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DE

I’AIMANTATION PAR INFLUENCE,

PAR M. P. DUHEM,

Maitre de Conférences a la Faculté des Sciences de Lille.

INTRODUCTION.

Les équations sur lesquelles repose la théorie de I'aimantation par in-
fluence des corps amorphes ou cristallisés ont été données par Poisson;
mais la voie suivie par Poisson pour les établir présente des difficultés de
toute sorte : complication des hypothéses fondamentales, manque de ri-
gueur des déductions mathématiques, opposition avec les faits de quelques-
unes des conséquences expérimentales.

Les physiciens qui, aprés Poisson, se sont occupés de cctte théorie, ct
notamment sir W. Thomson et G. Kirchhoff, ont cherché a éliminer ces
difficultés; mais ils n’y sont parvenus qu’en admettant d’emblée les équa-
tions de I'équilibre magnétique comme des hypothéses primordiales, sans
les rattacher d’aucune maniére & des théories plus générales ou a des lois
directement accessibles a 'expérience.

Cette absence de raisons a I'appui des équations fondamentales de I'¢qui-
libre magnétique est d’autant plus regrettable que des obstacles de toute
sorte rendent fort difficile la vérification expérimentale des conséquences
peu nombreuses qui en ont été déduites jusqu'ici.

Dans ces conditions, nous avons cru utile de reprendre 1'établissement
de ces équations en nous appuyant seulement sur les lois incontestées qui
réglent les actions mutuelles des aimants et sur les principes non moins
incontestés de la Thermodynamique. Nous avons été ainsi conduit, pour
les corps isotropes, a4 des conditions d'équilibre identiques & celles que
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G. Kirchhoff avait imaginées; dés lors, comme les équations de G. Kirch-
hoff n’avaient fait 'objet presque d’aucunc étude, nous avons examiné
quelques-unes des conséquences de ces équations, examen qui nous a amené
A rectifier quelques propositions introduites en Physique sans démonstra-
tion suffisante.

Pour les corps non isotropes, nous avons été conduit a des conditions
d"¢quilibre d'une forme nouvelle et plus compliquée que celle qu’on pouvait
attendre.

Notre travail n’aura assurément pas éliminé toutes les difficultés que pré-
sente la théorie de 'aimantation par influence; mais nous espérons au moins
qu'il aura contribué & éclaircir quelques-uns des points obscurs de cette
théorie.

e D NS
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CHAPITRE L

POTENTIEL THERMODYNAMIQUE D’UN SYSTEME QUI RENFERME
DES AIMANTS.

§ I. — Quelques propositions de Thermodynamique.

1. La théorie nouvelle de I'aimantation par influence, que le présent
Mémoire aura pour but de développer, repose sur I'emploi des principes de
la Thermodynamique. Qu’il nous soit permis de rappeler ces principes sous
la forme que nous aurons & employer dans la suite.

Lorsqu'un systéme subit une transformation élémentaire, il dégage unc
quantité de chaleur dQ ; les forces extérieures auxquelles il est soumis effec-
tuent un travail infiniment petit d&,, et 'on a

(1) dQ =—dU + Adg,,

A étant I'équivalent calorifique du travail et U une fonction de I'état du
systéme & laquelle on donne le nom d’énergie interne.

Si T désigne la température absolue que poss¢dent tous les points du

systéme au moment ol cette modification se produit, on a aussi
(2) %:—dS—I—AdN,
S étant une fonction de 'état du systéme a laquelle on donne le nom d’en-
tropie, et dN une quantité infiniment petite, toujours positive et nulle seu-
lement lorsque la transformation considérée est réversible, quantité a la-
quelle on donne le nom de transformation non compensée.

Ces deux propositions si simples sont la forme donnée au principe de
I’équivalence de la chaleur et du travail et au principe de Carnot par
M. Clausius.

M. J.-W. Gibbs en a déduit une conséquence presque immeédiate, dont
la fécondité semble s’accroitre chaque jour.

Posons, lorsque T demeure constant,

=
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et donnons a d= le nom de tracail non compensé accompli dans une trans-
Sformation isothermique; nous aurons de ce travail cette remarquable
expression

(3) d==—Ed(U —TS) + d&,,

E étant I'équivalent mécanique de la chaleur.
Supposons maintenant que les forces extérieures admettent un poten-
tiel W, de telle sorte que 'on ait

dG,=—dW,
et posons
@) Q=E(U—TS)+W;
I'égalité (3) deviendra

dr—=—dQ;

le travail non compensé effectué durant une transformation isother-
mique est alors la variation changée de signe d’une fonction de l’état
du systéme Q.

Nous donnerons & cette fonction Q le nom de potentiel thermodyna-
migue du systéme.

Moyennant ces conventions, la condition d’aprés laquelle dN doit tou-
jours étre positif peut s’énoncer ainsi :

Pour qu’un systéme dont tous les points sont a la méme température
absolue soit en équilibre stable, il suffit que le potentiel thermodyna-
mique de ce systéme ait la plus petite valeur qu’il peut prendre a la
température considérée.

Tels sont les principes sur lesquels reposent les raisonnements dont il sera
fait usage au cours du présent travail.

L'¢tude de I'équilibre d’un systéme quelconque suppose, en premier lieu,
la détermination de la forme du potentiel thermodynamique de ce systéme;
nous aurons donc, en premier licu, & déterminer la forme du potentiel ther-
modynamique d'un systeme qui renferme des aimants. Pour y parvenir,
nous suivrons une voie analogue a celle qui, dans un autre travail, nous a
permis d’obtenir le potentiel thermodynamique d'un systéme électrisé. Cette
voie suppose I'emploi d'un lemme fondamental dont nous allons rappeler
I’énoncé et la démonstration.
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2. Imaginons un systéme décomposé en un nombre limité ou illimité de
corps finis ou infiniment petits, susceptibles d’¢tre déplacés les uns par rap-
port aux autres. Imaginons qu’a chacun de ces corps on ait invariablement
lié un systtme d’axes de coordonnées rectangulaires. Pour connaitre com-
plétement I'état du systéme, il faudra connaitre la position de I'origine de
chacun de ces systémes d’axes et 'orientation des axes. In général, il faut
aussi connaitre un certain nombre d’autres quantités : forme ct volume de
chacun des corps, état physique et chimique dans lequel il se trouve, tem-
pérature qu'il posséde en ses divers points, etc. Lorsque les premiéres quan-
tités varieront seules, les autres demeurant invariables, nous dirons que ’on
déplace les uns par rapport aux autres les divers corps du systéme sans
changer leur état.

A un semblable déplacement on peut appliquer les propositions établies
en Mécanique rationnelle pour les déplacements d’'un systéme de solides
invariables.

Soient

E T'équivalent mécanique de la chaleur;

T la température absolue du systéme supposée la méme en tous les points;
U son énergie interne;

S son entropie.

Dans un déplacement infiniment petit sans changement d’état, la quantité
E(U —TS),

que nous nommerons le potentiel thermodynamigue interne, éprouve une
variation
E&(U—TS).

EEn méme temps, les actions mécaniques internes que les divers corps du
systéme exercent les uns sur les autres effectuent un certain travail ¢g; et
I'on a

(3) 8¢, =— E(U — TS),
égalité que 'on peut énoncer ainsi :

Dans toute modification qui déplace les uns par rapport aux autres
les dicers corps qui constituent un systéme sans changer leur élat, le
tracail effectué par les actions mécaniques internes du systéme est la
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variation changée de signe d’un potentiel, et ce potentiel ne différe du
potentiel thermodynamique interne que d’une quantité qui peut bien
dépendre de Uétat des dicers corps, mais qui ne dépend pas de leur
position.

La démonstration de cctte proposition est extrémement simple.

Imposons a chacun des corps du systéme la liaison de demeurer dans un
¢tat invariable et appliquons au systéme, devenu ainsi incapable d’éprouver
aucune modification autre que les déplacements que nous avons en vue
d’étudier :

1° Des forces égales et directement opposées aux forces extérieures qui
agissent sur lui;

2° Des forces qui, dans tout déplacement du genre de ceux que nous
considérons, effectuent un travail ¢, ¢gal ou inférieur a

Ed(U —T8),
de telle facon que ’on ait, pour tout déplacement de ce genre,
(6) E3(U —T8) — 0¢,2o0.

Soit Y I'énergie internc du systéme ainsi modifié; soit X son entropie;
soit 20 le travail externe cffectué dans un déplacement du genre de celui
que nous considérons par les forces extéricures qui agissent maintenant sur
le systétme. Dans un semblable déplacement, le travail non compensé effec-
tu¢ a pour valeur, d’aprés I'égalité (3),

(7) or=—E8(Y—TZI)+ 00.

Mais, par hypothése, I'état du systéme a ¢été maintenu le méme avant et
apres I'addition des nouvelles forces; on a donc

Y =0,

D
-—

D’autre part, les forces extérieures qui agissent sur le systéme apreés I’ad-
dition des nouvelles forces se composent : '

1° Des forces extéricures qui agissaient auparavant sur le systéme; dans
la modification considérée, clles effectuent un travail 2¢,;

2° Du premier groupe de forces ajoutées; dans la modification consi-
dérée, ces forces effectuent évidemment le travail — ¢g, ;
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3° Du second groupe de forces ajoutées; dans la modification considérée,
ces forces effectuent, par hypothése, le travail &g
On a donc
300 = 08, — 0T, + 08, = 8&),

et 'égalité (7) devient
ot =—E (U — TS) + oc,.

D’apreés l'inégalité (6), celte quantité est nulle ou négative; dés lors,
d’aprés les propositions de Thermodynamique que nous rappelions au
commencement de ce paragraphe, la modification correspondante, entrai-
nant un travail non compensé nul ou négatif, ne peut se produire; le sys-
téme, soumis aux actions mécaniques qui agissent réellement sur lui et a
celles que nous y avons adjointes, ne peut subir aucun déplacement qui
n’altére pas I'état de ses diverses parties; les liaisons qui lui interdisent toute
modification autre que des déplacements de ce genre assurent I'¢équilibre
du systéme.

Mais, grice a ces liaisons par lesquelles chacun des corps qui constituent
le systéme est supposé maintenu dans un état invariable, les propositions
de la Mécanique rationnelle relatives aux systémes formés de corps solides
sont applicables au systéme précédent. On peut, en particulier, lui appli-
quer le principe des vitesses virtuelles.

D’aprés ce quiprécede, le systéme est en équilibre sous ’action de quatre
systémes de forces :

1° Les forces mécaniques extérieures quiagissaient primitivement sur lui;

2° Les actions mécaniques intérieures que les divers corps qui le consti-
tuent exercent les uns sur les autres;

3° Des forces égales et directement opposées aux forces extéricures;

4° Des forces effectuant dans tout déplacement virtuel un travail 3¢, égal
ou inférieur 4 ES(U — TS).

Le premier et le troisiéme systéme de forces se détruisent. On peut done
dire que le systéme est en équilibre sous 'action du second et du quatri¢me
groupe de forces.

Mais, dans toute modification du systéme ou ses diverses parties changent
de position sans changer d’état, les forces du second groupe effectuent un
travail virtuel ¢g;; les forces du quatriéme groupe effectuent un travail vir-
tuel ¢g; ; en vertu du principe des vitesses virtuelles, le systéme ne peut étre
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en équilibre sous I'action de ces deux groupes de forces sil'on n’a
0%; + ;S o.

Cela doit avoir licu toutes les fois que &g, vérifie I'inégalité (6). On doit
donc avoir
88,<— E 8(U — TS).

Si 'on suppose maintenant qu’a tout déplacement virtuel des diverses
parties du systéme on puisse faire correspondre le déplacement inverse, on
verra aisément que I'inégalité précédente se réduit a I'égalité (6) :

88; = —Eo(U —TS),

(que nous nous proposions de démontrer.

3. Ce théoréme fondamental entraine quelques conséquences qui en dé-
rivent immédiatement et que nous pouvons indiquer ici.

Corollaire I. — L’égalité (3)

dr=—Ed(U — TS) + 0&,

devient, en vertu de cette ¢galité (6),
ot = 0G; + 0&,,
ce (ui peut s’énoncer ainsi :

Lorsquw’un systéme subit un déplacement sans changement d’état de
ses dicerses parties, le tracail non compensé produit dans ce systéme est
éezal au trasvail produit par les actions mécaniques, lant externes qu’'in-
ternes, qui agissent sur les dicerses parties du systéme.

Corollaire II. — Lorsqu’un systéme dont tous les points sont a la méme
température subit une modification isothermique, 'entropie de ce systéme
varie de ¢3S et I'on donne a la quantité

03 =—ETadaS

le nom de tracail compensé accompli dans la modification considérée.
Considérons un systéme défini par sa température absolue et par un cer-
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Ne]

tain nombre d’autres variables; nous aurons

p) . 0U 08
(8) 57 [E(U—TS)| =E5; —ET S5 —ES.

Supposons qu'il s’agisse d'un systéme primitivement en état d’équilibre, la
modification infiniment petite considérée sera réversible; elle mettra en jeu
une quantité de chaleur ¢Q, et le principe de Carnot-Clausius donnera
égalité (2

[égalié (2)] o |

08 =

— /2

T

tandis que le principe de I’équivalence donnera [égalité (1)]
8Q = — 8U + A 8c..

L’égalité (8) deviendra donc
9 - -
7 [E(U—T8)] = —ES — 3¢,

Se, étant le travail accompli par les forces extérieures qui sollicitent le sys-
téme lorsque la température varie de 8T, les autres variables qui définissent
le systéme conservant leur valeur.

Si, en particulier, ces variables sont choisies de telle sorte qu’aucun tra-
vail externe ne puisse étre effectué dans le systéme si elles ne changent de

valeur, on aura
866 =0
et

(9) 7 [E(U—TS)| =—E8,

égalité applicable a tous les systémes pris dans un état d’équilibre.
M. Massieu a, le premier, signalé I'importance de cette égalité.

Faisons-en une application au cas qui nous occupe.

Supposons qu’un systéme, primitivement en équilibre, subisse un dépla-
cement infiniment petit de ses diverses parties. Nous aurons

d 2
88 =— S d(U—T8).

Mais ¢(U — TS) peut, dans ce cas, étre remplacé par la variation que subit

le potentiel des actions mécaniques internes du systéme. Si ces actions mé-

caniques sont indépendantes de la température, il en sera de méme de leur
1. — Fac. de T. L.o
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potentiel, et I'on aura, par conséquent,

[~
[97]
It
&

ce qui peut encore s’écrire

Q.
W
I

O.

Alnsi, lorsque les actions mécaniques que dicerses parties d’un systéme
exercent les unes sur les autres ne subissent aucune variation pendant
un échauffement du systéme qui laisse incariable le volume, la forme et
la position de ses diverses parties, un déplacement sans changement
d’état des dicerses parties de ce systéme primitivement en équilibre ne
fait pas varier Uentropie du systéme; il w’entraine aucun travail com-
pensé.

Corollaire I1l. — Dans unc modification isothermique quelconque, on a

ot = — 0E(U — TS) + d&,
— — EJoU + ET ¢S + d¢c..

Dans les conditions moyennant lesquelles le théoréme précédent est énoncé,

on a
0t = 0C; + 0C,,
o

&
|

On a donc
8¢, = — 3(EU),

ce qui peut s’énoncer ainsi :

Dans les conditions précédentes, le travail exercé par les actions mé-
caniques internes est égal a la variation changée de signe du produit de
I’équicalent mécanique de la chaleur par Uénergie interne du systéme.

Ces corollaires si simples jouent un role important dans les rapproche-
ments que 'on peut tenter de faire entre la Mécanique rationnelle et la
Thermodynamique.

Les modifications qu’envisage la Mécanique rationnelle consistent exclu-
sivement en déplacements, sans changement d’état, des diverses parties
d’un systéme; aussitot que le déplacement est accompagné d’'un change-
ment d'¢tat, la Mécanique rationnelle ne suffit plus a 'étudier. Dés lors les
deux premiers corollaires énoncés ci-dessus nous montrent que les travaux
¢tudiés en Mécanique rationnelle se rangent toujours dans la catégorie du
travail non compensé; que les modifications auxquelles elle s’applique n’en-
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gendrent jamais aucun travail compensé. Par conséquent, c’est I'¢tude du
travail non compensé qui doit fournir en Thermodynamique des proposi-
tions analogues a celles dont la Mécanique fait usage; il serait vain et illu-
soire de chercher dans les exemples que nous fournit la Mécanique une
quantité analogue au travail compensé.

