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SUR LES

FQUATIONS DIFFERENTIELLES HOMOGENES DU SECOND ORDRE

A COEFFICIENTS CONSTANTS,

PAR M. P. APPELL.

1. Soit une équation différentielle

(1) vy, y)=o,

dont le premier membre est un polynéme homogene irréductible par rap-
port a une fonction jy de la variable x et a ses dérivées y’, y” : les coefficients
de ce polynéme sont supposés constants, c’est-a-dire indépendants de z.
L’intégration de I'équation se raméne immédiatement aux quadratures : il
suffit, en effet, de poser

y = eludz, Y =uy, Y=+ u)y
pour obtenir une équation du premier ordre
(2) Y(ut+ o', u,1)=o0

donnant x en fonction de z par une intégrale abélienne.
Ainsi qu'on le fait pour les équations linéaires et homogénes, on peut
trouver des solutions de I'équation (1) ayant la forme spéciale

y= Cerx’
C désignant une constante arbitraire et r une constante, racine de I'équa-
tion
(3) en(r)=149(r* r,1)=o.

Dans le cas des équations linéaires, les solutions ainsi obtenues sont toutes
particuliéres : on peut se demander s'il en est encore ainsi lorsque Péqua-
tion différentielle homogéne n’est plus linéaire.
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Nous allons montrer que certaines de ces intégrales peuvent étre parti-
culiéres, d’autres singuliéres, en donnant en méme temps le moyen de re-
connaitre si une de ces intégrales est particuliére ou singuliére. On verra
que, dans des cas limites, toutes les intégrales de la forme

y="Ce™
peuvent étre particuliéres, ou toutes singuliéres (*).
2. L’équation (2) obtenue en faisant

y= efuda;”
est de la forme

(3) W oo (u) 4w o (u)+...+u ¢,y (1) + 9,(u)=o,

ot g(u), 9,(u), ..., 9,(u) sont des polynémes, dont le dernier 9,(u) a
pour racines les constantes 7 donnant les solutions

y =Cer=,
Soit 7 une racine de ¢, (u) : il est évident que
u—=—r

sera une intégrale de I'équation (3); il s’agit de voir si cette intégrale doit
étre regardée comme particuliére ou comme singuliére.

Lorsque l'on fait # = r, I'équation (3) en «’ a au moins une racine nulle.
Supposons d’abord qu’elle n’en ait qu'une, c’est-a-dire que la valeur u =r
n’annule pas ¢,_, () : alors I'intégrale u = r est particuli¢re par rapport
a la branche de la fonction intégrale dont la dérivée s’annule pour v =r.
En effet, comme pour « = r une seule valeur de ' s’annule, cette valeur
est, pour des valeurs de u voisines de 7, développable en une série de la
forme (*)

W=a(u—rP[1+a(u—r)+a(u—r)+...],

(1) Pour la théorie des intégrales singuliéres des équations du premier ordre, consulter
les travaux de MM. Darboux (Comptes rendus, 1870) et Cayley (Messenger of Mathema-
tics, 1872, 1876) et une Note de M. Kapteyn (Bulletin des Sciences mathématiques, 1888).
Pour les intégrales singuliéres des équations du second ordre, nous signalerons un travail
de M. Goursat (American Journal, t. XII).

(2) Voir Brior et Bovouet, Théorie des fonctions elliptiques, Livre V.
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p étant un entier positif. On tire de la
du .
(ld.l':—:7)‘;[I+A1(u——'r)+A2(1l—I’) +...]

(u

et, en cherchant I'intégrale qui se réduit & «, pour z = o,

(4) ax:Z ,;té;:[(u = r)s=PH — (yy— r)s—rEt],

olt A, =1 et ol le terme correspondant & s = p — 1 doit étre remplacé par

Ap-ylog

u—r
uy—r

En écrivant cette intégrale
ax(u—r)P-1(u,—r)r-!

RO e (e

= =

S=o

+2 S_—?'ﬁ?[(u — ) (uy—r)P~t— (ug— 1) (w—r)r-'},

on voit que, lorsque u, tend vers r, tous les termes s’annulent, excepté
(u—r)?P~' : on trouve donc, en faisant tendre u, vers r,

(e —ryp—1t=o, u=r;

ce qui montre que u = r est bien une intégrale particuliére pour la branche
considérée de I'intégrale générale. On verra sans peine comment il faudra
modifier le calcul précédent dans le cas particulier ot p =13 les premiers
termes du développement (4) sont alors deslogarithmes; la conclusion sub-
siste, u = r est intégrale particulicre.

