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SUR

'INTEGRATION DE L'EQUATION

ds®> =Edu?® + 2Fdu de + Gdy?,

PAR M. A. LEGOUX.

Bien des méthodes ont été données pour intégrer I'équation d’Euler. La
suivante, fondée sur des considérations de Mécanique rationnelle, ne pa-
raitra peut-étre pas dépourvue d'intérét.

Considérons toutes les surfaces dont I’élément linéaire est représenté

par la formule
ds*=Edu*+ oF dude + G de?.

Supposons que 'on cherche la figure d’équilibre d’un fil posé sur ces sur-
faces, et admettons que les forces qui sollicitent le fil en chacun de ses points
soient telles qu'il existe une fonction potentielle U, cette fonction étant
d’ailleurs une fonction quelconque de « et de ¢.

En appliquant la méthode de Jacobi, on trouve que la solution du pro-
bléme dépend de la connaissance d’une intégrale compléte de I'équation aux
dérivées partielles du premier ordre
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h étant une constante arbitraire.

C’est une équation toute pareille & celle que I'on obtient en étudiant le
mouvement d’un point sur une surface.

Soit V une intégrale compléte contenant, outre la constante 4, une nou-
velle constante a. La figure d’équilibre du fil est donnée par les deux équa-
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F.2 A. LEGOUX. — SUR L'INTEGRATION D'UNE EQUATION.

La premiére est I'équation de la courbe d’équilibre du fil, la seconde
donne la longueur de 'arc.

Or on peut satisfaire & I'équation (2) d’une infinit¢ de maniéres, en
posant = f(0), 0 étant un paramétre arbitraire et f une fonction quel-
conque. Il en résulte pour ¢ une valeur correspondante ¢ = ¢(6). En rem-
placant « et ¢ par ces valeurs dans 'équation (3), on aura s en fonction du
méme paramétre, et ces expressions s, et ¢ contiendront deux fonctions
arbitraires, f et U des variables « et ¢.

L’équation (1) est 'équation aux dérivées partielles dont dépend la déter-
mination d'une ligne quelconque tracée sur les surfaces. Si U = o, cest
I’¢quation & laquelle Gauss a ramené la recherche des lignes géodésiques.

Intégration de Uéquation ds* = f* du* + g* dv* + k* dew?. — On sup-
pose que u, ¢, w sont les coordonnées curvilignes orthogonales d’un point
de I'espace, ds représente la distance de deux points infiniment voisins.

Supposons que l'on cherche la figure d’équilibre d’un fil flexible et inex-
tensible, dont chaque point est soumis a des forces telles qu’il existe une
fonction potentielle U quelconque de u, ¢ et w.

En appliquant la méthode de Jacobi, on trouve que la solution du pro-
bléme dépend de la connaissance d’une intégrale compléte de I'équation aux
dérivées partielles du premier ordre
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Soit V une intégrale compléte contenant, outre la constante /2, deux nou-
velles constantes @ et b, on a pour déterminer la figure d’équilibre du fil les

¢équations
oV wv oV

—0—5—1, %*ﬁ——ﬁ, %—S:Y.

Si maintenant on pose « = f(0) = fonction arbitraire d’un paramétre 0,
les deux premiéres donnent ¢ et w en fonction de 03 la troisiéme fournira la
valeur de s. ‘

On aura ainsi exprimé u, ¢, w, s en fonction d'un seul paramétre 0, etil
entrera dans ces expressions deux fonctions arbitraires f et U.
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