Quant au troisitme corollaire, il nous montre que 'on peut, tant que
I'on n’étudie que des déplacements sans changement d’état, confondre le
produit de I'énergie interne par I'équivalent mécanique de la chaleur avec
le potentiel des actions intérieures du systéme; que I'on peut, par exemple,
se servir de I'énergie interne comme d’un potentiel pour déterminer les
états d’équilibre du systéme; mais il faut bien se garder d’étendre cette
maniére d’opérer lorsqu’on passe des déplacements sans changement d’état
aux changements d’état accompagnés ou non de déplacements; en dautres
termes, lorsqu’on passe du domaine de la Mécanique rationnelle au domaine
propre de la Thermodynamique; c’est alors le potentiel thermodynamique
interne, et non I'équivalent mécanique de I'énergie interne, qui joue le
méme roéle que le potentiel des actions mécaniques internes en Thermo-
dynamique. C’est faute d’avoir fait cette remarque que 'on a été conduit a
deux lois inexactes qui ont joué un grand role en Physique et que les tra-
vaux récents de nombreux savants, en particulier de M. J.-\V. Gibbs et de
M. H. von Helmholtz, sont parvenus & grand’peine & rectifier. Ces lois sont,
en Thermochimie, le principe du travail maximum; en Electricité, la loi de
la proportionnalité entre la force électromotrice d'une pile et la quantité de
chaleur mise en jeu par la réaction dont cette pile est le sicge.

N

4. La proposition que nous venons de développer met donc en évidence
les relations qui unissent la Mécanique a la Thermodynamique. Ces rela-
tions deviendront encore plus nettes par la remarque suivante :

Dans la démonstration du théoréme précédent, nous avons fait appel au
principe des vitesses virtuelles. Il est aisé de montrer quinversement, a
l'aide de ce théoréme, on peut déduire le principe des vitesses virtuelles
des principes fondamentaux de la Thermodynamique.

D’aprés ces derniers principes, un systéme est assur¢ment en équilibre
stable si, pour toute modification isothermique virtuelle de ce systéme, le
travail non compensé, c’est-a-dire la quantité

—Eo(U —T8S) + ot
est nulle ou négative.
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Supposons-nous placé dans le seul cas qu'étudie la Mécanique ration-
nelle, c’est-a-dire dans le cas ot les diverses parties du systéme ne peuvent
éprouver que déplacements sans changement d’état. D’apres le corollaire I,
la proposition précédente pourra s’énoncer :

Léquilibre d’un systéeme dont les diverses parties sont susceptibles de
se déplacer, mais non d’éprouver des changements d’état, est assuré si
le tracail effectué dans tout déplacement virtuel de ce systéme par toutes
les forces qui agissent sur lui est nul ou négatif.

Supposons que les forces extérieures qui agissent sur le systéme ad-
mettent un potentiel W; I'équilibre stable du systéme sera assuré si le
potenticl thermodynamique

Q—E(U—TS) + W

est minimum & la température considérée.

Supposons que les diverses parties du systéme ne puissent éprouver que
des déplacements sans changement d’état; dans ces conditions, E(U —TS)
ne differe que par une constante du potentiel des actions mécaniques in-
ternes; Q ne différe que par une constante du potentiel de toutes les forces
qui agissent sur le systéme, et I'on a cette proposition :

Léquilibre stable d’un systéme soumis a des forces extéricures qui
admettent un potentiel est assuré lorsque le potentiel total des forces,
tant intérieures qu’extéricures, est minimum.

Cette dernicre proposition n’est autre chose que le critérium de stabilité
bien connu dont on doit I'invention & Lagrange et la démonstration a
Lejeune-Dirichlet. La premiere rappelle 'énoncé du principe des vitesses
virtuelles tel que Gauss 'a formulé le premier d’une maniére complete;
mais elle présente avec cet énoncé une légere différence sur laquelle il nous
est nécessaire d'insister.

<n Meécanique rationnelle, le principe des vitesses virtuelles se présente
comme une condition d’équilibre nécessaire ct suffisante. Déduit, au con-
traite, de la Thermodynamicque, ce principe se présente comme une condi-
tion suffisante, mais non nécessaire, de I'équilibre. Cette différence tient
a la nature méme du principe de Carnot, sur lequel est fondée la Thermo-
dyvnamique. En Mécanique, tout systéme pour lequel les conditions d’équi-
libre déduites du principe des vitesses virtuelles ne sont pas vérifiées est



DE L’AIMANTATION PAR INFLUENCE. L.13

censé se mettre en mouvement. En Thermodynamique, au contraire, on
sait bien qu’un systéme ne saurait éprouver de changement d’état contraire
au principe de Carnot-Clausius; que si, par conséquent, toute modification
virtuelle du systéme contredit a ce principe, le systéme sera forcément en
équilibre ; mais, lorsqu’un systéme peut éprouver une modification virtuelle
compatible avec ce principe, on ignore si réellement il éprouvera ou non
cette modification.

J’ajouterai que le principe des vitesses virtuelles, présenté par la Ther-
modynamique comme condition suffisante, mais non nécessaire, de I'équi-
libre est toujours conforme a ’expérience, tandis que ’expérience nous
présente chaque jour des cas d’équilibre contraires au principe des vitesses
virtuelles tel qu’on 'admet en Mécanique rationnelle; on dit alors qu’il y a
Jfrottement, et le principe des vitesses virtuelles suppose un systéme soumis
a des liaisons dépourvues de frottement. ‘

Tout ce que nous venons de dire montre assez I'importance des proposi-
tions énoncées dans le présent paragraphe; ces propositions ont déja servi
de base & toutes les applications de la Thermodynamique que nous avons
faites aux phénomeénes électriques. Avant d’en faire le point de départ de
nos recherches sur le magnétisme, nous avons cru devoir les soumettre a
un rigoureux examen.

§ II. — Potentiel et fonction potentielle magnétiques.

5. Les travaux de Gilbert et de Coulomb ont conduit a regarder chaque
¢lément de volume d’un aimant comme un élément magnétique. Soit dv le
volume d’un semblable élément; son état magnétique est défini par une
certaine grandeur, essentiellement positive, oudp, que I'on nomme son
moment magnétique, et par la direction d’une certaine demi-droite MM,
que I’on nomme son axe magnétique. ML se nomme l'intensité de ’aiman-
lation en un point de I’élément dv; c’est, en général, une quantité finie. Si,
sur I'axe magnétique, dans la direction MM’ de cet axe, on porte une lon-
gueur égale a 9L, on obtient une grandeur géométrique ayant pour compo-
santes &, Wb, &, suivant trois axes de coordonnées rectangulaires Ox, Oy,
O z. La connaissance de ces trois quantités &, ¥, €, que 'on nomme les
composantes de I’atmantation, est nécessaire et suffisante pour déterminer
I'état magnétique de I'élément do.

Deux aimants A, A,, de dimensions comparables & cecux que I'on peut
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étudier expérimentalement, placés a une distance comparable a celles aux-
quelles les mesures peuvent étre cffectuées, exercent I'un sur l'autre des
actions mécaniques; les expériences de Coulomb et de Gauss ont précisé la
loi de ces actions; cette loi peut étre énoncée de la maniére suivante :
Soient de un ¢lément du corps A et do, un élément du corps A,.
Sur I'axe magnétique MM’ de I'élément do et a l'intérieur ou au voisi-
nage immédiat de cet ¢lément, prenons deux points infiniment voisins M

et M’, séparés par une distance d/. Au point M’, placons une masse fictive

I dy . . I} ) A
U= —dl—‘ et au point M unc masse fictive égale & — w. De méme, sur I'axe

magnétique M, M| de I'élément do,, prenons deux points infiniment voi-
sins M, ct M|, séparés par une distance d/,; au point M, placons une
. I, dy . . . N
masse fictive @, = T’l—l et au point M, une masse fictive égale & — p.,.
1
Les deux corps A et A, exercent I'un sur I'autre les mémes actions que si
toute masse fictive m du corps A repoussait toute masse fictive m, du
corps A, avec une force F dirigée suivant la droite qui joint les deux masses

ct ayant pOlll‘ Valeur
mmy

)

72

F=#7n

)

/v élanl une constante positive et 7 la distance qui sépare les masses m
et m,.

Il résulte de 1a que les actions mutuelles des deux corps A et A, ad-
mettent un potentiel et que ce potentiel a pour expression

» . ()__,;lt
NN, —— s de
h | A IIT kldla’ll dy dyy,

7 ¢tant la distance d’un point de I'élément ¢ a un point de I’élément dv,,
dl et dl, ¢tant, comme nous 'avons supposé dans ce qui précede, deux lon-
gueurs infiniment petites comptées respectivement sur les axes magnétiques
des éléments, 'une des sommations s'¢tendant au volume entier du corps A,
l'autre au volume du corps A,.

L'expérience n'a rien appris jusqu'ici sur la loi qui regle les actions de
deux aimants extrémement petits, rapprochés jusqu’au contact. Rien ne
prouve donc a priori que l'on puisse appliquer cette loi aux actions mu-
tuelles des diverses particules contigués d'un méme aimant. Nous allons
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voir au contraire qu'une semblable extension serait absurde. Il nous suffira
pour cela de transformer par un calcul d’identité I'expression

1

92
I, 51—0'7 dv do,.
1

Soient x, ¥, z les coordonnées d’un point du volume do et x,, y, 3, les
coordonnées d’un point du volume do, ; nous aurons

dv=dzxdyds,
dv,—=dx,dy, dz;

nous aurons ensuite

2! 2 ! 2 L 2 1
Pr P dedey 7 dedy, | V7 deds,
o00l, = dwom dl dl, * dzdy, dl dl, " dz o= dl di,

2 L P e P
r dy dxz, ~dy dy, r dy dsz

7

+0y0r1?flﬁ+dydy, dal dl, v 9y 0=
2 ! 2 L 2 L
027’ ds dz, 0]_ dz dy, d;___.

+ 350w, Al dl, " 9zdy; dl dl, T 0z, dl di’

nous aurons enfin

dx & dy % s _ 2
dal — o’ di — o’ dl — a¢’
dxl - o, i}/_l - ’1‘!)[ dz, 31

dl, T oK’ di, —ow,”  di, — 3%,
De toutes ces égalités, il résulte que P'on a

02

N
\ =

0271: 02; d‘.’ >
oy © _ H, ——— - 2 dx dydsdr,dy,ds
(10)  IMIL, 9T, dvdoy—= A\ oy 0w o, -+ b, 9z oy + S0 55, x dy 14y, a3,

~

\ -

7 *; s > dz d,dy, d
y by ——— by ———— 2, —— Jdxdydsdxe,dy,ds
+1‘]‘ 04:[)1 dydx, +“ 10}’0)’1 -+ 1 dydzl )’ 1 1 1

~

1
o= 9~ 9 Ao dtoedd
+ & %15:_——‘_%'5?}"; +31m dx dy ds drydy,dz,
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Des lors, si la loi précédente demeurait exacte, méme pour les particules
contigués d'un aimant, les actions mutuelles des diverses particules d’un
aimant devraient admettre pour potentiel la quantité

02 i ()‘2 }_ 0'2 l
h dy A L' r -+ ! " e )
2, Y dxox' 0xdy' 0x 03'

toutes lesintégrations s’étendant au volume entier de’aimant. Or, nous avons
vu, dans U'Etude historigue sur Uaimantation par influence que nous
avons publiée (§ I, n° 5), que les trois intégrales triples qui servent ici de
cocfficients & &, ¥ et € n’avaient aucun sens; il en est donc de méme de
'expression précédente, ct’extension proposée de la loi expérimentale des
actions magnétiques serait absurde.

Mais il est aisé¢ de transformer I’énoncé de cette loi en un autre énoncé
qui puisse s’étendre aux actions mutuelles des particules d’'un méme ai-
mant.

D’apreés I'égalité (10), si nous désignons par © l'intégrale

< d;" 0;' d;>
Aoy — Uy, — -2, — g
by ox, o1 dy, ' 93, 901,

¢tendue a 'aimant A, tout entier, 7 étant la distance d’un point de 1’élé-
ment dx, dy, dz, a4 un point (x, y, 5) du corps A, le potentiel des actions
mutuelles de I'aimant A sur 1’aimant A, aura pour valeur.

0V L, 90 | 00
hf(a\oa—a;—‘—“u()—‘y‘—l—vo:)d".

Cette derniére expression peut se généraliser et s’appliquer aux actions
mutuelles des particules d'un méme aimant, moyennant I'existence de la
quantité

J:L oW 92
e i i
ox ay ds
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nous avons vu ( Etude historique, § I, n° 5) que la fonction

I 1 I
AT IS P
Y = Ao d—J}i_l—l‘S d—)/,"—b'éy dV,

dans laquelle I'intégration s’étend a I’aimant A tout entier et dans laquelle
r désigne la distance d’un point de I'élément da’ dy’ ds' de I'aimant A & un
point (x, y, z) du méme aimant, est une fonction finie, continue et uniforme
des coordonnées (x, y, 3) et qu’elle admet par rapport a ces coordonnées
des dérivées partielles du premier ordre. Dés lors, rien ne nous empéche
d’admettre, comme généralisation des faits d’expérience, que les actions
mutuelles des diverses particules d’un aimant A admettent pour potenticl

la quantité
hif, 0@ _ 0®  _9o®\
2 (*"55 gy TE o_> ds.

Dans ce qui va suivre, nous admettrons cette hypothése.

Désormais nous désignerons par la lettre © la somme des deux fonctions
O et ©, c’est-a-dire I'intégrale

9+ J~ 9+
N ey =L e D) gy
ox' ay’ 'kl

¢tendue a tous les aimants du systéme, 7 étant la distance d’un_point de
I’élément dx’ dy’ dz' a un point (x,y, z) de I'espace. Nous nommerons
cette fonction ¢ la fonction potentielle magnétique.

Pourvu que la quantité

VA o 22

oz "9y oz

existe et soit finie en tout point des aimants que renferme le systéme, la
fonction © est, dans tout I'espace, une fonction finie, continue et uniforme

de «, y, z admettant des dérivées premiéres par rapport a ces variables.
Sila quantité

est en outre continue, ces dérivées premiéres sont continues, sauf a la sur-
face de séparation d'un aimant ct d’une substance non aimantée. Si N, et N,
IL. — Fac. de T. L.3
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sont les normales vers I'intérieur ou 'extérieur a une telle surface, on a

VooV

(11) ~ TN =—4n[sb cos(N;, )+ Wb cos (Ny, ) + 2 cos (N, 3)].

Si enfin la quantité
ox 0w 02
dx dy PR

admet, par rapport a x, y, 3, des dérivées partielles du premier ordre,
v admet, par rapport aux mémes variables, des dérivées partielles du second
ordre, et 'on a dans tout ’espace
dA b 03)
3., b

(12) AU:__/'K(-()_J,T-‘—())/ +a_Z

¢galité qui se réduit, lorsque le point (z, y, =) est extérieur aux aimants, a
(13) AV = o.

Les actions mécaniques internes d’un systéme d’aimants admettent alors
pour potentiel la quantité 5y définie par I'égalité

, ~_ R ; E nﬂ odv ,
(14) ._T_gf<{gdx + b Jy +v5;) dv,

I'intégration s’étendant a tous les aimants du systéme. ¥ est le potentiel
magnétique du systéme.

Ce résultat, obtenu en généralisant la loi expérimentale de Coulomb et
de Gauss, cst 'hypothése unique sur laquelle nous fonderons 1'étude de
I'aimantation par influence. Au moyen de cette hypothése et du théoréme
développé au paragraphe précédent, nous allons, au paragraphe suivant,
déterminer la forme du potentiel thermodynamique d’un systéme de corps
aimantés.

§ III. — Potentiel thermodynamique des corps isotropes aimantés.