Supposons maintenant que la valeur considérée u = r annule non seule-
ment g,(«), mais aussi 9,_, (%), 9, (&), .... Alors, quand  tend vers r,
plusieurs des valeurs de «’ définies par I'équation

' o (u)+ unto (u)+...+ Wo,y(u)+o,(u)y=o

tendent vers zéro. Ces valeurs se partagent en systémes circulaires com-
posés de racines qui se permutent dans le voisinage de u = r. Pour I'un de
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ces systemes circulaires, on aura

P 1 2
(5) u':a(u—r)E[l+a,(u——r)'l+a2(u—r)’/+...],

p et g étant des entiers positifs. On vérifiera par un calcul identique au
précédent que, si

=
v

la solution
u—_=r

doit étre regardée comme une intégrale particuli¢re, pour la branche de la
fonction intégrale satisfaisant a 'équation (5).

Mais, si
5 <,
cette solution u = r devra étre regardée comme une intégrale singulicre.
En effet, cherchons, comme plus haut, I'intégrale « qui se réduit & «, pour
® = 0; nous verrons que cette intégrale ne tend pas vers u = r quand «,
tend vers 7. Pour cela nous pouvons procéder comme plus haut : écrivons
I’équation

du H 2
adr= ————p[l—l—A,(u — )+ Ay(u—r)7+.. .];
(u—r)t

d’ot1, en intégrant,

S=wo S—p+q s—p—+q
ax:ZS—_;qu:_—q[(u—r) 7 —(uy—r) 9 ],
$=0

la constante A, ayant la valeur 1. Actuellement tous les exposants du

second membre sont posilifs, puisque g <1 : si donc on fait tendre u, vers

r, I'intégrale précédente tend vers la fonction « définie par I’équation

S=w s—p+q
amzzs—_—_q—?sjé(u—r) 7
s=0

fonction quin’est pas du tout « = r. L'intégrale « = r est donc singulicre.
On arriverait également a cette conclusion en faisant dans ’équation (5) la



SUR LES EQUATIONS DIFFERENTIELLES HOMOGENES DU SECOND ORDRE, ETC. K.5

substitution
u—r—yi.

Il peut, d’aprés cela, arriver qu'une méme solution u = r doit étre en-
visagée comme particuliére ou comme singuliére, suivant qu’on la compare
a I'unc ou a l'autre des branches de la fonction intégrale.

Les régles précédentes permettront de reconnaitre facilement si une solu-
tion # = r est particuliére ou singuli¢re. Par exemple, si I'équation

wWrgo(u) 4+ u" "o (u) 4. Uy (u)+ go(u)=o0
est telle que I'intégrale abélienne
f du
X = o
u
soit de premiere espéce, c’est-a-dire reste partout finie, toutes les solutions
de la forme u = r seront singuliéres.

3. Sinous revenons aux équations algébriques homogénes a coefficients

constants eny, y', y",
V(' y)=o,

nous sommes maintenant en mesure de reconnaitre, parmi les intégrales de

la forme
)’ — Cerx’

celles qui sont particuliéres et celles qui sont singuliéres. Nous allons traiter
comme exemple le cas le plus simple, a savoir le cas d’'une équation homo-
géne du second ordre et du second degré

(6) YOV, y)=ay+ay + a,y*+2b,y'y +2by"y +2byy' —o,

les coefficients a,, a,, a,, b,, b,, b, étant supposés constants. Cette ¢qua-
tion admet des intégrales de la forme

y=~Ce=,
r étant racine de I’équation de quatri¢me degré
Pe(r)=aer*+2b, 13+ (a4 2b,)r*+ 2b3r + a, = o.
Si nous faisons

y=erd  y'=uy, y'=(+u?)y,
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I'équation différentielle devient
agut+2u' (ayut + byu + by) + 9, (u)=o.

Dans le cas particulier ol @, = o, cetie équation est du premier degré
en «'; les trois valeurs de « qui annulent 5, (%) donnent alors des intégrales
particuliéres.

Supposons maintenant a, différent de zéro. Si aucune des racines du
polynéme du quatriéme degré ¢, () n’annule le trinéme

o (u)y=ayu’+ b,u + b,,

’

les quatre intégrales obtenues en égalant « a T'une des racines de 9,(u)
sont particuliéres; les solutions de la forme

), — C erx

de I'équation (6) sont donc toutes particuliéres. Si une racine simple de
92 (u)annule le trindme g, (u), la solution correspondante est singuliére;
les autres sont particuliéres.

Si deux racines simples de ¢, () annulent le trindome ¢, (), les deux in-
tégrales correspondantes sont singuliéres; les deux autres sont particu-
licres.

