détermination du rapport § = * des coefficients d’élasticité de Lamé.
2p 4

27. Résultats de la théorie de Kirchhoff sur les vibrations d’une
plaque circulaire (). — Les lignes nodales qui correspondent & un son
quelconque de la plaque sont des cercles et des diametres qui la divisent
en portions égales. Le son fondamental répond & 2 diamétres et o cercle.
Dans les autres cas, on obtient des harmoniques. Soient

n le nombre des neeuds diamétraux
m le nombre des cercles ;
¢,.m le nombre des vibrations correspondantes a n et m.

Pour calculer ¢ au moyen de n, m et des constantes physiques de la
plaque, on a la formule suivante

he q(1+26)
— 2 L
(1) Vn,m——xn,m,nlz\/gp(]+9)(1+39)’

ou I'on représente par

2¢ I'épaisseur de la plaque;

l son rayon;

q son coefficient d’élasticité ;
¢ sa densité;

)\ . 1] 4 . ’ 1]
0 = o le rapport des coefficients d’élasticité de Lamé;

x;, , le carré de la (m + 1)*™ des racines de I’équation

(2) o=(4y—nn*(n—1)— A x4+ Ayt — Nyt ..,
dans laquelle on a

_1+20
s V= 1+0

(9) 'A _bhy(n+2k)(n+2k+1)[n(n—1)—o2k+hyk(n+ k)] —n2(n>—1)
Fr L3k x () t2)(n+ k)X (n+1)(n+2)...(n+2k-+1)

(1) Comptes rendus, t. XXIX, p. 753; 1849.
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28. Méthode pour la détermination de O au moyen des sons rendus
par une plaque (*). — L'é¢quation (2) est de la forme F(z, n, 0) =03 2} ,, -
est donc une fonction de 0, et cette fonction est variable avec 7 et m. Je la
représente par f, ,(9). On déduit de I'équation (1)

7 ‘y"."l — fn,n;(@) — CD 9
W o Jan®) om0

Pour les diverses valeurs de 0, o, ,,(0) peut étre calculé par les formules

(1), (2), (3). On en dressera une Table. L’observation du son fondamental

rendu par la plaque et de 'harmonique (7, m) fait connaitre ¢, , et ¢

n,m+

" Y, ’ . B
“ntrant dans la Table avec 'argument > = 9u,m(9), on en déduit 0. En
2,0

observant de nouveaux harmoniques, on a autant de vérifications.

La résolution de I'équation (2) est, on le voit, fondamentale dans la
méthode. Je vais donner cette résolution pour § = 1, n = o0, en me limitant
a deux racines.

29. Résolution de Uéquation du probléme dans le cas 0 =1, n = o.
Je pose ' =X et je raméne le premier coefficient a I'unité. Puis je rem-
place les coefficients par les valeurs numériques particulicres au cas actuel.
Enfin, japplique la méthode de Griffe. J'obtiens le calcul suivant pour les
transformées :

Xe. Xt Xz, A X+ X,

20 -+1 — -1-.5966 -+ 5.957 — 3.2818 + 8.264 —11.1004
—~1.35%  + 5.9i6 ~+10.811 ~-16.697
— 2. 19 — 5.341 —10. 506 —16. »
-+ § 5 —b—i_i 12 »
21 1. 33 + B.5755 +10.317 +16. »
= 1.1136  + 9.331 +20. >
— Z 1 —-—I—d 21 »
+1_6 » »
22 + 1.1135 + 9.310 +20. »

Les deux premiéres racines sont visiblement séparées entre elles et des

(1) Comptes rendus, loc. cit., et Notes de M. Mercadier, 11 et 25 juillet, 1°" aott 1887
ct 2 juillet 1888.
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autres. On en conclut

(Xo X))~ = (22 22) 5 = 4 8.310; 8log<—;—x§ — 4 §,491 36

l\.2
8 log <——;) =13,11000
22

0

8log(x2x?) = 8,508 64

810g(i;’§) —6,61864;  log <"_;%> — 0,827 33

N0
¢ x} -
2=l —=6,715
©30 X2
30. Résultats. — On obtient ainsi le nombre écrit en caractéres gras

dans le Tableau ci-dessous. Ce Tableau, tiré du Mémoire de Kirchhoff (*).

(S . ) .
donne les valeurs de 222 — o 0) pour diverses valeurs de n et les deux
s o T1,m p

valeurs § = } et 0 = 1. Toutes peuvent étre obtenues comme la précédente.
Voici ce Tableau :

Valeurs de ¢, ,,(0) pour 6 =14 et 6=1.

— 1 —
6=1. 0 =r.
m. n=o. n=r1. n=oa2. n=3. n:=o. n=r. n=a2. n==3.
0 o £ 1,000 2,312 ®© © 1,000 2,327
1 1,613 3,703 6,403 9,645 1,728 3,907 6,711 10,076
2 6,956 10,838 » » 7,334 11,400 » »

[l importe de connaitre 9,,,(0) pour les valeurs de 6 intermédiaires & o, 5
et 1. Voici ce que je trouve pour le premier harmonique (n=o0, m =1) :

0 0,5 0,6 0,7 0,8 0,9 1,0

‘ -~
0:—';:@‘0?} 1,613 1,639 1,663 1,683 1,706 1,728

Or, si 'on calcule les nombres intermédiaires par interpolation au moyen

(1) Loc. cit.
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des deux extrémes, on trouve les nombres
1,613 1,636 1,639 1,682 1,705 1,728

(qui coincident avec les précédentes a 'approximation du calcul. Cette
approximation est largement suffisante dans la question qui nous occupe.
On peut donc se contenter de cette interpolation, et le Tableau de Kirch-
hoff suffit 4 résoudre le probleme de la détermination de 0 par I'étude des
plaques vibrantes.
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