6. Considérons un systéme qui renferme des aimants et supposons que
les seules actions mécaniques qui s’exercent dans 'intérieur de ce systéme
soient les actions magnétiques, hypothése qui ne serait pas vérifiée si le
systeme renfermait soit des charges électriques en équilibre, soit des cou-
rants ¢lectriques constants ou variables.
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D’aprés ce que nous venons de dire, les actions mécaniques internes de
ce systéeme admettent pour potentiel la quantité 5y définie par I'égalite (14).
Nous nous proposons de déterminer la forme du potentiel thermodyna-
mique interne du systéme. Ce potentiel thermodynamique interne est dé-
fini par P'égalité
F=E(Y —TXI),

E étant 'équivalent mécanique de la chaleur;

Y I'énergie interne du systeme;

Z son entropie ;

T la température absolue commune a tous ses points.

D’apres ce que nous avons vu au § I, ce potentiel thermodynamique in-
terne ne différe du potentiel des actions mécaniques intérieures au systéme
que d’une quantité qui peut dépendre de I'état des divers éléments magné-
tiques, mais non de leur position, en sorte que, si 'on désigne par & une
semblable quantité, on doit avoir

C’est donc la quantité 5 qu’il s’agit pour nous de déterminer.

L’état de chacun des éléments du systéme dépend :

Du volume de I'élément ;

De la forme de la surface qui le limite;

De T'orientation de I’axe magnétique par rapport a cette surface ;

Si la substance n’est pas isotrope, de 'orientation de I'axe magnétique
par rapport aux axes d’élasticité de la substance;

De DI'intensité de I’aimantation en un point;

Enfin d’autres parameétres o, B, ..., qui achévent de déterminer 1'¢tat
physique et chimique de la substance.

Telles sont les variables qui peuvent influer sur la valeur de 7'.

Bornons-nous, pour le moment, & considérer le cas d’une substance iso-
trope : nous étudierons dans un Chapitre ultéricur les propriétés des corps
cristallisés ; cherchons la variation que subit la quantit¢ 5 lorsque, dans un
élément magnétique, on fait varier I'intensité d’aimantation et I'orientation
de 'axe magnétique sans déplacer 1'élément et sans faire varier ni son vo-
lume ni la forme de la surface qui le limite.

La variation que subit la quantité § par I'effet d'unc modification donnée
dépend seulement de I'état du systéme avant ct aprés cette modification et
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non de la voie suivie par le systéme pour passer de I'un de ces états a l'autre.
Nous pouvons donc choisir celte voie arbitrairement.

1° Nous découperons dans le systeme I'¢lément do, dont I'état doit va-
rier; nous c¢loignerons & l'infint tous les autres ¢léments du systéme sans
changer I'aimantation oul’état d’aucun d’entre eux. Dans cette modification,
qui constitue ce qu’au § I nous avons nommé un déplacement sans change-
ment d’¢tat, la quantité 5 ne subira aucune variation.

2° Dans I’¢lément ainsi isolé, nous ferons subir & I'intensité d’aimantation
et a 'orientation de I'axe magnétique les variations infiniment petites que
nous avons en vue. Dans cette modification, 5 variera de &, 5.

3¢ Cette modification achevée, nous rameénerons de 'infini tous les élé-
ments du systéme a leur position initiale sans changer I'état ou I'aimanta-
tion d’aucun d’entre eux. Dans ce nouveau dé¢placement sans changement
d’¢tat, 7 ne variera pas.

L’ensemble de ces trois modifications devant faire varier 5 de 257, on a

3= 6,5,

Il nous suffit donc d’étudier la variation de &, 5.

Il est évident que cette variation est égale a la variation que subirait le
potentiel thermodynamique d’un systéme formé par’élément do seul, si cet
¢lément subissait le changement considéré d’axe magnétique et d’aimanta-
tion sans changer de position, de forme ou d’état.

L’intensité de l'aimantation et l'orientation de Paxe magnétique sont
connues lorsqu’on connait les composantes o, v, © de I'aimantation sui-
vanl trois axes rectangulaires invariablement liés a 1'élément. Par conseé-
quent, dans la modification précédente, on a

3,3 =Adb + Baow +CoS,

A, B, C étant trois quantités qui peuvent dépendre :

1°© De a, w, ¢

2° Du volume d¢ de 'élément;;

3° De la forme de la surface qui le limite;

4° Des coefficients «, 3, .. ..

Quelle que soit la forme de la surface qui limite ’élément dv, quelle que
soit 'orientation de I'axe magnétique par rapport a cette surface, quel que
soit le volume de I'é¢lément ¢, nous pouvons le partager en une infinité de
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cubes infiniment petits par rapport a cet ¢lément, ayant un volume déter-
miné d’avance et dans lesquels I’axe magnétique ait une direction déter-
minée par rapport a la surface qui limite chacun d’eux. Une démonstration
analogue a celle que nous venons de faire pour prouver que ¢’ = ¢, 5’ nous
montrera que 8,5 est égal & la somme des quantités analogues obtenues, en
supposant que, aprés avoir éloigné indéfiniment tous ces petits cubes les
uns des autres, on fasse subir & chacun d’eux la méme variation d’aimanta-
tion qu’a ’élément dy tout entier. ,

Il est facile de conclure de’la que les quantités A, B, C sont proportion-
nelles au volume de ’élément do et indépendantes de la forme de la surface
qui le limite, en sorte que nous pourrons écrire

0F' =0, F = (A’ 0 + B’ b + €' 82) d,

A, B, " dépendant uniquement des variables &, w, e, «, 3, .. ..

Au lieu de prendre ., ¥, © comme variables indépendantes pour définir
I’état d’aimantation del’élément do, nous pourrons aussi bien prendre pour
variables indépendantes o et deux des quantités &, b, €, les deux pre-
micres par exemple. Nous aurons alors

85 = 0,5 = (m M + a dd + bow) dv,

m, a et b étant trois fonctions de o, &, W, «, 3, ... seulement.

La forme de la surface qui limite I’¢lément d¢ n’influant pas sur la valeur
des quantités m, a et b, on peut, pour les déterminer, donner a I’¢lément la
forme d’une sphére. Cette hypothese admise, envisageons les deux modifi-
cations équivalentes que voici :

Dans la premieére modification, on suppose qu’on laisse I’¢élément immo-
bile, qu’on ne fasse point varier son intensité¢ d’aimantation 9L, non plus
que les parameétres «, 3, ..., mais qu’on change l'orientation de son axe
magnétique, de telle facon que « et v varient de quantités quelconques
¢.u, Sw. Dans cette premiére modification, on a

0F' = 8,5 = (adb + b ovb) dv.

Dans la seconde modification, on suppose qu’on laisse invariable I'inten-
sit¢ d’aimantation et les parametres «, 3, ...; que 'axe magnétique de-
meure invariablement li¢ a 1’élément, mais qu’on fasse tourner celui-ci au-
tour de son centre de manic¢re que 'axe magnétique subisse dans I'espace le
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méme changement d’orientation que dans la précédente modification. Cette
seconde modification constitue un déplacement sans changement d’état, en
sorte que I'on a, durant cette modification,

37 =4¢,5'=o.
Or les deux modifications, amenant le systéme du méme état initial au

méme état final, font subir a la quantité 5’ la méme variation. On a donc,
quels que soient 2.4, et Sw,

adt + bovh = o,
c’est-a-dire

Il en résulte que I'on peut écrire : dans toute modification oti 'aimanta-
tion d’un élément varie sans que le volume, la forme et Pétat de cet élé-
ment subissent de variations,

8F =f(I, a, 5, ...)dv ST,
Dés lors, si nous posons

N
(16) FO, a, B, ...):f Lf(:m, o, B3, ...)dow,

nous pourrons écrire
(17) 3"’:f,7’(:m, By ... )do+ 3,

I'intégrale triple s’étendant au volume entier du systéme et § demeurant
invariable lorsqu’on déplace les éléments ou lorsqu’on fait varier leur état
magnétique sans altérer leur volume ou les paramétres o, f3, ... relatifs a
chacun d’eux.

Pour déterminer 7', nous remarquons, en premier lieu, que les éga-
lités (15) et (17) permettent d écrire

.ﬁ::}f-o-fj(an, o, 5, ... )de + 57,

Supposons que nous fassions décroitre jusqu’a o l'intensité d’aimantation
en chaque point du systéme sans faire varier le volume ou 1’état des divers
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¢léments qui le constituent, 5y tend vers o; il en est de méme de # (0w, «, 3, .. .)
d’aprés ’égalité (16); 5 tend donc vers 7.

D’autre part, si nous désignons par U I’énergie interne que posséderait
le systéme si tous les éléments conservaient le méme état physique deéfini
par les paramétres «, 3, ... et le méme volume, mais cessaient d’étre ma-
gnétiques; par S l'entropie que posséderait le systéme dans les mémes

conditions, il est évident que la limite vers laquelle tend la valeur de 7

est E(U — TS).
On a donc

(18) F"=E (U —TS).
Cette égalité (18) achéve de déterminer la forme du potentiel thermody-

namique interne d’un systéme qui renferme des corps isotropes aimantés,

car des égalités (15), (17) et (18), il résulte que 'on a pour un semblable
systéme

(19) §:E(U—’1‘S)+:j+f5(3m, % B, ...)dp.

C’est de cette égalité que nous allons déduire les lois de I'induction magné-
tique des substances isotropes.



L.24 P. DUHEM.

CHAPITRE II.

EQUATIONS DE L'EQUILIBRE MAGNETIQUE.

§ 1. — Equations fondamentales de P’aimantation par influence.

1. Nous allons dans ce Chapitre chercher & déterminer la grandeur et la
direction de T'aimantation en chaque point d’un corps dénué de force
coercitive soumis a l'action d’aimants permanents. Commencons par dé-
finir ces deux mots.

Considérons un systéme renfermant un corps susceptible de s’aimanter
et cherchons a quelles conditions le travail non compensé effectué dans une
modification isothermique virtuelle quelconque de ce systéme sera nul ou
négatif; parmi ces conditions, qui sont les conditions d’équilibre en Ther-
modynamique, nous en trouverons qui expriment la proposition suivante :
I'aimantation a en chaque point du corps considéré une certaine direction
et une certaine grandeur. Si, en chaque point de ce corps, I'aimantation a
cetle direction et cette grandeur, cette aimantation ne pourra subir aucune
variation; I'équilibre magnétique sera absolument établi.

Mais, sclon une remarque faite précédemment (Chap. I, §I, n° 11), il
peut fort bien arriver que le systéme conserve un état invariable sans que
les conditions d’équilibre prescrites par la Thermodynamique soient véri-
fiées: il peutarriver que 'aimantation du corps en question demeure inva-
riable, bien que cette aimantation ne satisfasse point aux conditions dont il
a ¢Le parle.

Nous dirons qu’un corps est par:faitement doux, ou bien qu’il est dénué
de force coercitive, si, en toute circonstance, 'aimantation en chacun des
points de ce corps satisfait aux conditions d’équilibre indiquées par la Ther-
modynamique.

Au contraire, nous dirons qu'un aimant est permanent si 'aimantation
en chaque point conserve une grandeur ct une direction invariables en
(quelque circonstance que cet aimant se trouve placé.

Les aimants permanents et les corps parfaitement doux forment les deux
limites extrémes de la série des corps magnétiques. Il va sans dire que tous
les corps magnétiques que nous présente la nature viennent se ranger entre
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ces deux limites, sans jamais réaliser completement ni T'une ni 'autre
d’entre elles. Néanmoins, ces deux limites correspondent aux seuls cas que
nous puissions étudier théoriquement : nous pouvons étudier les aimants
permanents parce que leur état magnétique peut étre censé donné arbitrai-

rement, et les corps parfaitement doux parce que cet état est réglé par les
propositions de la Thermodynamique.

2. Envisageons un systeme formé d’aimants permanents et de corps dé-
nués de force coercitive.

En un point de I'un de ces derniers, ’aimantation a pour composantes -\,
w, €. On peut imaginer que, sans changer la position, le volume, la forme,
I’état physique ou chimique des divers corps qui constituent le systéme, on

fasse, au sein d'un élément dp, varier &, b, €, de quantités infiniment

petites arbitraires o4, ow, 2. D’aprés la définition des corps parfai-

tement doux, il n’en doit résulter pour le systtme aucun travail non com-
pensé.

Tous les corps du systéme demeurantinvariables de volume, de forme et
de position, les forces extérieures appliquées au systéme n’effectuent aucun
travail. Le travail non compensé effectué se réduit alors a la variation
changée de signe du potentiel thermodynamique interne.

Ce dernier est fourni par I'égalité (19) du Chapitre précédent. Il a pour
valeur, en conservant les notations de ce Chapitre,

5:E(U_'r5)+;5+fj(:m, o By .. ) de.

Cherchons la variation subie par cette quantité lorsque, au sein de I'élé-

ment dp, &, W, & varient respectivement de ¢.., ow, 82, tous les autres

parameétres qui fixent I’état du systéme demeurant invariables.
La quantité E(U — TS) ne subit dans ces conditions aucune variation.
La quantité & subit une variation facile a calculer en se reportant a la

définition de la fonction & donnée par 'égalité (14 ) du Chap. I. Il est aisé
de voir que I'on a

oV v oV
0N — Ry, —— o+ 2L 52 .
R h[dxol)—i—dyol L d:o ]dc,

© étant la valeur de la fonction potentielle magnétique en un point (., ), 3)
de I'élément do.

11. — Fac. de T. L.}



1..26 P. DUHEM.

Enfin on a

5 [F00, 25, o= ST ) [%’i Bt 92 gy, O ae] .
Mais 1'égalité
M 2= A2 4 B2+ &2
donne
M & L w2
o T A’ o IR’ PR

en sorte que 'on peut écrire

P 1 ()j :)Tb,a, y e e PN
af.v(,)u, 2B, ... )dv= 5 ( oamﬁ ) (2 8 4 b W + 2 32) do.

Tous ces calculs conduisent a I'égalité

6_7-:3 [/zdi?+Ld'f(“m"“’@"“)eu]a&%

dxr = IIL 91T
00 1 dFO, @, B,...)
“+ [’L 87 -+ S pBe 1"9] b
oV TOF(IN, o, B, L) -

Cette quantité doit étre égale 4 o quelles que soient les variations da,
o, 52. Si donc on pose

I

T 0FON, o, B, .. )
9T

(n F(:)R, o, ﬁ’)

on devra avoir, en tous les points d'une masse dénuée de force coercitive et
soumise a 'aimantation,

Ao =—"nF (I, a, B, ...)-?g,

(2) (W =—hFN, a, (3,...)%,
9
e = AF(R, & 5,0 O

2. Ces équations sont les équations fondamentales de I'induction magné-
tique; avant de leur faire subir aucune transformation, nous allons en dé-
duire quelques remarques importantes.
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Ces équations donnent

000 v
F‘;—_QL- 3
A w e

Do , . . , .
ce qui signifie que l’axe magnétique en un point d’une masse isotrope

dénuée de force coercitive et la grandeur géométrique dont les compo-
santes sont

00 00 00

dx’ 9y’ 0s
sont dirigées suivant la méme droite. Cette proposition se retrouve dans
toutes les théories de I'induction magnétique proposées jusqu’ici; elle est unc

conséquence plus ou moins immédiate des hypothéses sur lesquelles repo-
sent ces théories. Les équations (2) donnent encore

(32) 0 (22) 4 (22
(3) oz) T \oy) &) — R[FOON, @, 6, .. )]
c}\oZ_,_.U|02+@2 - ’ » y e .

Le rapport de la grandeur géométrique précédente a Uintensité d’ai-
mantation dépend de Uintensité d’aimantation et de la nature de la
substance.

Cette conséquence est conforme aux hypothéses faites par M. G. Kirch-
hoff sur I'aimantation par influence; toutes les théories de l'aimantation
autres que celles de M. G. Kirchhoff conduisent a regarder le rapport
précédent comme indépendant de l'intensité d’aimantation : nous avons vu
que par la ces théories se mettaient en désaccord avec I'expérience.

Sile coefficient (o, o, B, ...) est positif, 'axe magnétique et la gran-

, Y . a0 00 09 . ,
deur géométrique dont les projections sont 92’ 0y 95 sont orientés en

sens contraire. Le corps est dit alors magnétique ou paramagnétique. Si
au contraire le coefficient F(ow, «, 3, ...) est négatif, 'axe magnétique et

, o S a0 09 9V . :
la grandeur géométrique dont les projections sont 9%’ ay’ 95 Sontorientés

dans le méme sens. Le corps est dit diamagnétique. La théorie des corps
diamagnétiques et la théorie des corps magnétiques se trouvent donc com-
prises en une seule et méme théorie; 'existence des corps diamagnétiques

ne préscente pas ici les difficultés qu'elle présentait dans la théorie de
Poisson.
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§ lI. — Le probléme de I’induction magnétique se raméne
a la détermination de la fonction V(x, y, z) (!).