4. Ce dernier cas est remarquable en ce que 'intégrale générale peut se
mettre, dans ce cas, sous une forme particuli¢rement simple. En effet,
puisque 9,(z) est divisible par ¢, (), on peut écrire

@2 (u)= o1 (u) (42000 + )

ou, en développant et identifiant,
by =20aa,, a,= Bb,,
Cela posé, I'équation en u
agu?+2u' @ (u) + @,(u) —o
s’écrit en divisant tous les termes par a,, remplacant 2, () par sa valeur
91(u) (u?+ 2000 +B),

b,
et posant 22 =7,

(7) Wiou (W 2au+y)+ (2 +20u+B) (2 + 2210+ y)=o0.
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Si l'on appelle 7 et r” les racines du trindme #®-+ au + 3 supposées
distinctes, et p" et g” celles du trindme u*+ au + v supposées également

distinctes, les solutions
Cer'=, Cers

seront particulicres, les solutions
Cep'z,  Cep'=
seront singuliéres. Pour obtenir d'une facon simple Uintégrale générale
5 g ’

posons
s

u-+a=—yv, u:‘yy, v_.%,
d’ot
7 ot
% ta==,  y=se

I'équation deviendra
v’2+2v’(02+y———a2)+(02+ p_aﬁ)(‘,2+},_a2
Scri “et ' & la place d 2 2
ou, en ecrivant B et y" a la place des constantes ﬁ —at, vy —as,

(V' 4+ 022y (20" 4 0?) + BI(02+ y) =0

et, en revenant a la fonction z par les formules
Z, , zll (ZI>;Z
= — o=———]>
z 2 3

(8) (5", &, 5) = 5"+ y'(255" — 5'?) + B/(5"?+ y's%) =o.

Différentiant enfin cette équation par rapport & , on trouve

ay, (3" + @’z’)(z”—i— y'z)=o.

L —9

(9) e
Donc toute solution de 1'équation (g) annule I'un des deux facteurs

linéaires
Z”I—I— 6’*5” z/l+ ylz-

Intégrons d’abord I'équation

2"+ pB's'=o,
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linéaire et a coefficients constants. Son intégrale générale est

(10) 5=C= CeV=F 4 (T eaV-F
ou encore
(10’) - =0+ Cletr’+ax “+ Clle(l'll+ot)x,

puisque 7 et 7” sont les racines de I'équation
r*4+oar+p=o, (r+ayP+p'=—o.

Si T'on substitue cette intégrale dans le premier membre de I'équation
différentielle (8), ce premier membre y (57, 5’, z) prendra une valeur con-
stante, puisque sa dérivée deviendra nulle. Cette valeur constante sera évi-
demment une forme quadratique de C, C’, C”: en égalant cette forme a
zéro, on aura unc relation déterminant une des constantes C, C’, C” en
fonction des deux autres; sous cette condition, I'expression (10) sera l'in-
tégrale générale de I'équation en z. Ainsi l'intégrale générale de I'équa-
tion (8) en 5 est de la forme remarquable

(10) 2= C 4 Clelr+® 4 (7 ez,

C, C’, C” étant liés par une certaine relation algébrique obtenue en égalant
a zéro une forme quadratique de C, C’, C”. L'intégrale générale de I'é-
quation en jy sera, puisque y = z¢™*,

y=Ce% 4 Clera (' ers.

Pour former la relation qui lie G, €', C”, remplacons z par I'expres-
sion (10) dans le premier membre y (5", 5, 5) de I’équation (8). Comme
'expression (10) donne

#=p(C—x),
nous aurons d’abord

2(5" 5 5) = (B —y) [B(C—5)+ "]+ C2R'Y,
puis, comme
B(C—s) 2= B [(CeVF 4 Crea/F) — (CerV=F - re=a/=F)" | =40/,
nous aurons enfin

x(zll’ :/, Z) :Aﬁ/(ﬁl__ Y’)CIC,/+ C2ﬁlyl’



SUR LES EQUATIONS DIFFERENTIELLES HOMOGENES DU SECOND ORDRE, ETC. Kg

valeur qui est bien constante. Si donc on établit entre C, (7, C” la relation
é(ﬁ/__ yl)chl/_i_ Y’ (12: O,

I'expression (10) est I'intégrale générale de I'équation. FFaisons, pour sim-

plifier, : R
ﬁ/
C=r, U=, C=2\/I— :/77%

nous verrons que l'intégrale générale de I'équation (8) en = est
B!
5—2o \/I - ? 71“‘ —+ }hﬁe(l'/-!—a)x_'_ Hﬂe(rﬁ—o—a)x’

et, par suite, celle de I'équation en y,

e

o Y

avec deux constantes arbitraires A et . Sur cette forme de P'intégrale gé-
nérale, on voit bien que e”* et ¢”’* sont des intégrales particuli¢res corres-
pondant & u =o et A = o.

