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O.I

EXTENSION DE LA MÉTHODE DE GRÄFFE.

MÉTHODE PRATIQUE
POUR LA

RÉSOLUTION NUMÉRIQUE COMPLÈTE
DES ÉQUATIONS ALGÉBRIQUES OU TRANSCENDANTES;

PAR M. E. CARVALLO,
Professeur au Lycée Saint-Louis.

HISTORIQUE.

a Étant donnée une équation numérique, sans aucune notion de la
grandeur ni de la nature des racines, en trouver les valeurs numéri-
ques, exactes s’il est possible, ou aussi approchées qu’on voudra. Ce pro-
blème n’a pas encore été résolu. C’est l’objet des recherches suivantes. »

Ainsi s’exprime Lagrange au commencement de son Mémoire Sur la m~-
solution des équations numériques ( 1 767 ) . Posé par Viète (1), ce problème
est étudié d’abord dans des cas spéciaux par lui-même, par Harriot, Oug-
tred, Pell, etc. Descartes l’aborde dans toute sa généralité et l’engage dans
une voie nouvelle par sa règle des signes, insuffisante il est vrai.

« Telle qu’elle est néanmoins (2), cette règle a été pendant deux siècles ce
qu’on a eu de mieux. Les plus grands analystes, à commencer par Newton
et à finir par Lagrange, n’ont pu, malgré leurs efforts, faire un pas décisif
après Descartes. L’équation aux carrés des différences (de Lagrange),

t 1 ) De numerosa potestarum adfectarum resolutione.
( 2 ) BORDAS-DEMOUUN, Le Cartésianisme, p. i z2 ; 1843.



simple en théorie, nécessite des calculs fatigants et quelquefois intermi-
nables. Fourier atteint presque le but. En 1820, il publier une règle dont il
était en possession depuis plusieurs années. S’il échoue, ses :efforts aident
Sturm à réussir dans un théorème qu’il donne en 1 829. Ce théorème exige
seulement une dérivée et une opération analogue à la recherche du plus
grand commun diviseur... Toutefois l’esprit a je ne sais quel pressenti-
ment qu’il quelque voie plus simple. »

Telle est en peu de mots, d’après Bordas-Démoulin, l’histoire de cette
belle théorie des équations, exposée par nos professeurs avec un si grand
talent qu’elle semble à leurs élèves l’oeuvre d’un seul génie. Saisis d’admira-
tion pour tant de puissance, nous sommes entraînés par ce même talent à
confondre notre pensée avec celle des inventeurs, si bien que l’idéal de Sturm
devient volontiers le nôtre : découvrir les racines par son théorème, puis
en calculer des valeurs aussi approchées qu’on veut par la règle de Newton.
Et cependant le pressentiment du savant philosophe est si bien justifié que
la réalisation en existait déjà depuis six ans quand il publia son Livre
en 18,!~ 3.
Dès i83~, en effet, le professeur Gratte, de Zurich, estimant que la sé-

paration des racines, poursuivie par ses devanciers, n’est qu’une méthode
de tâtonnements, a donné dans un Mémoire à l’Académie de Berlin une mé-
thode directe remarquable par la simplicité de principe et d’application. Elle
consiste à calculer une puissance des racines assez grande pour que leurs
rapports deviennent considérables. Ainsi grossies, les racines sont séparées
et immédiatement mesurables, comme les objets fins et rapprochés sont sé-
parés et rendus mes.urables par le microscope. Cette idée remonte à Daniel
Bernoulli. Elle sert de base à la méthode que ce célèbre mathématicien a

donnée « dans les Mémoires à l’Académie de Saint-Pétersbourg, t. III,
où il enseigne comment on peut, à l’aide des séries récurrentes, assigner les
valeurs approchées des racines d’une équation algébrique quelconque ».

Malheureusement, cette méthode ne donne directement que la plus grande
racine. De plus, comme l’indique Euler dans son Introduction à l’Analyse
infinitésimale, Chap. XVII, elle peut se trouver en défaut. Graffe au con-
traire trouve toutes les racines. Il obtient ce résultat par une opération
plusieurs fois répétée, comme le micrographe augmenterait le grossissement
par une série de verres gradués. Cette opération, d’Arithmétique pure, est
si simple qu’elle n’exige aucune connaissance théorique ; elle s’exécute sur
les coefficients de l’équation sans préparation préliminaire. Plus de difficulté



telle que la recherche du plus grand commun diviseur; plus de tâtonne-
ments dont la longueur indéterminée est incompatible avec les besoins de
la pratique. Nous possédons enfin, comment Duhamel l’ignore-t-il? la mé-
thode qu’il réclame en 1866 (’ ) « que tout le nionde puisse appliquer 
le même succès ».

Seulement Grâfîe s’est borné à déterminer les raciiies réelles et les 

dules des racines imaginaires, quand ces quantités diffèrent les 

des autres.

C’est en effet tout ce que ses devanciers se sont proposé. Le célèbre astro-
nome allemand Encke, admirateur de la méthode de Gratte, se préoccupe
dès lors de la compléter. Dans ce but, il publie en 1841 un Mémoire de
soixante pages dans l’appendice à l’Annuaire de l’observatoire de Berlin.
Ce Mémoire, laissé dans l’oubli malgré l’intérêt du sujet et le renom de son
auteur, tomba par hasard sous les yeux de D. Miguel Merino, de l’observa-
toire de Madrid, qui cherchait depuis long temps, mais en vain, dans les
livres français, la méthode pressentie par Bordas et réclamée par Duhamel.
Il fut tellement satisfait de sa découverte qu’il publia en espagnol une tra-
duction libre du Mémoire (18~g). Dans son enthousiasme, il reproche à
nos auteurs leur silence à l’égard du savant allemand et en accuse « la pa-
resse d’esprit, la routine des écoles et le patriotisme très mal entendll ».
Mais à côté de ces sévères critiques, M. Merino ne justifie-t-il pas cet oubli
d’un travail relégué dans une publication astronomique, spéciale à un ob-
servatoire particulier? Lui-même s’étonne de l’y trouver ; il cn juge la lec-
ture pénible. Pour le mettre à la portée des lecteurs, il a dû séparer les dif-
ficultés dans des Chapitres distincts, puis ajouter des exemples et des

éclaircissements nombreux. Avec ces modifications, le livre espagnol a 260
pages. Il présente les qualités de clarté et de méthode que le traducteur re-
fuse au Mémoire original. Il y a plus, à côté de son admiration pour
la méthode de Gratte, M. Merino avoue que le complément d’Encke ne ré-
pond pas entièrement au desideratum.