3. Nous allons démontrer maintenant que les équations (2) permettent,
lorsqu’on connait la valeur de la fonction ©(x, y, 5) en tous les points d’'une
masse dénuée de force coercitive, de déterminer les valeurs des quantités
-, W, © en tous les points de cette masse, c’est-a-dire de résoudre com-
pletement le probléme de I'induction magnétique.

L’équation (3) peut s’écrire

. N A <d\‘> AN
) [le(;m, 2, B, >] “(rn) - 9?) +<E

Si I'on connait en chaque point la nature du corps parfaitement doux que
I'on étudie, F(ow, «, 3, ...)est, en chaque point, une fonction parfaitement
déterminée de o1 ; nous verrons plus loin comment 'expérience permet de
déterminer la forme de cette fonction. Dés lors le premier membre de
I'équation précédente est une fonction parfaitement déterminée de ow, et
cette équation donne 9w en fonction de

(52 (3 (32
dx Jdy B

Nous supposerons cette équation (4) résolue par rapport a o, et nous
écrirons

. OO\ (09N (09N
o3 (- (3

Posons maintenant, d’'une maniére générale,

(6) MG a4, By .. )=—hF[a(8), o, B, ...].

Les expériences qui font connaitre la forme de la fonction I feront con-

«1) Ce paragraphe et le suivant sont le développement d'idées indiquées par G. Kirchhoff
[G. KircHHOFF, Ueber den Magnetismus eines unbegreusten Cylinders von weichem
Eisen (Crelle’s Journal fiir reine und angewandte Mathematik, t. XLVIII, 1853;
Kirchhoff''s gesammelte Abhandlungen, p. 193)].
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naitre aussi la forme de la fonction A, et les équations (2) deviendront

s {[&) () () boe 45
| ) () G e
e=[(5) - (F) () e |5

Ces équations permettent, comme nous 'avions annoncé, de déterminer

les trois quantités &, v, 2, lorsqu'on connait en chaque point du corps
soumis a 'aimantation la valeur de la fonction ©.

§ III. — Equation différentielle a4 laquelle satisfait la fonction © (z, y, z).

4. Nous avons vu que la fonction ©(x, y, z) satisfaisait en tous les
points de I'espace non situés sur une surface de séparation de deux corps

magnétiques ou d’un corps magnétique et d’'un milieu non magnétique a
I'équation suivante [Chapitre I, § 1L, éq. (12)]

dd O 0L
9 —— 5 vt 57 )
(8) A ”(da: —+ ay =+ ds>

De la on peut déduire la forme de I’équation différentielle du second
ordre & laquelle la fonction © satisfait en tous les points de I'espace, sauf
aux divers points des surfaces limites.

Dans la partie de I'espace occupé par le milieu non magnétique, I'équa-
tion précédente se réduit a 'équation de Laplace

(9) AY —o.

A Tintérieur des aimants permanents, I'aimantation en chaque point

est censée connue, en sorte que le second membre de 'équation (8) est

une fonction connue de x, ), z. Si nous désignons cette fonction par

— 47p(x, y, 2), la fonction © vérifiera en tout point intérieur aux aimants

permanents I’équation aux dérivées partielles du second ordre
(9 bis) AV = —4mp(2, y, 5).

Envisageons maintenant un point intérieur & I'une des masses magné-
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tiques dénuées de force coercitive que renferme le systéme. En ce point,
les composantes 4, w, & de 'aimantation vérifient les équations (7).
Différentions la premiére des équations (7) par rapporta x. Posons, pour

abrége
c8en G AN AN AVAN
=(5) (%)~ (%)

XN 9V 9A(G, % B, ...) IG IV

Nous aurons

oz :‘dl(G, o, By L) PPl + G 92 O
OUTIUG, 2,8, ) 02 MGy By .. ) 0B ]
ox do. ox a8 ox )’

les termes de la seconde ligne disparaissent d’eux-mémes lorsque la sub-
stance est homogeéne.
Mais on a

0G _ (9000 90 009 00
dxr — \dz 0z ' dy dxdy ' 093 dxds)

oG . 0N
Remplacons == par cette valeur dans I'expression de 5 formons de

A : o de . . .
méme les expressions de EIk 3 ajoutons ces trois quantites, en tenant

compte de I'équation (8), et nous aurons

(o) ter) [1+4n13[<%§)2+ <3—j>2+ (%‘;)2]: oy By .. ;] AV

([ /09\? d_\? 2 (29 2
0)\) Iz f‘ ar -+ = ) a ﬁ, . ;
(V. <ax‘> : (dg)?}
(%) + (&%)~ (&
(B 2 ey e (99y 0
ox) 9x? o) 9= T\oz) 9=
L0000 PV 0V 9V 90 99 09 9ty
dy 0z dyds 05 dx dsdx dz dy dx dy |

2

| (5e) + (5) = (5) | =2
L\ o oy ) |I’™ 2 02 9V 92 9V 0 9V
e d_xd_x—’—;); dy = 05 0z
OVN? | [0V [0V\? ;
| ‘”‘”(E) +(5,T> - —;> ] Bl 9890 0809 | 03 00
-+ = = - _— e + = —
7% ( xr dx v dy 5 ():)
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Telle est 'équation aux dérivées partielles du second ordre que la fonc-
tion ©(x, y, 3) doit vérifier en tous les points d’une masse dénuée de force
coercitive soumise a I'aimantation.

Les équations (9), (g bis), (g ter) nous fournissent donc les équations

différentielles que la fonction © doit vérifier en tous les points de I'espace,
sauf aux divers points des surfaces limites.

§ IV. — Conditions aux limites auxquelles satisfait la fonction © (z, y, 2).

5. Cherchons & quelle condition satisfait la fonction ©(z, y, ) en un
point de 'une des surfaces limites.

Supposons qu’une surface sépare deux milieux, dont I'un au moins soit
magnétique. Soient, en un point de cette surface, N, la normale dirigée
vers l'intérieur du premier milieu et N, la normale dirigée vers l'intéricur
du second milieu. Soient ©,(x, y, z) la fonction © relative au premier
milieu, ©,(x, y, z) lafonction © relative ausecond. Soit M, un point du pre-
mier milieu infiniment voisin du point considéré de la surface limite. Soient
oy, Wby, €, les composantes de I'aimantation en ce point. Soit, en ce point,
IV,

N la dérivée de ¢, suivant la normale N,. Soit, de méme, M, un point du
Ny

second milieu. Adoptons pour ce point des notations analogues a celles que
nousavons adoptées pourle point M,, et nous aurons,d’une maniere générale,

O 99 , _ :
(10) m—l—m:—dn[ Ao c0s(Ny, 2) + W, cos(N,, y) + &, cos(Ny, 3)

—+ o, oS (N, ) - b, cos(Ny, ¥) + S, cos(N,, 3)],
égalité qui se réduit a I'égalité (11) du Chapitre I lorsqu’un des deux mi-
lieux n’est pas magnétique.

Les surfaces limites que ’on peut avoir a considérer sont de cinq espéces
différentes :

1° Surface de séparation d’'un aimant permanent et d’'un milieu non ma-
gnétique;

2° Surface de séparation de deux aimants permanents;

3° Surface de séparation d’une substance dénuée de force coercitive et
d’un milieu non magnétique;

4° Surface de séparation de deux substances dénuées de force coercitive;

5° Surface de séparation d’'un aimant permanent et d'une substance dé-
nuée de force coercitive.
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10 A la surface de séparation d’un aimant permanent et d’un milieu
non magnétique, voyons ce que devient la relation (10). Supposons que
I'indice (1) se rapporte a I'aimant ct 'indice (2) au milieu. Remplacons les

v . .
symboles 3% et gT par les symboles, plus souvent usités en pareil cas,
Ny N,
IV ot IV A Tintérieur du milieu non magnétique, nous avons
oN; ~ 0N, gnetique,

ds— o0, 1‘!\2: o, 32: o,

tandis qu’a I'intérieur de l'aimant &,, w,, €, sont des quantités censées
connues d’avance. La relation (10) devient donc
7 9o _

2 = 4ns(, v, 3),

(1) oN; Y oN. =

s(wx, y, z) étant une fonction dont la valeur se¢ déduit immédiatement des
données du probleme.

2° De méme, a la surface de séparation de deux aimants, la rela-
tion (10) devient

9v¥ v . . .
()TYI+m__ATE[S’(‘T’}")-*—SQ(.T,')’N)]’

(11 bis)
s.(z, y, z)ets,(x, y, =) étant deux fonctions dont la valeur se déduit im-
médiatement des données du probléme.

3° A la surface de séparation d’une substance dénuée de force coer-
citive et d’un milieu non magnétique, examinons ce que devient la
relation (1o0). Supposons que l'indice (1) se rapporte a la substance magné-
tique et 'indice (2) a la substance non magnétique. Remplacons les sym-
boles N, ¢t N, par les symboles N; et N,.

A l'intérieur du milicu non magnétique, nous avons

b, =o, by —o, Z,=o.

Au contraire, a I'intéricur de la substance dénuée de force cocrcitive,
2y, W,, &, sont donnés par les équations (7 ) du présent Chapitre. On a

donc
2y €0S (N, &) + W, cos(N, ) + S, c08(N;, 5)

(O (2O (N, .
_/'[\(_)_J‘,> *(0),[_) -+ \0—:15 ]’ o, 9, \

av . go N
=< [;);COS(.\H Ll‘)‘l— '(')VT"'COS(.\,-,))‘— ()_;—’-COB('\‘" “)]
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Mais on a aussi

09 99 . a0 ) av N -
oN, = ()—xicos({\,, x) -+ 9y: cos(N;, y) + d;icos(l\,, z).

La relation (10) devient donc, en tout point de la surface considérée,

A 00 \? dO\?2 99 av
. 2 g~ v s g L 9
(11 ter) (1+47:7\§|:<0xi> +<0)’i> —i—<()~_i/) ], a, B, 2 dN,-+()NL,_O'

4° De méme, a la surface de séparation de deux substances dénuées
de force coercitive, la relation (10) devient

N S[<d-§)>2 (d\9>2 (()\()>2] % X
(11w) [I—I— 411:)‘1( ) -+ o -+ P » Apy Bys o oN,
IV \? JO\? AN 1y ov
/ —
-+ [I+ 47[)\2 3[<d_—x2> -+ <.d]_2> -+ <();2) :l) Oy ﬁg, .o -s] ()NZ -0

5° Enfin, a la surface de séparation d’un aimant permanent (1) et
d’un corps dénué de force coercitive (2), la relation (10) devient

S O9N (09N (90N I 29
() on*[‘”ﬁ“Wow)+<0y2>+<os2) ]"@~ oN,

2/
s,(z, y, z) étant une fonction dont la valeur se déduit immédiatement des
données du probléme.

Si nous ajoutons qu’a I'infini on doit avoir

—_ llﬂsl(x) hE) Z),

(12) VY=o,
nous aurons énoncé toutes les équations qui déterminent la solution du
probléme de I’aimantation par influence.

§ VI. — Approximation de Poisson.

6. Revenons aux équations

Ao =— RF(N, 0, B, ...) 5=

av

(2) W=—hFQOR, a, B, ...) o0
e=—hFOL, a b, ...) %‘__’),

sur lesquelles reposent toutes les considérations exposées dans le présent
1. — Fac. de T. 1.5
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Chapitre. Si 'on supposait que la fonction F devint indépendante de o,
ces équations deviendraient

O
o=—ly(2, 3, ~--)d’d—;’

9

(|5’ /]'!‘:—/17(1737"')(())—\;,’
Q)
S =—\ly(a 3 )(())—\.‘

Elles auraient précisément la forme que présentent les équations de I'é-
quilibre magnétique dans la théorie de Poisson et dans toutes les théories
exposées jusqu'ici, sauf celle de M. G. Kirchhoff.

Quelle condition doit remplir la fonction F(ow, «, B, ...) pour qu’il en
soll ainsi?

S'il en était ainsi, I'égalité (1) du présent Chapitre deviendrait

OF (M, o, By o) AT
dIIL IC-

et comme, cn vertu de sa définition donnée par’égalité (16) du Chapitrel,
la fonction ¥ devient égale a o en méme temps que O, on aurait

- i e
FOR, 2,8, ...)= EOTCR . e

Ainsi, pour que la théorie de Poisson soit exacle, il est nécessaire el
suffisant que la fonction 3 soit proportionnelle au carré de Uintensité
d’aimantation.

Comme nous 'avons déja dit dans I'Introduction, I’étude des substances
fortement magnétiques, telles que le fer doux, montre que la théorie de
Poisson est inacceptable, au moins pour ces substances. L’expérience
semble prouver que, pour le fer doux, lorsque l'intensité d’aimantation o
croit en valeur absolue, la fonction F(on, o, 8, ...) croit d’abord avec or,
puis passe par un maximum, et décroit ensuite lorsque 91U continue & croitre.

Toutefois, la théorie de Poisson est approximativement exacte pour les
corps faiblement aimantés. Il faut en conclure, d’aprés ce que nous venons
de dire, que l'on a

¥

3 F(M, 0, B, o) = o
(13) F(I, 2, 5, ) 2T (IR, 2, 53, ...)

M2

b

I'(on, 2, 3, ...) tendant vers une limite finie y(a«, 8, ...) lorsque o tend

vers o.
S —
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CHAPITRE III.

LE PROBLEME DE L’AIMANTATION PAR INFLUENCE ADMET UN\E
ET UNE SEULE SOLUTION. — STABILITE DE L’AIMANTATION.

§ I. — Existence d’une solution.

1. Nous avons va au § I du Chapitre II que le probleme de 'aimanta-

tion par influence se ramenait a celui-ci : trouver une distribution magné-
tique qui donne un minimum & la quantité

(1) J:E(U——TS)+;)“+[g?(;m-,a,@,...)dv.

Existe-t-il toujours une semblable distribution? C’est la question & lacpuelle

nous nous proposons de répondre dans ce paragraphe.
D’apreés I'égalité (14) du Chapitre I, nous avons

~ , 09 AN LY X
J—‘f(cj\od_«l’ “05;+vb?>(l“

Cette égalité, lorsqu’on y remplace © par I'expression

N
'\‘) - ullo’ 'd?,; —+ Ula)’ W’,‘ —+ Sl r> ([V’,

03’

qui lui sert de définition, devient

h [ Jd ()_": 9 E
p—— A of ! o/ 3/
(2) 5._2 %d.r b ox' w

<
[

()y,r, a‘?t) dV’
- 1 1 I
J - Jd - J -
-+ b J / <JV Law e —1>dv’
dy da' ay’' 03’
9 I

R

1 I >
=) J ! ’_ N 07 =t J ) W 1y
-+ & Jo a‘; 4+ b W —+ < (l‘ ay’,

toutes les intégrales triples s’étendant au volume entier du systeme.
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Clest cette expression de &y que nous allons tout d’abord transformer.

Pour fixer lesidées et ne point compliquer les formules, nous supposerons

que le systéme renferme simplement un aimant permanent que nous dési-
gnerons par l'indice (1) et un corps magnétique dénué de force coercitive
que nous désignerons par l'indice (2). L’égalité (2) pourra alors s’écrire
plus explicitement

(2 bis)

Ve
h
= 5/[ b

—+ Wb, =—

. I
J=
Jd ,or ,
-5 (3 ‘(
dx,/ <l°‘ dr b
1
J —
7] , r -
0)/] <c\91 a}‘,; +U"l
1
v V' 0 r
03, R
1
D ).
J\Z e.'{sg o —+ b,
I
0 r
5 ey S ‘{).
0]‘1 19_‘ ();Eg + 2
1
0 I
3 ()_z_; 0%2 -().Io +‘l‘o)2
1
ad -
ad . r ,
oz, <c19,, H —+ Ul)2 —_—
1
0 o OE
d‘}/z L, d,_[:z +1e72
i
J L ? r 1y
():'2 o, ()I; —+ D9

1
J ~
e 2 Jay | dve
1 - 1 1
~1
o
g -
r
e, 93 dy,
22
I
?
Sy = Jdv
~ 2
% 05,

Une intégration par parties nous donne, en désignant par s, la surface
du corps (1) et par N, la normale en un point de la surface s, dirigée vers
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I'intérieur du corps (1),

—— S [ cos (N, )+ W cos(N), ¥)+ &} cos(N, 5)] = da,

A dl‘ 22\ 1, , s,
—fff( 2 +B-z—,:>;dx,dyldzl.