Nous avons obtenu cette intégrale générale en égalant a zéro le premier

. d . . -
facteur de 'expression de a’_X (9)- Sinous égalons a zéro I'autre facteur
X
s+ '}l’: =0,

nous aurons une équation du second ordre ayant pour intégrale générale

(12) 5= g'ez\/‘_\”-}- g”e—x =Y/
ou encore
(12") 5= glelp+NT 1 gl elpl+a)z

puisque nous avons appelé o’ et p” les racines de I'équation
420 +y=o, (r+a)+y' =o.

Si l'on substitue cette valeur de z dans I'expression y (5, 5/, z), cette
expression deviendra encore une constante, puisque I'on aura encore

dy,
dx

L. — Fac. de T. K.2

=0,
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ct cette constante sera une forme quadratique de g’ et g”. En égalant cette
forme & zéro, on établira une relation entre g’ et g”: si cette relation est
satisfaite, I'expression (12) sera une intégrale de I'équation différentielle
7, == 0, avec une constante arbitraire. Pour former cette relation, substi-
tuons I'expression

(12) s=g erV—Y - g”e—x\/rY—'

dans le premier membre y (37, 7/, 5) de équation différentielle (8). Comme
cetie expression donne

on a

("5 ) = (B —=7") (7 5*+ &)
=B — )7 (g eV 4 g eV =T ) — (g'emVT — g’ =2V )|
:4(3/__,/)7157,/&,//' ’

Si donc on suppose

I'expression (12) sera une intégrale de y (2, 5’, z) = 0. On trouve ainsi les
deux intégrales

ou encore
s=glelt+nz, 5= glelp+u)x,

Comme on a
y=—=s5e %%,

on en déduit, pour I'équation différentielle proposée, les deux intégrales

y=g'er, y=g'e
qui sont singuliéres, comme nous 'avons vu.

L’équation que nous venons d’étudier rentre dans une catégorie générale
d’équations différentielles dont nous nous sommes occupés précédem-
ment dans une Note insérée dans les Comptes rendus des séances de
I’ Académie des Sciences (second semestre 1888) et dans un Mémoire Sur
les invariants de quelques équations différenticlles, publié¢ dans le Jour-
nal de Mathématiques (4° série, t. V, 1889).

Remarque 1. — Nous avons supposé les racines 7’ et 7 de I'équation

rieosar+pB8=o
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distinctes, c’est-a-dire

Bp—

’

différent de zéro. Sil’on avait B’ = o, I'équation y (2”, =, ) = o deviendrait

2(3",5,5) =35+ y/ (255" — 5?) = o;

d’ot

dy, .
T = 25" (5"+y's)=o.

Prenant d’abord z” = o, on a
(13) s=C+Czx+(Cx
et, en portant dans y (3", 5/, 5),
7 (3",3,3)=4C"(C"+y'C) —y'C".
Si1 donc on fait

C'= y')\z, C"+ y'C =2, C = 2hu,

'expression (13), c’est-a-dire

2___~l2
5= p’——,/—)\ +2hpx + 7' A2 22,

est 'intégrale générale de I'équation y = o avec deux constantes arbitraires
A et w.
L’intégrale générale de I'équation en y est

—=se~%r,

v

Comme plus haut, les solutions
3= g’ex\/‘_Y', 3= g”e‘x\/—_Y'
sont singulicres.
Remarque 11. — Nous avons supposé les racines ¢’ et ¢” de I'équation

1’2-}—20:1'—;—7:0

distinctes, c’est-a-dire v’ = y— a2 différent de zéro. Siy’ était nul, I'équa-
tion
(5", 35, 5)=5"+3'32=0
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ne serait plus irréductible et se décomposerait en deux facteurs linéaires

(4 VB (2= V= F) =03
il en serait de méme de I’équation proposée en y.
Enfin nous avons supposé p’ différent de v'. S1 ’on avait
@/ —- y!’
on aurait
x(z”, z/’ 5) — z”2+ ZBIZZU_I_ 5/252: (Z”—i— ‘3[2;)2: O’

et le premier membre de cette équation serait le carré d'une fonction li-
néaire.
En revenant a I'équation en u

ayu 20 9, () + g5 (u) =o,

il resterait & examiner quelques cas particuliers, par exemple le cas oli une
racine simple de ¢, (u) serait double ou triple pour 9,(«). Mais 'examen
de ce cas, qui, d’apres la théorie générale, ne présente aucune difficulté,
n’offre pas d’intérét particulier. '