Et en effet, dans sa recherche des racines imaginaires, Encke n’emprunte
au calcul de Gràffe que la connaissance du module. Par là il méconnaît l’idée

féconde de l’inventeur suisse. La théorie en devient compliquée; l’applica-
tion exige des développements trigonométriques, la formation du plus grand

( 1 ) Des méthodes dans les sciences de naisonnement, 2~ Partie, p. 2.58.



commun diviseur, et retombe ainsi, pour les imaginaires, dans les difficultés
de la méthode de Sturm. On le voit, s’il est permis d’apprécier la théorie
d’Encke parce qu’elle aborde pour la première fois avec succès les racines
imaginaires, il faut bien reconnaître que le savant allemand n’a rien ajouté
de pratique à la méthode de Gräffe, parce qu’il n’en a pas vu toute la
portée.
Dans ce Mémoire, je reprendrai le problème d’Encke. Je démontrerai que

la règle de Graffe donne immédiatement et sans nouveau calcul les racines
imaginaires, comme les racines réelles ; que la méthode s’applique sans
modification au cas des racines d’égal module. On verra même que la dé-
monstration embrasse le cas non abordé jusqu’ici où l’équation proposée a
ses coefficients imaginaires.

Dépassant ensuite le but poursuivi par Encke, je démontrerai que la mé-
thode s’applique avec un caractère de supériorité remarquable au cas où le
premier membre de l’équation est une fonction holomorphe de l’inconnue.
Ce résultat s’étend d’abord au cas des fonctions méromorphes, comme la
résolution des équations entières s’étend au cas où le premier membre est
une fonction algébrique fractionnaire ; puis il s’étend aux autres fonctions
en isolant les points critiques.

Je m’efforcerai de donner à l’exposition de la théorie une rigueur qui fait,
à mon avis, défaut dans l’oeuvre de Graffe et d’Encke, et qui est nécessaire
pour ouvrir à une méthode nouvelle les portes de renseignement. C’est
l’objet du § II, qui m’est personnel et n’emprunte rien aux Mémoires cités.
On reconnaîtra que j e ne me suis pas livré à de vaines spéculations, mais

que, toujours guidé par un but pratique, j’ai appliqué chaque point de la
théorie à un exemple. Je n’ai même pas craint de m’arrêter aux détails qui
sont de nature à faciliter l’exécution des calculs.



§ I. - Introduction à la méthode de Graffe. - Application.

1. Si l’on désigne par a, ~, y les racines de l’équation

on a

Pour fixer les idées, supposons provisoirement les racines réelles, dis-

tinctes, positives, et soit a ~ ~ ~ ~ . Faisons enfin cette hypothèse fonda-
mentale, que : :

/4 d’approximation qu’on veut porter au calcul des twcines,
03B2 est négligeable devant 03B1, et 03B3 devant 03B2.

Si, par exemple, on veut les racines avec cinq chiffres exacts, je suppose
que ) est inférieur à une unité du cinquième chiffre de a. Dans ces condi-
tions, les formules (2) se réduisent aux formules approchées

et l’équation (i) sera résolue immédiatement par les formules

Si l’hypothèse fondamentale n’est pas réalisée par les nombres a, ~,1~,
elle le sera par les nombres ~, y~, pourvu qu’on prenne p assez grand.
On formera donc l’équation aux puissances  des racines de l’équation
proposée ; on calculera les solutions de la nouvelle équation au moyen des
formules (4) et, en extrayant les racines ces solutions, on aura
celles de la proposée.

Telle est, en principe, la méthode de Gràfle. Il est évident qu’elle s’ap- .,
plique à une équation de degré quelconque, que l’hypothèse des racines ..’

positives n’est pas nécessaire. Enfin, nous verrons qu’elle s’applique aussi
bien aux racines égales et aux racines imaginaires.
Comme il serait malaisé de déterminer a priori le nombre m. et de former

d’un coup l’équation aux puissances  des racines, il est préférable de



former l’équation aux carrés des racines de la proposée, puis l’équation
aux carrés des racines de cette transformée, et ainsi de suite jusqu’à ce que
l’on arrive à une équation qui satisfasse à l’hypothèse fondamentale, ce
qu’on reconnaîtra à des caractères très simples que nous donnerons plus
loin. De plus, dans la pratique, il est préférable de former l’équation aux
carrés changés de signes des racines ; nous l’appellerons la transformée
de la première.

2. Formation de la transformée aux carrés changés de signes des
racines. - Soit l’équation

les polynômes

représentant la somme des termes de degré pair et la somme des termes de
degré impair. Je pose

et j’élimine x entre les équations (i) et (2). Pour cela, je remplace dans
l’équation (i) x2 par - y. J’obtiens

IJuis, de cette équation, je tire la valeur de x que je porte dans l’équa-
tion ( 2 ). Il vient, après avoir chassé les dénominateurs,

Le système des équations (3), (4) est équivalent au système (i), (2).
L’équation (4) est de degré m, comme l’équation ( 1 ), et donnera n2 racines.
Connaissant l’une d’elles, on pourra tirer de l’équation (3) la valeur corres-
pondante de x. Cette observation est inutile quand on sait que la valeur
de x est réelle et positive, car il suffit alors d’extraire la racine carrée

mais elle devient précieuse quand on ignore la nature des solutions
de l’équation donnée. Elle lève l’hésitation qui provient des deux racines
carrées de - y.

Quelle est maintenant la loi de formation des termes de l’équation (4 )’?
Cherchons par exemple les termes en L’un d’eux est le carré du terme



de degré p dans ? ( - y), lequel répond au terme de degré 2p dans 03C6(x2).
Ce terme est donc

Dans le développement du carré on trouve aussi les doubles

produits des termes équidistants de Les termes ainsi accouplés étant
affectés du même signe, leur produit a le signe +. On aura donc dans
l’équation (4) les termes 

’

Dans le [développement de y ~,~2 ( - y), les termes de degré 2p provien-
nent des termes de ~.~2 ( - y). Or ceux-ci sont les doubles produits
des termes en yP-’ et yP, et yp+’, ... de ~(- y). Comme les termes
de ~ ( - y) sont affectés alternativement de signes contraires, les doubles

produits sont affectés du signe -. De plus, le terme en yP de c~ ( - y) ré-
pond au terme en X2P+f de f( x). Son coefficient est donc D’après
cela, les termes de degré 2p dans le développement de y c~~ ( - y) sont

J’ai considéré, dans l’équation (4), les termes d’un degré 2 p. En consi-
dérant les termes d’un degré impair, on trouve la même loi; savoir :

’ 
- Le coefficient d’un terme quelconque de, la transformée

égale le carré du coefficient correspondant de l’équation donnée, moins
lc double produit des deux coefficients qui le comprennent, plus le double
produit des coefficients qui comprennent ceux-ci, et ainsi de suite jus-

ce qu’on aiiive à ma des termes extrêmes de l’équation.
3. Familiarise.r dès maintenant lc lecteur avec la pratique de la méthode,

lui donner la mesure de sa simplicité, lui suggérer les questions à résoudre
pour établir la théorie sur des bases certaines, tel est le but important que
j’atteindrai d’un coup par un exemple.