Les limites des intégrations étendues 'une au corps (1) tout entier,
l'autre 4 la surface qui le limite, ne dépendent pas de x,, y,, z,, en sorte

que 'on aura

o dx//‘/< ‘dx +%,‘
"5

=y S [#] cos(NY, )+ W cos(N, y)+ &} cos(N, »)] lal

71' + e -—> da', dy', ds,

]
b

1
aJ —
A"y ()111)’, 2
"‘”ffﬂdx o, T d~,>a - dat, dy, dz).

et une intégration par parties donne

I 1 1
oy 2 J\s'd'——i—ll ° o d]d
' 9z, ' 9z by ())" + & 0‘ Y1 V1

— SS[J»'1 cos (N, z)+ W cos (N}, )+ & cos (N, 5)] oy cOs(N,, ) Il ds dsg,

oA, avb 02\ 0Ny 1
+ff<dx1 11 - 0z,1> 01'1 7 dndvy.

En transformant d’'une maniére analogue tous les termes qui figurent au

second membre de 1'égalité (2 bis), on trouve
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:g 3 SS[..L‘, 08 (N1, @)+ b, c0s(Ny, )+ S, cos(Ny, 5)]

[-\) cos(N}, )+ W) cos(N},»)+ S cos(N), 5 ] — do-ldar,
=+ 2 SS [-b; cos(N;, )+, cos(Ny, »)+ S,cos(Ny, 5)]

[-15 cos(Ns, x) + by cos(N,, )7) + €5 c0s(Ny, 5)] %do, ds,
+ SS [y c0s(Ny, ) + Wb, cos (N, y) + 2,5 cos(Ny, 5)]

’ ’ ’ ~1 ‘4 I ’
[V} cos (N}, ) 4= Wb, cos(N}, 3) + ) cos(Ny, 35)] I dg, d7,

d-by 9y, 92\ (9 dﬂ‘ gy 9e >l g
dr, + dy, + PER dx', dv + ds, ) r doydv,
d

A ouh, =R 015 % E)i [
+2ff dxy ” dy, - d*’l) <d—l"z + dys - ds, ) r dyy oy
0Ly | b, 92, (0L, 9w, 08\ 1 ,
2 - z 2 2 z N dy.)
ox, - dys + d;z> <dx’2 - 9y, + ()J2> s de, dv)

()ZL’! dlﬂ'l de ’ o' ’ - l y ’

+2fS o Ton T 05:>[°\9 cos(N, )+ W) cos (N}, y) + &) cos(N}, 5)] — diyda)

()c\q 1 () uh 1
du, ay,

[y c0s(Ny, ) + Vb, cos (Ny, ) + S5 c08(Ny, 2)] ,i de, ds,

SYRENSY
©

0-by  Oh,
0x, 9y,
J

: b, o duh,
—[—sz<()1’2 - ()}2 —+

Cette expression de &y met tout d’abord en évidence un théoréme bien
connu de la théorie du magnétisme. Cette expression montre en effet que &
est le potentiel d’une distribution électrique ainsi obtenue :

En tout point intéricur & I'un des corps magnétiques du systéme, on donne
a la densité électrique la valeur

\/71 -4 du'» 22’
<0x oy T s

¢ étant la constante analogue a A qui figure dans 'expression des actions
électriques.

En tout point de la surface d’un corps magnétique du systéme, on donne

2

.l_
Y
35
e N

_I_

[SYREIESY
0

[d; cos(Ny, @) + by cos(Ny, ) + &, cos(Ny, 5)] ; dvy da,

i
©

2 >[cls cos (N}, x) + W, cos(N,, ¥)+ v‘,cos(\,,g)] - dv dg’,

S¥
0
™
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a la densité électrique la valeur

\/i—l [t\s cos (N, &)+ W cos(N;, y) + € cos(Ny, 3)].

La quantité y étant précisément, nous I'avons vu, le potentiel des actions
mécaniques que les corps magnétiques du systéme exercent les uns sur les
autres, on voit que ces actions sont identiques aux actions qu'exerceraicent

les uns sur les autres les mémes corps, électrisés de la facon que nous
venons d'indiquer.

2. 11 est facile, en outre, de vérifier que la fonction potentielle de cette
distribution électrique coincide avec la fonction potentielle magnétique ©.

En effet, la fonction potentielle magnétique © vérifie en tout point intéricur
al'un des corps magnétiques la relation

0 oy 22
’ ) — 4+ e =)
(1) AV = 47[( dy ()s)

en tout point du milieu non magnétique, elle vérifie I’équation de Laplace

(5) AQ —=o.

Si I'on désigne par N, la normale vers I'extérieur en un point de I'unc
des surfaces g, et o,, elle vérifie en tout point de ces surfaces la relation

7o 00 e
(6) d—N, -+ ()—N-L —— Aﬂ[a% cos(N;, )+ COS(N,’,y)-f— 2 cos(N,, ~)].

Enfin, a I'infini, la fonction © et le produit de la fonction © par la dis-
tance du point auquel elle se rapporte & un point quelconque situé a dis-
tance finie sont-égaux a o.

Or ces conditions sont aussi celles auxquelles doit satisfaire la fonction
potentielle de la distribution électrique fictive; et, comme on sait qu’elles

ne déterminent qu'une seule fonction ©, il en résulte que les deux fonctions
potentielles coincident.

hl 1
D’aprés cela, nous aurons
b

(= o d-\, ()U‘“ 2, , 0-\, ()U'\z ds,
(7) V= ,f(()l‘, 0~ > d"+f<()l') -+ 0-.> dv,

- S[d..l cos (N, )+, cos(Ny, y) + &, cos(N,, 3)] ,1 dg,

—+ S [y cos (N, )+ Wy cos(N,, 1) + S, cos(N,, 3)] ,l ds; .
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Dés lors, il est aisé de voir, en vertu des égalités (4), (6) et (7), que
I'expression (3) de 5 peut s’écrire

(8) :\‘—_:—g—ln[fl?A\?dv,—i— f\f)A\_‘)dc'z
of OV d\) 0\)
SR R §0 (- ) ]

Or le théoréme de Green nous donne

o 9\ 2 9\ 2 9\ *

e SR e [ < (5) (3 ]
o 9\ 2 9\ 2 o

| fesvane Qo e (8 () (32) ] e

Entourons le systéme d’une sphére de rayon extrémement grand ayant
pour centre un point fixe quelconque du systéme; désignons par I'indice (o)
I'espace intérieur a cette sphére et extérieur aux corps (1) et (2). Soit dX
un élément de surface de cette sphére. Comme dans tout ’espace (o) nous
avons

AV —o,

le théoréme de Green nous donnera
-/ [("‘°> (Z—fY - <3—‘3>2]
_ S\

Mais, de ce que la fonction © tend vers o lorsque le rayon de la sphére

Vj
0\ dor?.

augmente indéfiniment, de ce que, en outre, le produit de ~— pa1 le carré

du rayon de la sphére ne devient pas infini, il résulte que l’on peut prendre
le rayon de la sphére assez grand pour que I'intégrale

Sx? %dz

soit plus petite que toute quantité donnée d’avance; on peut donc écrire

. av dV\? 00\? IV\?
(gbls) S'U-——(]al—i—S'O d*\’;dﬁo— f[<0—1> -i—('d—y) +<5—3—> ]a’vo,

Pintégrale triple s’étendant a toutl'espace extérieur aux corps (1) et (2).
2 I
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Des équations (8), (9) et (g bis), on déduit I'expression suivante de

o ST G (]

I'intégrale s’étendant a tout 'espace.
En reportant cette expression de &y dans ’équation (1) et en remarcuant
que F(orL) est égal a o en tout milieu non magnétique, on peut écrire

. o[ [ov\® QV\? AR BT T
(11) r?‘__E(U—TS)—i—fzS? [(07) +<a> +<$) J—i—d(JlL,z,r)...) .

7/

C’est 'expression de § que nous voulions obtenir. Elle est exacte, quelle
que soit la distribution magnétique sur le systéme.

3. Cette expression peut s’écrire encore de la maniére suivante
(11 bis) F=E(U—TS)+ fj(arc, o, B, ...)de
00\? dV\?2 0O\ 2
JNG) ()~ (52) o
IO\ <o_x3>2+ 90N 4l
+f[55>+0y 07)] ')
hL(OON  (OONT (09N . . o
+f3ﬁ[<o_x> +<@> +<0?> ]+,,(<m, 5 By e

i

h
* 8z

les intégrales qui portent sur dz, dy, dz,sont étendues a tout le milicu non
magnétique; les intégrales qui portent sur dz, dy, =, sonl étendues & tout
I’espace occupé par les aimants permanents; enfin lesintégrales (ui portent
sur dx, dy, dz, sont étendues a tout Pespace occupé par les substances dé-
nuées de force coercitive.

Parmi toutes les distributions que peut affecter le magnétisme sur ces
derniéres substances, en existe-t-il une qui donne a la quantité précédente
une valeur minima?

Les termes de la premiére ligne de I'expression de 5 donnée par l'é¢ga-
lité (11 bis) conservent une valeur indépendante de la distribution qu’affecte
le magnétisme sur les corps dénués de force coercitive. Nous n’avons donc
point a en tenir compte.

Quelle que soit la distribution du magnétisme sur les substances dénuées
de force coercitive, les termes de la seconde ligne forment un ensemble tou-
jours positif.

II. — Fac. de T. L.6
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Cherchons dans quelles conditions le terme qui forme la troisiéme ligne
demeurera positif, quelle que soit la distribution du magnétisme sur les
corps parfaitement doux.

De l'égalité¢ (1) du Chapitre I qui définit F(or, «, 3, ...), nous dédui-
sons

5 (IR 3 )= o N ddNT
TR, 2 P ) = ,  FOI, e, 5,000 )

Par conséquent, la quantité (o, «, B, ...) est toujours positive pour les
corps magnétiques ct toujours négative pour les corps diamagnétiques.

Cetle circonstance ne nous permet pas de prévoir, pour les corps diama-
gnétiques, le signe des termes de la troisieme ligne de 1'égalité (11 bis).
Mais, pour les corps magnétiques, nous pouvons affirmer que ces termes
sont toujours positifs. ’

Par conséquent, pour le cas ou toutes les substances dénuées de force
cocrcitive ¢ue renferme le systéme sont des corps magnétiques, 1’égalité
(11 bis) revient a la suivante

F=C+P,

C ¢tant une quantité indépendante de la distribution que le magnétisme
affecte sur les corps dénués de force cocrcitive et P une quantité qui de-
meure positive, quelle que soit cette distribution; de plus, pour que la
quantité P soit infinie, il est nécessaire et suffisant, dans le cas ou le sys-

téme ne renferme que des corps magnétiques, que 'une au moins des trois
[2ANANN AN/ AN
9x” dy’ 0s
De ce que nous venons de démontrer, pouvons-nous conclure qu'’il existe

(quantités soit infinic en tous les points d’un espace fini.

au moins unc distribution magnétique correspondant & une valeur de & plus
petite que toules les aulres, et par conséquent & un ¢tat magnétique stable?
En le faisant, nous ne ferions que suivre la voie tracée par Sir W. Thomson
pour la démonstration du principe dit de Dirichlet. Mais M. Weicrstrass a
signalé le défaut de rigueur que présente cette déduction; car, de ce que
les variations d'une quantité sont limitées inféricurement, il ne résulte pas
que cetle quantité présente un minimum. Clest donc sous une réserve sem-
blable & celle qui pese sur le principe de Dirichlet que nous énoncerons la
proposition suivante :

Des corps magndtiqgues guelconqgues étant soumis a action d’aimants
3 q
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quelconques, on peut trouver sur ces corps une distribution magndétique
au moins qui satisfait aux lois de Uaimantation par influence et qui

demeure stable si I'on maintient incariables la position, la forme et
Uétat des divers corps du systéme.

§ II. — Il n’existe, pour les corps magnétiques, qu’une seule solution

au probléme de I’aimantation par influence. — Elle correspond i une ai-
mantation stable.

4. Les équations du probléme de 'aimantation par influence expriment
simplement I’égalité & o de la variation premiere subie par la quantité 5
lorsqu’en chaque point des substances dénuées de force coercitive que ren-
ferme le systéme on fait varier les composantes &, W, © de 'aimantation
de quantités arbitraires 8, Sw, 82. Cette égalité & o de la variation de F
peut-elle avoir lieu pour plusieurs distributions magnétiques distinctes?
Lorsqu’elle a lieu, la fonction § est-elle minimum, de telle fagon que la dis-
tribution magnétique soit stable? Telles sont les questions que nous allons
maintenant examiner.

La solution de ces questions découle de I’étude de la variation seconde
de §.
Supposons que les composantes &, v, & de P'aimantation au point

(z, y, z) de 'une des masses dénuées de force coercitive du systéme varient
de ¢, 2w, 82, et posons

8&% - aat,
Suh = b d¢,
02 = ¢ o¢,

a, b, ¢ étant en général des quantités finies, et &/ une quantité infiniment
petite et positive indépendante de z, y, z.

Conservons, pour simplifier, I’hypothése adoptée au paragraphe précé-
dent, hypothese dans laquelle le systéeme renferme seulement un aimant
permanent désigné par I'indice (1) et un corps parfaitement doux désign¢

par 'indice (2). Prenons pour & 'expression

(1) 5’:E(U—TS)+:7+fj(sn,a, B8, ...)do,

et remplacons-y & par sa valeur (2 bis). Il est aisé alors de voir que nous
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aurons

. A
i DENGE k() ;Lﬁ oJlL dvy

By

—+ ot I I,

91 P P
= 9 ! 1) LA c r dy dy
-+ <y 0,3‘ (223 ().12 —+ Oy ()V . 0 2():2 2 ]
b < F 0 0 ,l>
N a9 , A A
+ hiot L,y oz, , oz, —+ 0, 7, —+ ¢, PEA o,

puis, par une nouvelle variation,

N 0T, (O, o, B, ) o ,
(12) o:F-fB[ SO I8 du

) 0~ 0 i
+ hde2 a, — o, — —|— b, : — ] dv¢
_ dx, 2 9x, 2 9y, () 2

ol PE 0
+bzi . l,+b ],-i—c : dv,
dy, 2 9., 20y, EA

0= 0 0
4+ ¢ J a’ r + b, ——5 +c _r ', | dv
REER 2 9, 2y, 2 03, 2 *

Considérons la quantité qui figure au sccond membre en facteur de é¢%;
celte quantité a une interprétation qui nous permettra de suite de la trans-
former; supposons que, sur les masses dénuées de force coercitive, on
forme une distribution magnétique telle que 'aimantation en chaque point
ait pour composantes a,, 0,. ¢,. La quantité que nous considérons sera le

Ny

1
r

N -

SN~
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de cette distribution. Dés lors, nous pourrons faire subir a cette
quantité la méme transformation qu’au § I duprésent Chapitre nous avons
fait subir au potentiel d’une distribution magnétique quelconque

Soit ¢ la fonction potentielle de la distribution que nous considérons ici
¢ est donné par I'égalité

9 0 9=
(13) v(x, y, 5) = a”d + b, — 2 3y, “+ ¢y = 97, dv),.

Désignons par I'indice (3) tout I'espace non occupé par des corps parfai-
tement doux. Le coefficient de $z2 au second membre de I'égalité (12) va

devenir
o S 1(52) +(5) = (3) ) e
s 1(55) +(5) = (3) ] o
et Iégalité (12) elle-méme deviendra
o o7 =5 () - () (o) e
e PTG ) e S v

Nous allons faire subir a cette égalité (14) une derniére formation
L’égalité (1) du Chapitre (II) nous donne

potentiel

I

F, (O, o ) = % ‘

2 (90, o, B, 07, (I, 2, B, ...)
ODIL

Nous en déduisons

05, (O, o, B, .. ) sor 1 M \ﬂ_]
(15) 6[ 00T O =3 o 2, 3, 0
o 1 i AT IF, (O, =, B, ...)) SR -
_ZF‘_,(:)IL, By ) [Fa(OK, o, 3, ) PRI §
I -
TROG 45 )0
Mais I’égalité
(16) O 2= A2 W24 £2
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nous donne, en premier lieu,

N ba+hb+ZSc .
(17) 0ol — T — ot

et, en second lieu,

24024 Qoa+1hdb+-2c¢ (. o
92 = i +‘ ,+— 0t% — ;). 0IIL o¢,
I I
ou, en posant
0N = m ¢

et en tenant compte de I'égalité (17),

_ a4+ b 42— m? .
Sron = & T;L aee.