Soit 1.’équation proposée par Lagrange (’ )

Voici, sans omettre un seul chiffre, la reproduction fidèle du _calcul des
transformées successive; : 

( 1 ) Traité de la résolution des équations numériques, Chap. IV.



Exécuté avec la règle à calcul, il est disposé en Table à double entrée.
Les en-têtes 2°, 2’, 2~, ... qui affectent les lignes indiquent que ces lignes
présentent les coefficients de l’équation où l’inconnue est respectivement
.x~ - - x4, .... Quant aux puissances de l’inconnue affectées par les
divers coefficients d’une même ligne, elles sont marquées par les en-têtes de
colonnes x3, x2, xi, xO. Ainsi la lecture de la dernière ligne 2° nous apprend
que l’équation

a pour racines les valeurs de - x26 ou - 

On voit qu’à partir de cette transformée, chaque ligne se déduirait de la

(1) A cause des élévations au carré répétées, les coefficients augmentent de façon à con-
tenir un nombre de chiffres trop grand pour qu’on songe à les écrire. Ainsi le dernier

nombre de la ligne 26 s’écrirait en 55 chiffres. Pour obvier à cet inconvénient, j’écris en ca-
ractères gras et en avant des chiffres connus du nombre la caractéristique de son loga-
rithme, ou mieux le rang de son premier chiffre à gauche relativement au chiffre des unités
affecté du rang o.



précédente en élevant au carré les nombres quelle contient, les doubles
produits se trouvant négligeables devant ces carrés. Sans doute, on est

arrivé à ce point où chaque racine est négligeable devant la précédente(nos 1 et 2 ) et l’on a, en désignant par a, b, c les valeurs absolues des racines

On reconnaît immédiatement les signes des racines, soit en considérant
leur somme et leur produit, soit en mettant l’équation proposée sous la
forme (3), (n° 3),

On a ainsi, pour les racines, les valeurs

4. La rapidité des calculs est, on le voit, surprenante, surtout si l’on ob-
serve que l’approximation obtenue est généralement suffisante pour les
besoins de la Physique et de l’art de l’ingénieur. On peut cependant encore
les abréger en’ posant x = puis divisant par 7 les deux membres d~~

l’équation en y, dans le but d’amener les deux coefficients extrêmes à avoir
pour valeur l’unité. De cette façon, on évite la difficulté de former les carrés
des termes extrêmes et les doubles produits de ces termes par les autres
termes. Ainsi, dans l’équation du troisième degré, pour déduire chaque
transformée de la précédente, on vient de voir qu’il y avait quatre opéra-
tions à faire avec la règle à calcul, les carrés des trois derniers termes et le
double produit du dernier terme par l’antépénultième. Avec la simplifica-
tion que je viens d’indiquer, les carrés des coefficients de ,z2 et x~’ se feront l
seuls avec la règle à calcul, les résultats des deux dernières opérations seront
immédiatement connus. Enfin, dans ce cas, comme il n’y a que des carrés
à former, on pourra avantageusement remplacer la règle à calcul par une
Table des carrés des nombres. Ces diverses simplifications réduisent le tra-
vail de moitié environ. Si l’approximation obtenue ne suffisait pas, ou

trouverait rapidement des valeurs beaucoup plus approchées des racines



par une méthode que j’exposerai plus loin et qui se rattache à la fois à celles
de Horner, de Lagrange et de Newton. On pourrait aussi faire de suite le
calcul précédent avec la précision demandée aux résultats; mais nous ver-
rons que ce procédé serait moins avantageux.

5. Passons maintenant à une simplification dont le caractère théorique a
une très grande portée. Dès la transformée 24, on observe ce fait fonda-
mental que chaque coefficient de la colonne x2 est le carré du précédent ; le
double produit des coefficients qui le comprennent étant négligeable devant
ce carré, le coefficient de x2 devient régulier. C’est l’indice qu’on a atteint
l’objet même de la méthode, à savoir que les deux dernières racines sont
négligeables devant la première. La première racine est séparée des deux
autres. Dès lors, si je désigne par A, B, C les coefficients de la transformée 24,
et par a, b, c les valeurs absolues de ses racines, les relations

se réduisent à

Les nombres a, b, c s’obtiennent donc, au signe près, en résolvant les
équations

lesquelles s’obtiennent en décomposant l’équation donnée

en ces deux autres

Ce résultat remarquable est tout à fait général. Il est le véritable prin-
cipe de la méthode de Greffe. C’est faute d’en avoir reconnu la généralité
que son ingénieux inventeur a dû se borner à chercher les modules des ra-
cines. La même cause a égaré son illustre successeur Encke dans ses re-
cherches sur le calcul des racines imaginaires. Sa méthode sort tout à fait
de l’esprit de la méthode de Graffe, ce qui en diminue la portée et en exclut
la simplicité.
Nous possédons maintenant toutes les notions qui serviront à établir la

théorie qui fait l’objet du paragraphe suivant.



§ II. - Première extension de la méthode de Gräffe. - Théorie de
la résolution numérique complète des équations algébriques.

6. Définitions. - I° Approximations dans les imaginaines. - Soit M
l’affixe de l’imaginaire z. Il est clair que la précision de la position du
point M représente la précision de z. De là les définitions suivantes, où l’on
désigne par M’ l’affixe de z’, valeur approchée de z.

absolue de z’ est z’ - z. Elle est représentée par le vecteur MM’ .
La grandeur de cette erreur est la longueur MM’ ou mod (z’ - z). .

L’erreur relative de z’ est MM’ OM = mod(z’-z) mod z.

L’imaginaire, représentée par le vecteur MM’, est négligeable devant z
quand son module est inférieur à la grandeur d’erreur absolue qu’on tolère

sur z, ou bien encore quand MM est inférieur à l’erreur relative qu’on to-
lère sur z .

2° Ordre des racines. - Ces considérations conduisent à ranger les ra-

cines d’une équation suivant l’ordre de grandeur de leurs modules, sauf à
laisser arbitraire l’ordre des racines qui ont même module. Nous choisirons
l’ordre décroissant. Les racines et leurs modules seront représentés res-
pectivement par des lettres grecques et par les lettres romaines correspon-
dantes.

3° Racines séparées. - Je dirai que deux racines consécutives sont sé-
parées quand la deuxième sera négligeable devant la première.

4° Terme’ régulier. - Dans le calcul des transformées successives de
l’équation proposée, d’après la règle (n° 2), considérons les coefficients d’une
même puissance de l’inconnue. S’il arrive qu’à partir d’un certain rang le
coefficient en question soit toujours le carré du précédent, les doubles pro-
duits qui s’y ajoutent étant négligeables devant ce carré, je dirai que ce
coefficient est régulier à partir de la transformée correspondante.

7. . Nombre des transformées nécessaires pour sé parer deux racines
consécutives 03B1 et 03B2. - Ce nombre ne dépend évidemment que du rapport
des racines et de la précision qu’on veut apporter au calcul. Je considère la
transformée aux puissances p des racines de la proposée. Nous voulons
qu’elle sépare les racines ex et ~, c’est-à-dire que 1’ soit négligeable devant

ou que b~ soit plus petit que l’erreur relative E qu’on tolère sur la ra-



cine oc. On en déduit

Je pose

n sera le numéro d’ordre de la transformée cherchée,
k est grossièrement le nombre de chiffres exacts qu’on demande à la racine.

L’inégalité précédente devient

d’où l’on déduit

Ainsi, la limite inférieure de n est la somme de deux nombres; le pre-
rnier est fonction du nombre’ k des chiffres exacts demandés à la racine a,
l’autre dépend de ~, et par suite du rapport des racines à séparer. Voici
deux Tables donnant une suite de valeurs numériques de ces deux nombres :

8. Remarques - Il résulte de la formule (A) et de ces
deux Tables les conséquences suivantes.
Pour séparer ,deux racines décuples l’une de l’autre, il faut deux à trois

transformées suivant que l’approximation demandée est de fi à 8 chiffres
exacts. Si une racine surpasse 10 fois l’autre, le nombre des transformées

n’en peut être que diminué. Si le rapport 1 est compris entre I et I o, le



nombre d’opérations est augmenté des nombres de la deuxième colonne de
la Table II. Ainsi :

Ainsi la cinquième transformée, c’est-à-dire celle qui donne les valeurs
de ~B séparera, parmi les racines de la proposée, celles dont les modules
sont au moins dans le rapport ï, 5. On voit aussi que le nombre des trans-

formées nécessaires augmente rapidement quand le rapport , se rapproche
de i. Pour § = i, il est infini. Il ne serait guère raisonnable de faire plus
d’une dizaine de transformées, c’est-à-dire de séparer des racines dont la
plus grande dépasserait la plus petite de moins de m de leur valeur ; mieux
vaut les considérer comme égales dans une première approximation. Dès
lors, il n’y a pas lieu en général de porter une très grande précision au calcul
des transformées successives. On y trouvera cet énorme avantage de pou-
voir exécuter toutes les opérations avec la règle à calcul; en évitant ainsi
l’usage des Tables de logarithmes, le calculateur aura très rapidement sé-
paré les racines qui peuvent l’être avec cette approximation.

9. THÉORÈME. - Pour que les racines 03B1p et 03B1p+1 du polynôme

f(x)=xm + A1xm-1 +...+Apxm-p +...+Am soient séparées, il faut

et il suffit que (Ap+k Ap )1 k 
soit négligeable devant 

(Ap Ap-l)1 l 
pour toutes les va-

leurs de k et de l. Le polynôme f( x) se sépare alors en deux fragments.

obtenu en négligeant les termes qui suivent Ap, donne les p
premières racines. Le second fragment, obtenu en négligeant les termes
qui précèdent Ap, donne les m - p dernières racines.

Je suppose négligeable devant ~.
Le coefficient A~ égale la somme des produits p à ~ des racines. Le pre-

mier de ces produits est ce, 03B12 ... Un autre produit s’obtient en rempla-
çant, au moins, une des p premières racines par une des suivantes qui sont
négligeables devant les premières. Ce nouveau produit est donc négligeable
devant le premier, et l’on a, à l’approximation du calcul,



Ap+k a pour premier terme ai oc~... dont le module est

Les autres termes sont du même ordre de grandeur, ou d’ordre plus petit.
Le terme ne peut donc pas dépasser l’ordre de a1 a2...apap+1 ... ap+k,

ni dépasser l’ordre de ~+, ... lequel est, au plus, de l’ordre de
P 

. 

~ ~
(ap+1)k. Enfin (Ap+k Ap)k est, au plus, de l’ordre de De même 

est, au moins, de l’ordre de ap. Comme est supposé négligeable de-
1 A

vaut ap, (Ap+k Ap)k est négligeable devant (Ap Ap-1)l à la même approximation.
C.Q.F.D.

Réciproquement, je suppose que soit négligeable devant (Ap Ap-l)l
pour toutes les valeurs de /r et de l.

Soient K la plus grande valeur du premier nombre et L la plus petite va-
leur du second. Par hypothèse, K est négligeable devant L. Dans/*(.y), je
donne à .r une valeur

On a, en comparant le terme Apxm-p à un des précédents,

Si donc ~ est un nombre petit, tous les termes qui précèdent le terme
Apx"wp sont négligeables devant lui à l’approximation ?]. De même, si l’on
donne à la variable une valeur x, telle que q x > K, les termes qui suivent

Apxm-p sont négligeables devant ce terme à l’approximation Yj. Dès lors,
l’équation f (x) = o peut-elle être satisfaite pour une valeur de x dont
l’ordre de grandeur soit intermédiaire à ceux de K et de L? Non, car le
terme Apxm-p ne se réduirait avec aucun autre. Les racines sont, les unes
d’ordre au moins égal à celui de L, les autres d’ordre au plus égal à celui
de K. Il en résulte que, à la même approximation où K est négligeable
devant L, les premières racines satisfont à l’équation



obtenue en négligeant les termes qui suivent Ap. Elles sont au nombre de p.
Les racines d’ordre au plus égal à celui de K s’obtiennent de même en
négligeant les termes qui précèdent Ap, et sont en nombre m - po.

10. Méthode pour la résolution numérique complète d’une équation
algébriq~ue quelconque. - On forme le nombre de transformées nécessaires
pour séparer les racines qui sont distinctes à l’approximation du calcul
(n°S 6 et 7 ). Dès lors l’équation se sépare en fragments, tels que chacun

d’eux donne les racines d’égal module. La détermination de ces fragments 
V

résulte du théorème du n° 9. La résolution de chaque équation partielle
pourra être terminée comme il suit : 

’

I° Supposons d’abord les coefficients réels, et imaginons qu’on ait divisé
les racines par leur module commun, de façon à ramener ce module à
l’unité. L’équation ne pourra plus avoir comme racines réelles que + 1,
dont on se débarrassera s’il y a lieu ; quant à ses racines imaginaires, elles
seront deux à deux conjuguées, et par suite inverses l’une de l’autre.

L’équation pourra donc être traitée par la méthode des équations récipro-
ques. L’équation résolvante aura toutes ses racines réelles et pourra être
résolue définitivement par une nouvelle application de la méthode de Grâfïe.

2° Supposons que l’équation partielle ait des coefficients imaginaires et ne
rentre dans aucun des types que l’on sait résoudre. Ce cas bien exceptionnel
se rarnène au précédent, en multipliant le premier membre par le polynôme
conjugué. Il est vrai qu’on introduit ainsi comme racines étrangères les
conjuguées de celles que l’on cherche, mais il sera facile de choisir, par une
substitution rapide et grossière dans le premier membre de l’équation par-
tielle à résoudre (’ ).