L’égalité (15) devient donc

. \ o OF2 (0 2, B, ..
0F, (A, o, By o) |y @2+ D242 09I ol 1r
(18) 6[ 99T aé’"]_(r‘g(au, 0B, RO p, e

L’égalité (14) devient alors, en tenant compte de cette égalité (18),
“2;__/“3[2 av\?2 do\ 2 do\2 ‘
(r9) 0% _—_8_11:—f|:<()—x> +<—())—/> -+ (E) ]d(vﬂa
o A1) - (2 + (2
|87 4<dx \ay) T (dz

o OF (DL, o, B, ..0) ]
a4+ b4 M dIIL
RO 56 ) RO 46 0P

m2{do,.

Le signe de cette quantité est impossible & préciser pour les corps diama-
gnétiques; pour les corps magnétiques, F,(ow, o, B, ...) est positif; en
général, cette quantité décroit lorsque oL augmente; on est alors assuré
que &*5 est toujours positif. Pour le fer doux, F, (o, &, 3, ...) croit pour
les faibles valeurs de o ; mais les accroissements de cette quantité sont
faibles, et comme o1t a en méme temps de petites valeurs, la quantité

OF, (O, a, B, ...)
F,(O0C, e, B, . )
[F2(91, o, B, .. T

I

bl
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a, dans ces conditions, une valeur absolue beaucoup plus faible que

a+ b+t
F. O/, 2, 3, -..)

hy

en sorte que 6% est encore positif.
On peut donc dire que, pour tous les corps magndtiques connus, 2* 3
est toujours positif.

De ce résultat, il est aisé de déduire en toule rigueur cette autre propo-
sition :

Pour des corps magnétiques placés sous l’action d’aimants perma-
nents donnés, il existe au plus une distribution telle que la variation

premiére du potentiel thermodynamique interne soit idenliquenient
nulle, et cette distribution est stable.

§ III. — Existe-t-il, pour les corps diamagnétiques, plus d’une solution
au probléme de 1’influence?

5. La démonstration précédente ne permet pas de prévoir, pour les corps
1lamagnéti ‘il existe une ou plusicurs distributions résolvant le pro-
diamagnétiques, s 1

¢ aimantation par influence pour u : yosition
bléme de 'aimantation par influence pour un corps de forme et de posit
données soumis 4 'action d’aimants donnés.

rait au contraire possible de démontrer qu’il existe pour un corps

Il secrait au contraire possible de démontrer qu 1
diamagnétique un seul état d’équilibre stable en prenant pour point de deé-
part la théorie de Poisson. ,

Sil'on adopte en effet la théorie de Poisson, si 'on désigne par w la
fonction potenticlle magnétique du corps soumis a Paimantation, ct par v
la fonction potenticlle des aimants permanents, la fonction w est soumise
aux conditions suivantes :

La fonction w est finie, continue ct uniforme dans tout Uespace; elle est
égale & o a l'infinij ses dérivées partielles sont finies, continues et uni-
formes dans tout I'espace, sauf sur la surface X qui limite le corps sounis i

I'aimantation; elles sont égales & o a l'infini; a la traversée de la surface X.
clles vérifient la condition

N A A\ ) |
(20) (|+-l'~/ll‘)5§7+(‘).\i+41.lll W-—')

L

dans tout l'espace, sauf sur la surface Xj les dérivées partielles du second
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ordre de la fonction @ existent et vérifient I’équation
A® —o.

Peut-il exister deux fonctions distinctes ® et @’ assujetties a ces condi-
tions? S'il en existe deux, soit © leur différence.
Dans tout I'espace e, extérieur a la surface X, on a

A® =—o, AQP'=o

et, par conséquent,
A® —o.

On a donc

(21) fA(E)dv:o.

D’ailleurs, a I'infini, on a

0w I
5 — i r— ON
W =o, ON =o, W=o, dN’_O’
d’on
00
O0=o,  HN=°

I’égalité (21) devient donc, en vertu du théoréme de Green,

| 90 90\? 00\ 790\,
(22) Sgidz +[[<0—x> -+ (5)"/) +<‘()—z> ]dV—-O

Dans tout 'espace 7, intérieur a la surface £, on a

A® —=o

fA@dv:o,

ce qui, en vertu du théoréme de Green, devient

08 s [T(29V, (90):, (00Y:
S e [l () () e

el, par conscquent,
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Les deux fonctions ® et @’ vérifiant la condition (20), on a

20 00
/, - A —_ —
(24) 0N6+(l+4ﬁhF)()_\}_o'
Multiplions les deux membres de I'égalité (23) par (14 4=hT)H, ot
ajoutons membre & membre le résultat obtenu avec I'égalité (22), en tenant

compte de I'égalité (24). Nous trouvons
f 20 2—;— 99 2—&— <0—0 2](1"
L \ox oy o:}
, 00\* 90\ 00\ , .
+(‘+*""r)[[<o7> +<W i (I) ]clv_o.

Pour les corps magnétiques, I est positif; pour les corps diamagnétiques,

Y . . . P | .
F est négatif, mais toujours inférieur en valeur absolue & ,—:- La quantité
47

(r + 4= L F) est donc toujours positive pour tous les corps connus. L'éga-
lité précédente ne peut donc avoir licu (ue si I'on a dans tout 'espace

20 20 20

2= O ay = o, gz =03
et comme O est continu dans tout 'espace et nul a linfini, ces égalités
montrent qque © doit étre égal a o dans tout 'espace. Donc, dans la théorie
de Poisson, il n’existe qu'un scul état d’équilibre magnétique, aussi bien
pour les corps magnétiques ue pour les corps diamagnétiques (*).

Voici maintenant un raisonnement général ui, sans prouver rigouren-
sement 'existence de plusieurs ¢tats d’équilibre magnétique pour un corps
diamagnétique, rend au moins trés vraisemblable cette existence.

Considérons un systéme renfermant un corps dénué de foree coercitive,
que nous désignerons par 'indice (2), et des aimants permanents ue nous
désignerons par l'indice (1).

En désignant par @, la fonction potentielle des aimants en un point de
ces aimants, par ©, la fonction potenticlle des aimants (1) en un point du
corps (2), par w, la fonction potentielle du corps (2) en un point de ce

(1) Dans une Note Sur l'aimantation des corps diamagnétiques( Comptes rendus drs
séances de I’ Académie des Sciences, t. CVI. p. =36; 12 mars 1888), javais indiqué par er-
reur que la proposition qui vient d’étre énoncée ne peut étre démontrée pour les corps dia-
magnétiques.

Il. — Fac. de T. L.o

/
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corps, le potentiel thermodynamique interne de ce corps peut s’écrire

F=E{U —TS)+ %f(._h, oW, —+ b o, + 2 ()_ﬁ>doi

d.r, ld)’t

a0, 00, a0,
+ N f(clog ()x; —+ b, a7 + 2, : )a’v2
J

/3 9 N d\@g ~ d@z
—+= 5f<c\92 dl’g +1‘r)2 0)/2 -+ <9 - )dVg

+fj(:m,)dv,+fj(anz)dp.2.

Cette expression est générale. Elle est exacte, en particulier, si la distri-
bution magnétique sur le corps (2) est une distribution d’équilibre.

Considérons une certaine distribution d’équilibre correspondant a une
certaine position du corps diamagnétique et des aimants; puis, supposons
que, le corps étant placé dans la méme position, on donne a toutes les par-
ticules de ce corps la méme aimantation, sauf a la particule dz, dy, dz,= dv,
que l'on supposcra non aimantée. ¥ aura alors une nouvelle valeur 7 et
I'on aura

Jd (U, + W) - 1‘1’2()(.02-1— ©,) + ead(t)-z“‘ W,)
0x, dy» - 035

F—F=—0h lehz ] do, — F(O,) do,,

les quantités qui figurent au second membre ayant toutes la valeur qu’elles

ont dans I'¢tat d’équilibre considéré. Or, dans cet état d’équilibre, on a
a0 (Vs 0,)

oy — — (M, )y~ 2~ ™2/
lo_ ]LFz( k__) . 5

2

“3»2:—/11«‘2(:)112)‘)(”2_;).‘“’)3_),

32:—/1F2<3112)0(_”3__+_‘92_’.

~2

On en déduit

:bﬁd(r)i‘*— W) 4w, J(Vy—+W,) +~z, J(V+ ,)
d-l'g - ())'-3 - ():.2

I D2
- — :l)':—‘l'!v%—'—sf :__._‘_2__..
(b3 ° ) RE, (D)

T LFL(OR,) -

On a donc
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Mais on sait que I'on a

F, (1L,) = ——t
Fa (IM,)
AN,
et
Fy(0)=o.
On a donc

L I I o -
55— —— dI | dy,
’ 4 [F2(3R‘2) fo F (o) L] "

ou bien, en désignant par p. une valeur comprise entre o et JIL,,

§—F =

2 1 _ 1 ‘ ]
tes zFa(u)]d“"ﬁ"w-

Considérons maintenant des corps diamagnétiques seulement, pour les-
quelsla fonction I est constamment négative, et supposons que la fonction F
soit assujettie 4 I'une des conditions suivantes :

1° Ou bien la fonction magnétisante est indépendante de l'intensité
d’aimantation;

2° Ou bien sa valeur absolue décroit lorsque l'intensité d’aimantation
croit;

3° Ou bien sa valeur absolue croit avec I'intensité d’aimantation, mais
assez faiblement pour qu'une de ses valeurs ne soit jamais double d'une
autre de ses valeurs.

Ces restrictions sont certainement vérifiées par tous les corps diamagné-
tiques connus dans les limites oti 'on a pu les étudier jusqu’ici.

Moyennant ces restrictions,

1 1

F,(OG,) 2k, (p)

est certainement négatif.

On voit, d’aprées cela, que, si, pour un quelconque des corps diamagné-
tiques vérifiant les restrictions précédentes, on considére une distribution
magnétique d’équilibre correspondant a un minimum du potentiel thermo-
dynamique, on peut toujours trouver une distribution pour laquelle le po-
tentiel thermodynamique a une valeur moindre que dans 1'état d’¢quilibre
considéré.

Deslors, ¢'il existe sur le corps diamagnétique un état d’équilibre magné-
tique, c’est-a-dire un minimum du potentiel thermodynamique, ou bien le
potentiel thermodynamique présentera une infinité d’autres minima, ou
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bien il existera un nombre fini ou infini de séries illimitées et continues de
distributions magnétiques, telles que le long de chacune d’elles le potentiel
thermodynamique décroisse sans cesse.

Une série semblable a celle que nous venons de considérer représenterait
une transformation possible du corps diamagnétique. Si donc une circon-
stance quelconque amenait la distribution sur ce corps a se confondre avec
I'un des termes de cette série, il pourrait se faire qu’a partir de ce moment,
bien (ue le corps demeurat invariable de position en présence d’aimants
invariables, son aimantation se mit a varier indéfiniment sans jamais par-
venir &4 un ¢tat permanent.

Comme nous avons vu directement que, pour un corps diamagnétique
dont le coefficient d’aimantation est constant, il ne peut exister plusicurs
¢tats d’¢quilibre magnétique, la démonstration que nous avons cxposée
conduit & penser quun semblable corps présenterait le singulier phéno-
mene que nous venons de décrire. Pour un corps diamagnétique dont le
coefficient d’aimantation est variable, il pourrait présenter soit le phéno-
mene que nous venons de décrire, soit plusicurs états d’équilibre, soit & la
fois I'unc et l'autre particularité.

Ces conséquences quelque peu paradoxales paraissent avoir déja recu un
commencement de vérification expérimentale. Il en résulterait en effet
(qu'un corps diamagnétique, placé dans une position déterminée dans un
champ magnétique déterminé, pourrait présenter un moment magné-
tique variable avec la série de transformations qui a servi a I'amener dans
ce champ. C'est ce que semblent montrer de récentes expériences de M. P.
Joubin ().

« Jlavais essayé, il v a quelque temps, dit M. P. Joubin, d'utiliser I'ai-
mantation des corps diamagnétiques pour mesurer l'intensit¢ d'un champ
magncétique, ce qui donnerait une méthode trés rapide; mais, dés les pre-
miers pas, une difficulté singuli¢re s’était présentée, qui m’avait empéché
de continuer. »

Cette difficulté résultait de 'observation suivante.

Un petit barrcau de bismuth, muni d'un léger miroir, était suspendu
par un bifilaire entre les deux poles d'un électro-aimant. Sous l'influence

(1) P.JouBIN. Swur la mesure des champs magnctiques par les corps diamagnétiques
«Comptes rendus des <cances de UAcadémie des Sciences, t. CVI, p. 735; 12 mars 1888).
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des forces magnétiques et du couple de la suspension, il prenait unc nou-
velle position d’équilibre, trés pew différente de la premiére, d’ou 'on
comptait déduire la valeur du champ. Mais il fut immédiatement évident
que, pour le but proposé, la méthode ne valait rien.

En effet, pour un méme courant, c’est-a-dire pour un méme champ, la
position du barreau dépendait de la suite des modifications magnéticues
qu’on lui avait fait subir. Si I'on trace une courbe en prenant comme ab-
scisse l'intensité du courant et comme ordonnées les déviations, le point
figuratif se déplace sur une ligne droite quand on fait croitre les intensités
de o a 4o ampéres; mais si, & partir de ce moment, on diminue graduelle-
ment le courant, le point se déplace sur une autre droite trés inclinée par
rapport a la précédente, de telle sorte que, lorsqu’on revient a 15 ampéres,
la déviation est presque double de celle qui correspondait primitivement
au méme courant.

Si I'on ouvre ensuite le circuit, et si 'on recommence I'expérience, on
retrouve la série des déviations représentées par la premiére droite, ce qui
exclut I'idée-de chercher I'explication du phénomeéne observé dans une
aimantation permanente du barreau de bismuth (').

Le méme fait s’est produit avec un simple miroir de verre rectangulaire,
qui s’aimante comme le bismuth, mais plus faiblement. L’augmentation du
moment magnétique pour un méme courant atteignait encore, dans ce cas,
le quinziéme de sa valeur, changement bien considérable pour pouvoir étre
attribué a une variation dans la grandeur du champ.

M. P. Joubin, qui avait fait ces expéricnces sans connaitre la théorie cue
nous venons d’exposer, pense qu’elles peuvent servir & confirmer les consé-
quences paradoxales de cette théorie.

Cette question est assurément encore fort obscure, tant au point de vue
théorique qu’au point de vue expérimental. M. Joubin doit reprendre ses

recherches sur ce sujet. Les résultats auxquels il parviendra contribueront
certainement a ¢claireir quelque peu ce probléme.

(1) Ce dernier détail ne se trouve point dans la Note publiée par M. P. Joubin. Ji le
tiens de M. P. Joubin lui-méme.
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CHAPITRE 1V.

EQUILIBRE ET MOUVEMENT D’UNE MASSE MAGNETIQUE EN PRESENCE
D’AIMANTS.

§ I. — Equations d’équilibre d’une masse magnétique
en présence d’aimants.

1. Nous avons examin¢ les lois qui président a la distribution stable du
magnétisme sur une masse magnétique ou diamagnétique mise en présence
d’aimants permanents et maintenue invariable de forme, de position et
d’¢tat physique et chimique. Une nouvelle question s'impose maintenant :
une masse magnétique invariable de forme, de position et d’état physique
¢tant placée en présence d’aimants permanents, dans quelles circonstances
sera-t-clle en équilibre ? Cet équilibre sera-t-il stable ? Lorsque les condi-
tions d’¢quilibre ne sont pas remplies, comment se déplacera-t-elle?

Nous supposerons, pour trouver les conditions d’équilibre d’une sem-
blable masse, qu'clle soit soumise a des actions extérieures quelconques, ct
nous désignerons par X, Y, Z les composantes de la force extéricure qui a
son point d’application en z, y, 5.