Passant de la théorie à l’application, je donnerai d’abord quelques re-
marques utiles. Les unes simplifient la pratique de la méthode, les autres
avertissent le calculateur de la nature des racines. Puis je donnerai des
exemples.

( 1 ) Mieux vaut employer l’élégante solution que voici, due à M. Goursat. Je pose

I + iz I - iz = x == el, d’où z = - i x - I x + I 
= tang-. L’équation en z a toutes ses racines réelles

et peut être résolue par la méthode de Grâne. Elle fait connaître les valeurs de l’argument 03B8
de l’inconnue x. On évite ainsi les solutions étrangères introduites par la méthode du texte.



. § III. - Pratique de la méthode.

11. Caractères signalant les racines séparées. - Simplification. -
Pour que les racines ap et «p+, soient séparées à l’approximation ~, et que
de ce fait l’équation se fragmente sur le terme Ap, il faut et il suffit que .

l’inégalité

soit satisfaite pour toutes les valeurs de k et de 9). En particulier, si
l’on fait l == k, on a l’inégalité nécessaire

Elle signifie que le coefficient A~ est devenu régulier ( n° 6), et ce caractère
ne manquera pas de signaler les racines séparées. Si la théorie ne permet de
le regarder que comme un avertissement, jamais pour ainsi dire il ne trom-
pera dans la pratique, pourvu qu’on s’assure, non pas qu’un double produit
est accidentellement nul, mais que son influence a diminué progressive-
ment jusqu’à disparaître (’ ). On le contrôlera par la condition (i) qui est
suffisante (n° 9). Celle-ci peut s’écrire

Comme il ne s’agit ici que de comparer l’ordre de grandeur des rapports
de l’inégalité (I), il suffit de remplacer ces logarithmes par leurs caractéris-
tiques. Revenons à l’exemple de Lagrange (n° 3). Dès la transformée ~~,
le coefficient A t de x2 est régulier, et l’on a . 

.

De plus, les opérations étant faites avec la règle à calcul, on a sensiblc-

( 1) Si le terme Al, demeure régulier pendant un certain nombre de transformées, ou si,
dans ces transformées, il est devenu régulier par diminution progressive de l’influence des
doubles produits, on peut affirmer que, sauf des cas très spéciau,x, les racines ap et 03B1p+1
sont séparées. Cette exception possible m’a déterminé à ne pas publier les recherches que
j’ai faites dans cette voie.



ment

Avec ces nombres, l’inégalité (i) donne

Ces Conditions sont réalisées ; donc la première racine est bien séparée
des deux autres.
On peut donc simplifier le calcul ( n° 3) en s’arrêtant à la transformée 2".

La première racine est donnée par l’équation, réductible au premier degré,

les deux autres, par l’équation du second degré,

12. Caractères auxquels on reconnaît la nature des racines. 0 - NIC
bornant au cas où les coefficients sont réels, j’examinerai trois hypothèses
sur la nature des racines et les caractères qui en résultent pour les transfor-
mées successives : :

1 ° Les racines sont toutes réelles. - Alors les transformées, â partir
de ~’, ont toutes les racines négatives; par suite, les coefficients sont posi-
tifs. C’est le cas de l’exemple (n° 3). Si les valeurs absolues de toutes ces
racines sont de plus distinctes, tous les coefficients deviendront réguliers.

2° L’équation a une racine multiple réelle, séparée des autres . - Soit
a p = une racine double. Les coefficients et sont réguliers ;
quant au coefficient Ap, il a pour valeur principale

Je passe au calcul du terme correspondant de la transformée suivante.
J’ai d’abord le carré du coefficient précédent

puis, avec le signe -, le double produit des deux termes qui le com-
prennent



Les autres doubles produits sont négligeables. La somme algébrique des
termes (t) et (2) est

En résumé, les termes Ap-f et Ap+t sont réguliers. Le coefficient AP, sans
être régulier à proprement parler, n’est pas non plus entièrement irrégulier,
le carré de ce coefficient subissant une correction de double produit égale
à la moitié de ce carré 3 égale aussi au résultat de la correction.
La même analyse s’applique à une racine d’un degré de multiplicité quel-

conque.
3° Considérons enfin un couple de racines imaginaires. - Soient ap

et ces racines de module ap et d’argument 9. Je les suppose séparées
des autres : les coefficients et AP+f sont réguliers ; de plus, on a

Pour le terme correspondant de la transformée, on aura

Les angles 8, 28, 228, ... varient rapidement, de façon à passer souvent
d’un cadran à un autre. Aussi le terme Ap change-t-il souvent de signe.
C’est là un trait caractéristique des racines imaginaires.

Les relations précédentes, qui se vérifient exactement à partir de la trans-
formée qui sépare les racines, sont seulement approchées, mais de plus en
plus à mesure qu’on approche de cette transformée finale. Cela dispense de
calculer les transformées suivantes pour constater que les caractères en

question persistent..
Je vais maintenant donner quelques exemples.

13. . Premier exemple. - A partir de la première transformée, l’équa-
tion a une racine double.

Soit l’équation

Le calcul, disposé comme dans le premier exemple (n° 3), est fait éga-
lement avec la règle à calcul.



L’ensemble des transformées présente le caractère des racines toutes

réelles. La transformée 2~ montre que, pour la dernière racine, on a c = T;
de plus, le coefficient de x2 est sensiblement égal à la correction du double
produit; donc les deux premières racines sont égales. Leur valeur commune
est donnée par l’une des deux relations

l’autre servant de vérification. On en déduit

Vérification. - Pour fixer les signes, on substitue dans l’équation mise
sous la forme

laquelle montre clairernent que les racines sont

14. Deuxième exemple. - Je considère l’équation plus difficile pro-



posée par Fourier 1 ’ ),

J’épargne au lecteur le calcul des cinq premières transformées; il reste :

En regardant les signes des transformées successives, on voit que les deux
premières racines sont réelles, le couple suivant imaginaire; la racine sui-
vante réelle et le dernier couple imaginaire. Les cinq premiers termes de la
transformée 2~ donnent les modules séparés des quatre premières racines;
les derniers, à partir de x3, forment une équation du troisième degré. J’y
ai ramené à l’unité le coefficient du premier terme x3 ; puis, pour séparer la
racine réelle des deux autres, j’ai poussé jusqu’àla transformée 2g. On déduit
de là, en désignant par a, ~, y les racines réelles, par rei6, les racines

(1) ) Traité de la résolution des équations numériques, page 1 i 1 .



imaginaires,

Voici d’abord le calcul des racines réelles déduit des égalités (i) :

Pour déterminer les signes de ces racines, je dois substituer les valeurs
obtenues dans l’équation proposée mise sous la forme (n° 2)

D’après cela, y est visiblement positif. De plus, le produit des trois ra-
cines étant négatif, une des racines (x ou ) est positive et l’autre négative ;
c’est visiblement la première qui est négative. On a donc finalement

Pour les modules des deux couples d’imaginaires, on déduit des éga-
lités (1)

Veut-on les arguments? On peut obtenir d’abord cos6403B8 et cos25603C9
ainsi

( 1 ) Conformément à un usage des astronomes, je place le signe du nombre devant son
logarithme. Il ne peut pas en résulter de confusion, puisque le signe du logarithme porte
toujours sur la caractéristique seule.



Pour lever l’indécision qui résulte des élévations au carré répétées, on
peut remonter les transformées successives jusque l’équation proposée en
écrivant chaque équation sous la forme (n° ~ ~

et y remplaçant x2 par la dernière valeur obtenue. Dans l’exemple actuel,
où le nombre des couples d’imaginaires ne dépasse pas deux, on peut encore
s’adresser aux relations entre les coefficients et les racines, savoir

On en tirerait les valeurs de e et de M.

On obtient

L’équation proposée est complètement résolue par les formules ( 3 ), (4 )
et ( 7 ) ,

1 5 . Troisième exemple :

Voici le calcul de la transformée 28 de cette équation :

Les signes ( - ) des coefficients de x3 et x’, dans la transformée Zr,
prouvent que l’équation proposée a deux couples de racines imaginaires.
De plus, l’influence des doubles produits ne manifeste aucune tendance à
disparaître dans le terme en x2. Le premier couple n’est donc pas près d’être
séparé du second (n° 8 ). Nous devons regarder les deux couples comme
ayant le même module (n° 7). Dès lors, pour résoudre l’équation proposée,



je ramène d’abord le module des quatre racines à l’unité en les divisant par
leur module commun r = 425, 07005 (n° 10).

J’obtiens la nouvelle équation

Appliquant la méthode des équations réciproques (n° 10 ), je groupe les
termes équidistants des extrêmes, je divise par y2 et je pose y + 1 = ,~ ~
il vient pour l’équation résolvante 

"

A une racine re6i de l’équation (i) répond la racine e6i de l’équation (2),
et la racine ,~ = e6i + = 2 cos6 de l’équation (3). Or cette équation (3)
a une racine double, car on a

On a donc, pour l’argument commun des deux couples de racines,

Ce n’est là, en réalité, qu’une approximation; les racines ne sont pas ri-
goureusement égales ; leurs valeurs, connues a priori, sont

d’où l’on déduit pour les arguments



§ IV. - Méthode d’approximation.

16. Soit a la valeur approchée, réelle ou imaginaire, obtenue par une
première application de la méthode de Graffe pour une des racines dis-
tinctes ou non de l’équation

Cette valeur suffit, dans la plupart des cas, aux ingénieurs et aux physi-
ciens. Mais, comme il n’en sera pas ainsi dans toutes les recherches, il im-

porte de donner une règle mécanique, un moyen sûr et rapide d’obtenir
une valeur aussi approchée que l’on veut, sans qu’il soit nécessaire de se
préoccuper de certaines conditions théoriques, comme dans la méthode
de Newton, par exemple.

Je pose

il vient

On verra que cette équation est toujours très facile à résoudre, y avec
telle approximation que l’on veut; qu’on sait toujours à l’avance exac-

tement quel est l’effort à faire, quels sont les nombres à calculer pour
n’exécuter aucun calcul superflu. l~Iais, comme la formation de l’équation
en z serait difficile par la formule ( 3 ), il importe d’abord de donner pour
cette opération un procédé pratique. Je reproduirai, dans ce but, l’analyse
qu’a donnée D. NIiguel Mérino dans son excellente exposition de la mé-
thode de Horner (’ ).

17. Méthode pour obtenir le développement de l’équation o = f(03B1 + z) .
- Il s’agit de calculer, au moyen de 03B1 et des coefficients A de l’équation ( 1 ),
les coefficients B de la formule

Pour cela, dans la formule (4)? je remplace ~ par sa valeur .r 2014 ~ tirée

(i) Page ~44.



de (2). Il vient

Cette formule met en évidence les conclusions suivantes :
I° Si l’on divise f (x) par x - a, le reste représente B,n et le quotient

représente Bo (x - + B, (x - « )m-2 + ... + B,n_2 (x - a) + .

2° Si l’on divise ce quotient par x 2014 03B1, le nouveau reste représente Bm-1,

le nouveau quotient représente B, (x-- a)nt-3 -~- ... -~-- 
et ainsi de suite.

Or la division du polynôme f (x) par x - a se fait par la règle bien
connue que voici :

1 ° Le premier coefficient du quotient est Ao .
2° Chaque coefficient du quotient se déduit du précédent en le multi-

pliant par a et ajoutant le coefficient du terme du dividende qui a même
degré que ce terme précédent du quotient.

3° Le reste s’obtient en formant un terme de plus par la même 
Ainsi le calcul de l’équation en z se fera d’une façon uniforme ; je vais

montrer par un exemple la disposition qu’il convient d’adopter dans ce
calcul.

18. Application de la méthode pour la formation de f( (X + z) à un
exemple. - Règle pratique. - Reprenons l’équation

Nous avons obtenu la racine approchée (n° 3)

Pour rendre plus commode l’usage de la Table de multiplication de
Crelle, je remplace cette valeur par - 3,o5. J’applique les résultats précé-
dents à la formation de l’équation J’obtiens le calcul suivant
dont la disposition est expliquée par la règle pratique ci-après :



Résultat :

RÈGLE PRATIQUE. - Écrire sur une première ligne les coefficients du
polynôme f (x); laisser une ligne en blanc et la souligner. Dans la troi-
siéme le premier coefficient cherché sera le même que dans la
première; puis, pour en calculer un coefficient quelconque, multiplier
le dernier nombrc obtenu à la troisième ligne par la valeur approchée
de la racinc ( oc = - 3,05); écrire le produit à la deuxième ligne dans
la colonne suivante et ajouter les deux nombres qui se trouvent alors
dans cette colonne. Souligner le dernier coefficient obtenu à la troi-
sième lib rz.e. On passera de même dc la troisième à la cinquième ligne
cn négligeant le coefficient souligné, et ainsi de suitc. Ces coefficients
soulignés sont ceux de l’équation en z.

~9. J’ai maintenant à résoudre l’équation 
’

seulement celle des valeurs de z que je cherche est voisine de 0,001. Je suis
conduit à multiplier par 1000 les racines de l’équation, pour que z soit
évalué en unités du premier chiffre inconnu de la racine. Il vient

Si je néglige les deux premiers termes, je connaîtrai ,~ avec trois chiffres;
car ces termes altèrent seulement les cinq derniers chiffres du terme

constant. J’ai ainsi



d’où l’on déduit pour x la valeur

Si cette approximation ne suffit pas, on négligera seulement le premier
terme. On pourrait alors connaitre z avec sept à huit chiffres exacts, en ré-
solvant par la méthode de Graffe l’équation du second degré obtenue. On
s’aiderait avantageusement de la Table de multiplication de Crelle.