Les conditions d’¢quilibre seront aisées a trouver. Pour exprimer qu'un
état du systéme est un état d’équilibre, nous ferons subir a ce systéme une
modification virtuelle quelconque, et, désignant par ¢4 la variation subie par
le potenticl thermodynamique interne et par ¢ le travail des forces exté-
rieures, nous ¢crirons, conformément aux principes posés dans le Cha-
pitre I, '

(1) 6F = o¢.

Les parameétres indépendants dont la variation constitue la modification
virtuelle que nous avons & considérer sont les composantes ¢z, Sy, ¢s de
la translation imprimée & la masse magnétique; les composantes S\, S, v
de la rotation imposée & la méme masse; enfin les variations 6-b, S, ¢@
que subissent en chaque point les composantes de 'aimantation.

D’apres I'égalité (19) du Chapitre I, nous avons

(2) .f:E([:-—-TS)+:\”—j—f§(;)IL,o:,|3,...)dr;
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d’ou, puisque E(U — TS) demeure invariable dans la modification consi-
dérée,

(3) 65:—.6:)‘—!—[65(3&,9:,@,...)dv.

Drapres I'égalité (14) du Chapitre I, nous avons

R 90 LIV v
5—-;/‘(0\95; } b —a——}—vd:)(lv

I'intégration s’étendant a tout le systéme.

Cette égalité peut se mettre sous une forme plus explicite. Désignons les
aimants permanents par l'indice (1) et les masses dénuées de force coer-
citive par l'indice (2); par @, la fonction potentielle des masses distribuées
sur les aimants permanents en un point (x,, y,, z,) de ces aimants; parw,
la fonction potentielle des masses distribuées sur les corps dénués de force
coercitive en un point (x,, ¥,, 5,) de ces corps; par ©, la fonction poten-
tielle des masses distribuées sur les aimants permanents en un point
(24, ys, 35 ) des corps dénués de force coercitive. Nous pourrons alors éerire

s (O 00w,
gy__ 2f<e.{91 (),];‘l +U"l 0]1 +v 0 >d|

JV, 00, (OB
Moy = b, =t @,, 1
+hf<\s. oz, z()y2+ dﬂ)fu

h oW, | 0w, 0,
+Ef<zlaz 5‘1,_2‘ —+ Ub, ())/2 -+ < 03, dV:Z‘

©

W

Cela posé, il est aisé de voir que I’égalité (3) deviendra

. 0* 0, 220 220,
’ T — !
&) oF = /z&cf<{g 57 T "oz 0 + e 07 0‘>dv
U‘l 0V, | 0, ,
—i-hoyf( +1)———-0y +v__dy()s> ds
N ouz 00y, 00,
+h o~f<cﬂs 3505+ b 9= dy +2 5% ) ds
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L ()t)i' ()Oa —~ d()g
+1101f[ (:{:d)d +\ad—)+v(m—’—:)l‘
0, 00, ~ 00,
_<1,0 5 +1)dw0y+v0x0;>‘y]dv
+,Lf[g(w2+ W2) 54 4 (Ve W) o I(Vs = W) 63] do
dx ay Jds
TN, 2, 3,...)
+f NG ()Jlb (u{‘} 6@19 —+ ’U] 8[“0 -+ vav) dV,

égalit¢ dans laquelle toutes les intégrations se rapportent au corps dénué

de force coercitive.
Le travail des forces extérieures a pour valeur

08 =0z EX + 0oy XY + 03 2Z
(Yzs—Zy)— op2(Zx —Xz)—ovE(Xy —Yaz).

(3)
+ 02 3

Si I'on reporte ces expressions dans I’égalité (1) et si 'on écrit que cette
egahtc doit avoir lieu quels que soient dz, dy, 8z; &A, S, dv; S, Sw,
22, on trouve, en premier lieu, les équations (2) du Chapltre I, qui déter-
minent la distribution magnétique sur les conducteurs devenus immobiles,
et, en second lieu, les six équations suivantes :

//( dU '(;);3;4— g; )dv:ZX,
f(lo 020, .;.ul 0;;?—% g»() )d)__EY
f( (())rl(;. b :)))34 +2 d(;f) > dy = 37,
I e
/zf[ <A.) 002)2 + b (;)yt) (;)jf;x>;
<1’ j’(;g + ;“(;‘ o >x] dv = 3(Xz — Lz),
/If [ (\ (';);_3; A ()t;) T dy) *
(20 (_)031 2 20, >),] do=3(Yo — Xy).
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/

Cesderniéres équations pourraient d’ailleurs s’établir directement en par-
tant des résultats expérimentaux sur lesquels, au Chapitre I, nous avons
fondé la détermination du potentiel thermodynamique d'un systéme qui
renferme des aimants.

§ II. — L’état d’équilibre d’une masse magnétique
en présence d’aimants permanents est-il un état d’équilibre stable?

2. Arrivons maintenant a la question principale que nous voulons exa-
miner dans ce Chapitre; une masse magnétique étant mise en présence
d’aimants permanents, sa position d’équilibre est fixée par les équations (6):
cette position d’équilibre est-elle une position d’équilibre stable?

Pour discuter cette question, nous supposerons que les forces extérieures
admettent un potentiel W. Dans ce cas, le systéme admettra un potenticl
thermodynamique total ®, qui sera la somme du potentiel thermodyna-
mique interne § et du potentiel des forces extérieures W

D=5+ W.

Si, pour toutes les modifications virtuelles qui laissent invariables la
forme du corps dénué de force coercitive et son état physique ou chimique,
® subit une variation positive, le systéme est en état d’équilibre stable; la
variation premiére de @ étant identiquement nulle, puisque nous supposons
réalisées les conditions indiquées au paragraphe précédent, nous sommes
amenés a chercher si la variation seconde de ®

320 =55 + W
est positive.
Nous nous contenterons d’examiner le cas ou les forces extéricures sc
réduisent :

1° A une pression normale et uniforme sur la surface du corps magné-
tique;

2° A une force constante en grandeur et en direction appliquée a chacun
des éléments du corps magnétique.

C’est sensiblement le cas présenté par un corps magnétique placé dans
I'air et soumis a l'action de la pesanteur.

De plus, nous commencerons par rechercher si 22® est positif non pas

pour toute modification virtuelle, mais seulement pour toute translation
Il — Fac. de T. L.8
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rirtuelle. Dans ces conditions, il n’est pas difficile de voir que
a?W —o, _

et que la question se raméne & chercher le signe de &25.
Cette quantité a alors une expression trés simple; elle se présente comme
une forme homogéne et du second ordre de 8z, 8y, 8z et cette forme est la

sulvante :

NG ~ P?U, G0, 9%V,
- 2 —_— 2 3 |} =2
(7) ocr._/z[ oxr f(& o -+ b dydxz_*—v()zd-i dv

o 0P,
= 03 d)’2> s

030, 9%V, 920,
0s? & z & =+ 2 dy
< dz gz T dy 03> ER

+
<
— —
—
QGB
Sl
{%N.
n
F
S
n

010, 20, o,
5 = (1N =2 dy
(“oxoyd;““‘ 0y oz 0;20]> :

3¢ 3 3 e
f(‘” 0, rv, . 00, >dv

]) <~
oz20z T " gz dy 03 T 950

PV, PV, 0, \ L C
Hade 8yf<°{° dzroy T 0roe TS gz ay dz>d‘”J‘

Avant d’étudier le signe de cette quantité, demandons-nous si elle peut
étre identiquement nulle.

I’égalité & o de tous les coefficients de cette forme a un sens trés simple.

Imaginons la masse magnétique que nous considérons placée dans sa
position d’équilibre; clle y prend une certaine aimantation; les aimants
permanents en présence desquels elle se trouve exercent sur elle certaines
actions réductibles a une force et & un couple; soient &, ¥, % les compo-
santes de la force et R cette force. Les choses étant dans cet état, imagi-
nons que nous fixions invariablement I'aimantation de la masse magnéticue
et que nous imprimions & cette masse une translation ayant pour compo-
sante ox, 8y, 23, A, &, & subiront certaines variations
or A

x+ "oy + ¢ o3,

o
e
|
gy
Qs

”

! T N
L =1 0y =1 05,

[~
3
f
S
(o)

~ ~

Joxr + Loy + o=,

Q)
G¢
I
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Or il est aisé de voir que I'on a

=
I
A

)
I
My
"

et que I'égalité (7) peut s’écrire

—*F=E0x2+1'0y + {832+ (' +n")0y 65 + (L +&") 83 0 + (&' + m) dx o).

Si donc la quantité ¢ est identiquement nulle, c’est que la force R ne
varie ni en grandeur ni en direction dans cette translation.

Il peutarriver que ce cas se réalise; il serait réalisé, par exemple, si le
champ engendré par les aimants permanents et dans lequel se trouve la

masse magnétique était un champ magnétique uniforme. Toutefois le cas
dont il s’agit est certainement trés particulier.

Excluons maintenant ce cas de nos recherches, et supposons que la

quantité 8% § déterminée par 1'égalité (7) ne soit pas identiquement nulle.
Peut-il arriver qu'elle demeure toujours positive, quels que soient S,
3y, 637 Il serait évidemment nécessaire, pour qu'il en fat ainsi, que les

trois coefficients de 8x2, 8y?, 822 fussent tous les trois positifs. Or la somme
de ces trois coefficients peut s’écrire

hf@u 5‘1 A0, +B L Av, 4 el At)2> dv,
@ dy K

I'intégration s’étendant au volume entier de la masse dénuée de force coer-
citive.

Mais, en chaque point de cette masse, on a
AV, —o,

puisque ©, est, en un point de cette masse, la fonction potentielle d'une
aimantation qui lui est extérieure. On a donc aussi en tous ces points

0 . 0
-(}; A.Uz_. o, 5:)7 A.Uz— o,

ol

AV, = o.

La somme des coefficients de ¢x?, ¢y?, ¢35 étant identiquement nulle

dans V'expression de ¢27, il existe cerlainement des translations virtuelles
pour lesquelles 62§ est négatif.
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Des lors nous pouvons énoncer la proposition suivante :

Si Uon excepte un certain cas particulier qui comprend, comme cas
encore plus particulier, celui ot les aimants permanents engendreraient
un champ uniforme, un corps magnétique ou diamagnétique, soumis a
Paction d’atmants permanents, d’une pression extérieure normale et
uniforme et de forces extérieures constantes en grandeur et en direc-
tion appliquées a chacun de ses éléments, ne peut prendre aucune posi-
tion d’équilibre qui ne soit instable.

3. Pour parvenir a la proposition précédente, nous avons regardé les
rotations et translations imposées au corps solide d’une part et les varia-
tions imposées a I'aimantation d’autre part comme des paramétres que 1’on
pouvait faire varier d’'une maniére indépendante dans les modifications
virtuelles et nous avons fait varier seulement les premiers. On peut se
placer & un autre point de vue ; on peut admettre que sur la masse magné-
tique que I'on considére la distribution magnétique est a chaque instant la
distribution d’équilibre pour la position que la masse occupe a cet instant.
Les équations (2) du Chapitre I deviennent alors, pour les modifications
virtuelles, des équations de liaison.

Ce point de vue, qui revient a regarder la vitesse avec laquelle s’¢tablit
I'équilibre magnétique sur un corps qui se déplace comme infinie par rap-
port a la vitesse de son déplacement, est évidemment plus restreint que le
premier. Toutes les modifications virtuelles possibles dans les nouvelles con-
ditions le sont dans les anciennes, mais la réciproque n’est pas vraie. Il
pourrait donc se faire qu'un état d’équilibre instable au premier point de
vue ne le fut plus au second ().

Nous allons donc reprendre ’étude de la stabilité de I'équilibre en sup-
posant que I'aimantation de la masse magnétique vérifie sans cesse les éga-

lités
\ oy — A Fy (IR, o, B, . ..) 0(;)20:@2»,
Ik (0, +W,)
(8) cab,=— W F, (M, e, 3, L) ’
l | W
S, =—hF,(N, 2,5, ...) Mg;}@,

(1) Cette distinction a déja été indiquée, pour un corps électrisé trés petit, par Maxwell,
sous le nom de théoréme d’Farnshaw (Traité d’Electricité et de Magnétisme, traduit
par Seligmann-Lui, t. I, p. 1821,
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Pour que ¢27 soit positif pour tous les déplacements virtuels de la masse
magnétique, il est nécessaire tout d’abord qu'il soit positif pour toutes les
translations. Supposons donc que 'on ait

0k =o, oy = o, oy =

Le corps subissant la translation dont les composantes sont ¢z, Sy, ¢z

pour-que les équations (8) demeurent vérifiées, A, W,

¢ doivent varier de
quantités que nous désignerons par &'«, ¢'w, ¢’e. On a alors, en vertu de
Pégalité (4),

P 0?0, ' L 00, ~ 020, i
(9) 64_11% 8J’)f<o‘sd 4+ 3y s +vd—zdx>d‘
d 0’0, . 0%, ,

~ d‘-U2 220 adi(‘)z‘ )
—a—&f(@% dx():,_*—“ad d~ = )dc

f[a(oz+x®2) oy Q0 ®a) IV W) ﬂ"“i
oz dy

ds

+f5% °“2(3‘Ld’;rt@"“)(cw'camwba'uwe 'e) de.

Les équations de 1'équilibre magnétique doivent étre vérifiées dans la

position initiale du systéme. On sait que ces équations (8) signifient simple-
ment que I'on a

(0, + ) O(V+®,5) o, . 0(Oy+ ®y) AJ
(10) hf[T S + Jy b+ 55 o

1SN, 2 By . )
+f:)—n:——d_:)lT._——(°%6°\9+"01 +v6v)d$-——0

quels que soient S, Sw, &e.

Ces équations (8) doivent étre encore vérifiées aprés que la masse ma-

gnétique a subi la translation Sz, ¢y, &z et que &, b, € sont devenus

b+ &, W+ ', & + 0’25 en d'autres termes, cette modification doit
faire éprouver au premier membre de I'égalité (10) une variation égale & o
quels que soient 8.4, Sw, &2

Jv
Cherchons 'expression de cette variation.
La quantité

oW, . oW, -
hf( (;Q;‘ o;\g+00% oY+ ®‘68>dp
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varie simplement de

Pour trouver la variation de

dk@g ~ 0@‘1 1 dk@? =) y
hf(o—x 0L + 3y b + - 3v>d‘,

nous devons nous souvenir de I'expression ©,

< d;‘ d% d%)
s =) )
Wy = Ao p) + 3y + & 9= dy,

I'intégration s’étendant au volume entier du corps magnétique. Il sera alors
¢vident que la variation de la quantité précédente a pour valeur

] o1 E P
he 50\9 5’019/ d s 6\' W — 57 ore’ | do!

P J- !
—|—ou', — < 8’0%’4-—5}78’%’4—0 yre ) de'

) /<o— 21 oL ]
52 —— 7 Ao’ _ - N,/ ror 4 s
+Ovdzb 0,8 ‘lo—i-dyoﬂ + o5 o'e’ ) dv' | d,

toutes les intégrations s’étendant au volume entier du corps magnétique.
Enfin, la quantité

\I'-'

1 ()l‘(é)ltdﬁ,---) AV
f{m e (o 0 - W SV + S 82) ds

subit, on le voit aisément, la variation

1 0F(I, o, 3, ...

an 09I ) (605 + Sub 8 - 2 'S)dy

1 4 1 05 (M, a, 3, ...)
-+ o o o T T e < o L e
f;m IR [DIL PhI ]({”‘H’ + 1 o + S0€)
N (e,lo o' -+ wh o' b —+ < = \"./) dy.
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Ainsi donc, en égalant a o la variation du premier membre de I'égalité
(10), on trouve

3 j <d 2 20, 20?0, 5o
(11) h( ox 0z 0l 0yd oub - dzd.L‘d dy
N 920 POy (00,
9 | \ozay O+ gy 0% Gzay 0°)
S 2 ‘ 0?0, 0V,
oz 6u‘s dy J= b - 0=z o ) dv

Ty
9 95 25 25 ‘
—+ o2 E —5—7 6'&:"\9,—\— 07 6'1‘10'—!— F o'e Jde dt’s

1 0T (M, e, B, .. sede
o ( dmﬁ (8&:’ 0l + oub o' Wb + 62 0'S) do
L1 0 [ 05O, a8, ...
; fﬁidTlL ST J9TC ](&960}\9—\—1!‘ b + £02)

(A 0o+ W W 4+ 2d'E)dv = o,

Dans cette égalité, toutes les intégrations sont étendues au corps magné-
tique tout entier; les quantités S, 8w, 8 sont arbitraires, tandis que
les quantités &' &, &', &' @ sont des fonctions déterminées de 8x, Sy, 8z.