Mais il est encore plus rapide de remplacer z par sa valeur approchée
dans le terme en Z2, ou bien encore de chercher la transformée en

u = â - 1 , 08 de l’équation ( 3 ) en négligeant le premier terme, enfin de ré-
soudre l’équation en u, limitée aux deux derniers termes. Dans cette deuxième
manière de procéder, la méthode coïncide ici avec celle de Newton.

Voici ce nouveau calcul, en se bornant à chercher trois chiffres pour u.
Les deux membres de l’équation (3) ont été divisés par zor. Les calculs
sont faits par tranches de trois chiffres (système à base i ooo) avec les

Tables de Crelle :

De là on déduit pour u, évalué en unités du premier chiffre cherché,

On obtient ainsi pour x

Il importe de bien remarquer que tout ceci n’est pas un résumé des cal-
culs, obtenu en supprimant les opérations fastidieuses : c’est la reproduction
fidèle de mon calcul même, sans omettre un seul chiffre.



20. . Calcul des inverses des racines. - Simplification. - L’équation
, 

aux inverses des racines admet les mêmes coefficients que l’équation don-
née, de sorte que la transformée finale permet aussi bien de calculer les
inverses des racines que ces racines elles-mêmes. Quand le terme constant
de l’équation est ramené à l’unité, l’inverse de la plus petite racine de la
dernière transformée est égal au coefficient du terme en x. Cette remarque
nous sera particulièrement utile dans le paragraphe suivant pour la résolu-
tion des équations transcendantes. Il est, dès lors, intéressant de voir com-
ment il faut modifier notre méthode d’approximation pour calculer la cor-
rection à porter, non plus à la racine, mais à son inverse. Soit donc a la
valeur approchée de l’inverse d’une des racines de l’équation

Je pose

l’équation (ï) devient

Pour calculer la correction z, je remplace ( par sa valeur a + ~ dans
l’équation (2). Le développement de l’équation en z s’obtient par la règle
pratique ( n° ~18 ). Il n’y aura donc d’autre changement que celui qui consiste
à renverser l’ordre du calcul, c’est-à-dire à commencer par le terme constant
de l’équation (1), et ce changement lui-même disparaît si l’on a eu soin d’or-
donner l’équation (I), comme je l’ai fait, par rapport aux puissances crois-
santes de x, au lieu de l’ordonner par rapport aux puissances décroissantes.
Il importe d’ajouter que, la racine que l’on cherche de l’équation en z étant
voisine de o, ce seront les derniers termes de l’équation en z qui influeront
particulièrement sur le calcul de cette racine. On pourra donc s’arrêter
dans le sens vertical du calcul précédent quand on arrivera au coefficient
d’une puissance de z, telle que le terme correspondant de l’équation soit
négligeable, ce qu’on apercevra rapidement si l’on a soin d’exprimer z en
unités du premier chiffre inconnu de la racine x.



§ V. - Deuxième extension de la méthode de Graffe. - Résolution nu-
mérique complète d’une équation transcendante dont le premier membre
est une fonction holomorphe de la variable.

21. . Définition du problème. - Une équation transcendante est suscep-
tible d’une infinité de racines. Ainsi l’équation

a des racines en nombre infini données par la formule

et obtenues en attribuant à k toutes les valeurs entières de - oo à + oc.

Il est clair que la résolution numérique ne peut pas embrasser cette infi-
nité de solutions dont les modules dépassent toute limite, et l’on ne conçoit
guère que la Science appliquée puisse poser un pareil problème. Nous di-
rons donc que la résolution numérique complète consiste à trouver toutes
les racines comprises dans un cercle donné aussi grand qu’on voudra, et

avec telle approximation qu’on voudra. .

22. Théorie. - Soit f (x) une fonction que je suppose d’abord holo-
morphe dans tout le plan. On peut la développer suivant la formule de
Taylor

Je suppose f (o) ~ o; s’il en était autrement, je considérerais la fonc-

tion f(x) x, qui serait holomorphe, comme la première.
Dès lors, on peut trouver un rang n pour lequel R sera négligeable de-

vantf( 0) pour toutes les valeurs de x comprises dans le cercle donné. Je
dis que, dans le calcul des racines cherchées, on peut négliger R. En effet,
supposons qu’on veuille vérifier qu’un nombre x est racine de f (x) au
moyen du développement (I). Le terme f (o) se réduira avec la somme
des suivants. Or, si ~ est l’erreur relative tolérée sur x, ces termes sont af-
fectés d’erreurs relatives égales à e, 20, ..., ns. L’erreur relative de leur
somme est au moins s, c’est-à-dire que l’erreur absolue sur cette somme
est au Le terme R n’influe donc pas sur la vérification consi-



dérée ; donc ce terme n’influe pas non plus sur le calcul des racines à l’ap-
proximation demandée. L’équation, ainsi limitée au terme de degré n,
pourra être résolue par la méthode de Graffe. Les calculs se font ici en

commençant par les termes de degrés les plus faibles. On s’arrêtera à la
première racine qui se trouvera sortir du cercle donné.

Ce qu’on vient de dire s’applique évidemment au cas où f (x) n’est holo-
morphe que dans un certain cercle, pourvu qulon ne cherche que des ra-
cines comprises dans ce cercle.

23. Application. - Calcul de n. - Soit à trouver, à l’approximation
de la règle à calcul, la racine comprise entre o et ( de l’équation

A l’avance on sait qu’on doit trouver x == ~. Cet exemple servira donc,
en quelque sorte, de vérification à la théorie; il montre aussi comment la

méthode de GraNe fournit une infinité de manières de calculer le rapport
de la circonférence au diamètre. L’équation (1) s’écrit

x7 est plus petit que 1, cosex également; donc, quand on opère avec la
règle à calcul, le dernier terme est négligeable devant i. Je chasse le déno-
minateur 2 et je fais tout passer dans le premier membre. Il vient

Je réduis les fractions en décimales et j’applique la méthode de Graffe,
en ayant soin de pousser aussi loin que possible un calcul nécessaire d’une
colonne et de ne faire un calcul à une colonne suivante que s’il est nécessité

par le calcul d’une colonne précédente. De cette façon on évite des calculs
qui seraient inutiles ici, puisque l’on cherche, non pas les cinq racines de
l’équation (3 ), mais seulement la première. Voici ce calcul :



De la dernière transformée on tire

Vérification :

On le voit, le calcul se trouve plus précis que nous n’avions demandé.

24. Caractères de supériorité de la méthode. - Application à l’As-
tronomie ct à la Physique. - L’artifice qui consiste à ne faire un calcul
à une colonne que lorsqu’il est nécessité par une colonne précédente con-
stitue le plus remarquable caractère de supériorité de la méthode. Il rend
en effet superflue, dans la pratique, la précaution, si utile à la théorie, de
fixer d’abord le nombre des termes à conserver dans la série. Par là on

évite une perte de temps, un effort d’intelligence et le risque d’aller trop
loin par une évaluation trop large. Mais, il y a plus. Voulons-nous mainte-

nant la deuxième racine ~c - ’~ de l’équation (I)? Il n’y aura rien à re-

commencer. Tous les calculs exécutés pour trouver la première racine sont
nécessaires pour chercher la deuxième. Il y aura seulement à ajouter des
termes aux colonnes; peut-être des colonnes nouvelles? Mais toujours mé-
caniquement et à mesure des besoins, jusqu’à ce que le coefficient de x2,
devenu régulier, fasse connaître la deuxième racine cherchée.



On prévoit aisément les importants services que doit rendre la méthode
précédente en Astronomie et en Physique, où l’on rencontre des équations
transcendantes, développables en séries. En Astronomie, par exemple,
on résoudrait l’équation bien connue

par rapport à u, comme je viens de l’expliquer, en se bornant à la plus pe-
tite racine.

25. . Extension de la méthode d’approximation. 
- Supposons qu’avec

la précision définitivement demandée à la racine, la série puisse être limitée
au terme de degré n (n° 22). L’équation s’écrira

A cette équation algébrique, je peux appliquer la méthode d’approxima-
tion du § IV; mais il convient ici de commencer le calcul par les premiers
termes, qui sont les plus importants, et par suite de calculer la correction
qu’il faut porter à la valeur approchée de l’inverse de la racine. Par là on

évite, comme plus haut ( n° 24), la détermination a priori du rang n où il
faut limiter la série; car, dans la pratique, il suffira de s’arrêter quand on
constatera que l’influence des termes suivants disparaît. Si l’on. se reporte
à la notation et à la disposition de calcul qui précèdent (n° 18), on voit
qu’il faudra s’arrêter dans le sens horizontal quand le terme deviendra

négligeable devant le produit par a du dernier nombre obtenu 1 ’ ) . D’après
une remarque précédente (n° 20), le calculateur peut aussi s’arrêter juste
à temps dans le sens vertical. De cette façon, il n’exécutera que la partie
strictement nécessaire des calculs. .

26. Application à l’équation 1 2 = sinx. - D’après le calcul précédent
(n° 23) on a, pour la valeur approchée de x,

(1 ) On peut se demander ce qui arrive quand on dépasse le terme An où il convient de
s’arrêter, en supposant négligeable. Au lieu de l’équation f(a + z) = o qu’on aurait
obtenue, on obtient, dans cette hypothèse, l’équation ( z -;- x ) f ( x + z ) = o, laquelle admet
les mêmes racines que la première.



Pour faciliter les calculs par la Table de Crelle, je remplace cette valeur
par

J’obtiens le calcul suivant dont la disposition est expliquée par ce qui

précède (nos 18, 19, 20); je cherche 9 chiffres à 1:

Deuxième correction :



On déduit de ces deux corrections, pour -?

Cette valeur doit représenter 6; ; si donc on la divisc par 6, on doit re-

trouver la valeur connue de I 03C0. On obtient, en effet,



§ VI. - Application à la Physique.

Détermination du rapport 8 = 03BB 2  des coefficients d’élasticité de Lamé.

27. Résultats de la théorie de Kirchhoff sur Les vibrations

plaquc circulaire ~’ ). - Les lignes nodales qui correspondent à un son

quelconque de la plaque sont des cercles et des diamètres qui la divisent
en portions égales. Le son fondamental répond à 2 diamètres et o cercle.
Dans les autres cas, on obtient des harmoniques. Soient

rz le nombre des noeuds diamétraux ;
III le nombre des cercles ;

vn,,~ le nombre des vibrations correspondantes à n et Ill.

Pour calculer v au moyen de n, m et des constantes physiques de la .

plaque, on a la formule suivante

où l’on représente par
? ~ l’épaisseur de la plaque ;
l son rayon ;

q son coefficient d’élasticité ;
p sa densité ;

6 = ~‘ le rapport des coefficients d’élasticité de Lamé ;

le carré de la (m + des racines de l’équation

dans laquelle on a

( 1 ) Comptes rendus, t. XXIX, p. y53 ; 1$~g.



28. Méthode pour la détermination de 6 au moyen des sons rendus

pan une plaque (1). - L’équation ( 2) est de la forme F(x, n, 8 ) = o ; 
est donc une fonction de 9, et cette fonction est variable avec n et m. Je la
représente par On déduit de l’équation ( I )

Pour les diverses valeurs de 03B8, 03C6n,m(03B8) peut être calculé par les formules

(1), (2), (3). On en dressera une Table. L’observation du son fondamental
rendu par la plaque et de l’harmonique ( n, in) fait connaître et vn,m.

Entrant dans la Table avec l’argument (’n,m = on en déduit 8. En

observant de nouveaux harmoniques, on a autant de vérifications.
La résolution de l’équation (2) est, on le voit, fondamentale dans la

méthode. Je vais donner cette résolution pour e = 1, n = o, en me limitant
à deux racines.

29. Résolution de l’équation du problème dans Lc cas 8 =1, , n = o.
Je = X et je ramène le premier coefficient à l’unité. Puis je rem-
place les coefficients par les valeurs numériques particulières au cas actuel.
Enfin, j’applique la méthode de Graffe. J’obtiens le calcul suivant pour les
transformées :

Les deux premières racines sont visiblement séparées entre elles et des

(1) ) Comptes rendus, loc. cil., et Notes de M. Mercadier, II 1 et 25 juillet, te~ août 188~
et 2 juillet I888.



autres. On en conclut

30. Résultats. - On obtient ainsi le nombre écrit en caractères gras
dans le Tableau ci-dessous. Ce Tableau, tiré du Mémoire de Kirchlloff (i ),
donne les valeurs de vn,m v2,0 = 03C6n,m C 8 > pour diverses valeurs de n et les deux
valeurs a = 1 2 et a --. i. Toutes peuvent être obtenues comme la précédente.
Voici ce Tableau :

Il importe de connaître pour les valeurs de a intermédiaires à o, ,~
et 1 . Voici ce que je trouve pour le premier harmonique (n = o, rn = 1 ) : :

Or, si l’on calcule les nombres intermédiaires par interpolation au moyen

( i ) I,oc. cit.



des deux extrêmes, on trouve les nombres ,

qui coïncident avec les précédentes à l’approximation du calcul. Cette

approximation est largement suffisante dans la question qui nous occupe.
On peut donc se contenter de cette interpolation, et le Tableau de Kirch-
hoff suffit à résoudre le problème de la détermination de 0 par l’étude des
plaques vibrantes.
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