Aprés avoir donné au corps magnétique une translation 8z, Sy, ¢z qui
faisait varier ., w, € de &', &', &' et § de la quantité &¢ donnée par
Pégalité (9), imprimons une seconde fois & ce corps la translation ¢,
Sy, 823 &' &, &'ab, '€ vont varier de 82, 824, 8’22 et 8F va varier de 827

Proposons-nous de calculer 82§, d’apreés expression (9) de ¢7.

N 0202 , 070, - 9* 0, ,
]l[ 0.1/\/'(019 oz =+ b 0y0£+v 0= l)d»‘)d‘
—:—oyf( (()) el 00:)2 + & ) >dw
d
0

03 dy

20 2 (‘).,\
-+ W, g LRSI J ')dv]
"

La quantité

J= Js?
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va subir la variation

.y 030, 030, ~ 00, .
"[ wf <°{° PR vl Fr ey R

2 PV, PO | o PV )d,
—+—63-f< 9z dy* —+ U 0 +"ds0y‘-’ ‘
e 0309 \ 0302 o
o f< gros T W ayas T >d
00, U, 010,
’\3 S, = o (=] d’
+ 2954 f("oxa)faz”r" oz T 05 dy) ‘

0>V, , 0%0, 0> 0y
0z 0. o = o e )d
+2°"°xf<hdx20z+u dwdyd;+ :H?Jf) ’

PO, L, 00, o U, ) do
Y oztoy T 0% 0x T gz ay o5

. 20, 20, . om
+o,vf<dx ook o O - 5 )dv

L 9* 0, ’ 002 73 0 1o 5
+°)f<oxay”” ot 3 - 5 ya >d‘

i dog, do d‘(), ,,.,)d]
+5‘f<a P Edaal vy i ge)dv

La quantité

/zf("vﬁ &' Ao+ "22 O + %072 a'e> dy

subit une variation

/z[ 6xf 9*Vs 5 4y 4 ";02 o g ©s a">> do

d.r? dy d
R 020, LRSI 002 o\ o
+oyf<0x0)/5¢“o—l— 0]281&—;— 2 )d‘
()'t)g N} 020

N Vl) e
+°“f<a_’*xo;°°‘°+dyoz“' 2 o >a’v

- ()L)z 2 002 12 440 2V, N2 ,]
}—f(()xaoas—(*ﬁa \.‘o—f—d—sozv)d‘ .

La quantité

d\i,), 8 0@2 hYANT) ()@2 ko)
/1f<0£ A+ 0)’000—1— e Ov)dV



DE L’AIMANTATION PAR INFLUENCE.

subit une variation

I I 1
]l / 6/ l‘) d 0 ; N ! d 7‘ A |II d ; N ’
5 b 5= 70¢%+6)7010+E0:; d¢

-+ (; Y

o [ (27 25 95 h
e o o ,a'aa;+5y_,a’uz,'+bf',a'e' do' | dv

T h f ("0@" 8o 4 "@2 o+ O ac> .

Enfin la quantité

[ 05y (M, 1, B, ...

St g (Ao 6" + Wb &' Wb + S 3'S) d
subit la variation

I

g9 JK’, oLy 9, ' N} N /‘\
[ (mﬁ D[y (3w (372) ] de

-

dT"(DK %, 6 / N2 /.
+f:m 9 D ona b o - 20me]d

J F, (O,
*fa';t PRI [S:L . dJTLB ] (b §'eb - Wb 870 + S E)

Nous avons obtenu ainsi les variations subies par les divers terme

de ¢%. En les réunissant dans un ordre convenablement choisi, nous arrivons
d la formule suivante :

(12) 05 = lz[ a(tz‘[\(c‘o (3;;27 + b 0(‘);3);1 +c 0(13;:2> de (1)
P AC R e D =)
+ 0z f(&; (;)33;—;—\!‘» gabfzﬁ—?;ogi:?)d( (3)
B T R

1l — Fac. de T. L.g
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—+ 20z 0x f(ab

3?0,
0x?0s

—i—z&t&yf( i 'O; -+ ub

d(z),—i—@ ) —

i
T oy 0z

DUHEM.

0° 0, ~ 0PV, .
+2 55 dx)d‘

0* 0, _’_',3
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L.Gy
Cette ¢galité, passablement compliquée en apparence, va pouvoir se
mettre sous une forme qui nous donnera une interprétation immédiate de
la quantité 825.

Conservons leur forme aux termes des lignes (1), (2), (3), (4), (3) et (6).

il'on observe que &, ¥, © doivent vérifier les équations (8) et si, dans
ces ¢quations, on remplace 5(on, «, B, ...) par sa valeur

AN
0F (I, o, By .Y
ERIe

on verra sans peine que les termes qui occupent les lignes (7), (8) et (9)
s'évanouissent.

L’¢galité (11) doit avoir lieu quels que solent 8-, S,
lieu, en particulier, si 'on y fait

22. Elle auradonc
Sh=0'd, S =W, 82
Son premier membre devient alors identique a I’ensemble des termes qui

dans I'égalité (12) occupent les lignes (10), (11), (12), (13), (14), (15),
(16) et (17). L’ensemble de tous ces termes est donc égal 4 o

Quant aux termes qui occupent les lignes (18), (19) et (20), ils sont iden-
tiques aux termes qui occupent les lignes (10), (11), (12). Ce que nous
venons de dire permet donc de remplacer les termes des lignes (18), (19) et

(20) par l'ensemble changé de signe des termes des lignes (13), (‘14),
(15), (16) et (17). Nous avons alors

5 = h[ 6ac"f<da %;%%3 4+ (;i:_ S);Q + ()‘23;;{32><'[\)
+ By f( d" A 20 e ;:};)d
-+ 65‘2‘[(@{9 (;zl(;:z TN d(;/z Lz 0;2:2>a’(,-
+ 28y 8‘_[( . 0'01:20‘ Y Of;;’ + 2 %) A
—+ 20z 6xf< d(zlz; b da?adf:i(}: +—Z %—3—;>dr

N P, Pvy |~ 1o, i
—+ 20x Byf(:b 3y 0z -+ oL T ° Jx dv o= ds

)
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- / 1 1 1
—n / PR / i—'_'a'.y-*ﬁa'uz'-_d;a'e' dv' (7)
o T da ax’ = dy' e /
& 1 1 1
3 L - p;
S d 0 LAY, ’ 0 BN N4 LAY / g
+O“”E' wo:{s—{—wolb—{—()t,o\v dv (8)
1 1 1
L0 VL UL SR B
—|—o¢(? WO:L.+9701|9+-()—~,—00 ds dy (9)
3, 3
U 0T, 2, B, 0) o oa v e s sarane s (AT~ s
I ( ()?u ) [(0"-0)2+(8"W)*+ (3" 2)* ] dv (10)
F (O 3, ... , N
_fillt e [T:C 93¢ "‘d.)”i:f’ ) (&L b 4S8 de. (11)

Nous avons dit que cette forme simplifiée de 625 se prétait & une inter-
prétation trés simple.

Imaginons en premier licu (ue, le corps étant placé dans sa position
d’¢quilibre et y ayant pris I'aimantation d’équilibre, on rende son magné-
tisme rigide, puis qu’on lui imprime deux fois de suite une translation quel-
conque cx, ¢y, 253 F aura une certaine variation seconde que nous dési--
gnerons par ¢* F.

Imaginons, cn second licu, que, le méme corps étant placé dans la méme
position d’équilibre et y ayant de méme pris 'aimantation d’é¢quilibre, on
maintiecnne cc corps immobile et que I'on fasse subir a I'aimantation,
en chaque point, deux fois de suite des variations précisément égales a ¢'.\,
¢'wb, ¢'€; & subira une variation seconde que nous désignerons par & 7.

Or il est ais¢ de voir que 'ensemble des termes qui, dans I'égalité (13),
occupent les lignes (1), (2), (3), (4), (5) et (6) forment I'expression de
c? 7, tandis que Pensemble des termes qui occupent les lignes (7), (8), (9),

02

1
(10) et (11) forment 'expression changée de signe de 33 §. On a, par con-
séquent,

27:6 ,,T;.

= ~
S —0

Qs

(1%)

10
Y

Les conséquences de cette égalité si simple sont maintenant faciles a tirer.
Supposons que le corps, ¢tant maintenu dans la position d’équilibre con-
sidéré, se recouvre d’une distribution magnétique qui demeure stable pour
cette position du corps. Dans ces conditions, si 'on fait subir deux fois de
suite & l'aimantation en chaque point une variation quelconque S.v, S,
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subira une variation seconde positive. Il en sera ainsi en particulier

our la variation seconde 25 correspondant au cas ou 'on fait ¢.b = 2.4,
Ww=72,wetde =22 '

..-,5«‘
T

oy o2

.

La quantité — 8} sera donc une quantité toujours négative. D autre

part, nous savons que la quantité %5 est, ou bien identiquement nulle, ou
bien positive pour certaines translations et négative pour d’autres. Donc il
existe assurément des translations pour lesquelles la quantité ¢35 est néga-
tive, et nous pouvons ¢noncer le théoréme suivant :

S’tl existe une position d’équilibre pour une masse magnélique ou
diamagnétique quelconque, soumise a Uaction d’aimants permanents,
d’une pression normale et uniforme aux dicers points de sa surface et
d’une force constante en grandeur et en direction agissant surses dicers
éléments, et st de plus U’aimantation de cette masse demeure stable lors-

qgu’on maintient celle masse dans cetle position, U'équilibre de cette masse
est un équilibre instable.

Ainsi, si l'on regarde l'aimantation d’un corps comme lice a chaque
instant a sa position par les équations de 'aimantation par influence, il
n'existe pas de moyen de réaliser, par des aimants, I'équilibre d'un corps

magnétique ou diamagnétique soumis a 'action de la pesanteur et i la pres-
sion atmosphérique.

§ III. — Sur une loi de Faraday.

4. 11 n’est peut-étre pas inutile d'insister sur ce que le résultat précé-
dent (') présente de paradoxal. Il pourrait sembler au premier abord que
la deuxiéme maniére d’envisager la stabilit¢ de I'équilibre d'un corps place
dans un champ magnétique, en astreignant tout déplacement virtuel du
corps & produire une perturbation au sein d'une distribution magnétique
stable, doit augmenter les chances de stabilité du systéme. On voit au con-
traire que cette circonstance diminue la stabilité du systeme, puisqu’elle
diminue la variation seconde du potentiel thermodynamique précisément
de la quantité qui constituerait cette variation seconde si I'on dérangeait
I'aimantation du corps sans déranger sa position.

(1) Ce résultat avait déja été obtenu par Maxwell pour un corps ¢lectrisé infiniment petit
(Traité d’Electricité et de Magnétisme, trad. par Seligmann-Lui, t. 1, p. 131).
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Cette remarque fait comprendre combien il était nécessaire de traiter le
probléme précédent par des raisonnements entiérement rigoureux ; il suffit,
pour s’en convaincre, de comparer les conclusions précédentes a celles que
Sir W. Thomson a cru pouvoir énoncer sans démonstration :

« Dans le Mémoire que j’ai publi¢ dans le Cambridge and Dublin
Mathematical Journal, dit Sir W. Thomson ('), j’ai indiqué qu’une
petite sphére d’une substance ferromagnétique ou diamagnétique placée au
voisinage d’aimants et soustraite a I’action de toute force non magnétique
¢tait en équilibre lorsqu’elle se trouvait en un point ou la force résultante
(que je désignais par R) était maximum, ou minimum, ou avait une valeur
stationnaire; je disais de plus que la condition nécessaire et suffisante pour
qu'une petite sphére diamagnétique soit en équilibre stable est que la
force R soit minima en valeur absolue; enfin, j’ajoutais : « S’il existe un
» point extérieur aux aimants ot la force résultante ait une valeur maxima,
» ce point est une position d’équilibre stable pour une sphere infiniment
» petite de fer doux, et toute autre position est nécessairement instable. »

» Postérieurement a la publication de ce Mémoire, j’ai réussi a prouver
que la force résultante ne pouvait avoir aucun maximum absolu en un point
extérieur & 'aimant et que, par conséquent, il ne pouvait exister de posi-
tion d’équilibre stable pour une sphére ferromagnétique infiniment petite
parfaitement libre de toute liaison. J’ai trouvé tout récemment qu’il existait
des points ou la force résultante avait un minimum absolu différent de
zéro, et, par conséquent, qu’il existait pour une sphére diamagnétique des
positions d’équilibre stable non comprises dans le cas oula force s’évanouit,
cas noté dans le Mémoire en question. Ce cas offre 'exemple le plus simple
de ce fait extraordinaire présenté par un corps solide qui, repoussé par des
aimants, se trouve en équilibre stable. Par exemple, fixons deux barreaux
aimantés au voisinage I'un de I'autre, leurs péles de méme nom en regard;
il y aura évidemment entre ces deux pdles un point ot la force résultante
sera nulle; une petite sphére diamagnétique placée dans une position quel-
conque suffisamment voisine de ce point serait repoussée. Il apparait bien
aisément qu'une sphére infiniment petite d’une substance diamagnétique

(1) Sir W. TnousoN, Remarks on the forces experienced by inductively magnetized
Sferromagnetic or diamagnetic non-crystalline substances (Philosophical Magaszine,
1850. — Reprint of papers on electrostatics and magnetism, 17 édit., p. 508; 2° édit.,
p- 1.
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soumise a l'action de la pesanteur, sans aucun support ni soutien, serait en
équilibre stable un peu au-dessous de cette position, pourvu seulement que
les aimants soient assez puissants.

» Il est toutefois extrémement improbable qu’un essai pour réaliser cette
expérience soit couronné de succes; car, méme dans les cas les plus favo-
rables, on n’a jamais obtenu une répulsion diamagnétique d’un solide qui
approchéat en grandeur du poids du corps. Toutefois nous pouvons consi-
dérer comme obtenue la véritable solution théorique du célébre probléme
suggéré par le cercueil de Mahomet, et ce n’est pas la moins curieuse parmi
les conséquences des découvertes de Faraday .»

Il est aisé de voir ou se trouvent les points inexacts de la déduction de
Sir W. Thomson.

Il est facile d’abord de vérifier I'exactitude de cette proposition qu'il a
énoncée et dont il n’a point publié¢ de démonstration :

La valeur absolue de la force résultante R en un point d’un champ

magnétique ne peut présenter de maximum, mais elle peut étre mini-
mum.

Pour démontrer cette proposition, il suffit d’en prouver I'exactitude pour
le carré R? de la force résultante.

Soit © la fonction potentielle magnétique en un point du champ.

Nous avons
s QN (QONE (VN
= |(3) + (5 )+ (%))

De la nous déduisons

oR? . <()\‘) f1ERV] v 92V ACENIERY, >
—=ah — 4+ ’

ox ox 0z* dy 9y or ~ 9: 05 0r

OR? _ L (09 P9 90 Y Y ow>
ay " (5; dx dy * dy 0y Jds dsay)’
OR: (00 0N0 9O 9t v r)?\").
o5 T2 <0—1 ()zd;_{_(ﬁd)‘ds 03 J3?

Calculons la variation seconde de R2. Nous aurons

S*R*= Adz?+ Boy'+ Cos2+ 2D dyds +2Ed0zdr +~aF dray,



L.72 P. DUHEM.

2 ©\? 929 >2
> ' <dy()v> T<ds()r ]

03\1 ()v P*v av d*v)
d.z; dx? dy dx- 03 0:0x°

AN (d’\' 2 9*v >‘~’
|Grop) + (65) (735 ]
N AN ()\.) BV gV PV
-+ 2/2 ( )

égalité dans laquelle

A= 2/ <

~+2h?

f‘,. Qa
lv

B—= 22

dx dx dy? ()V 9y3 + 5 93 )’

ae [0 >2 920\t /U2
S AVERE (d)'fh) +<7)‘> ]
AN

BV ()\‘) (/AN av g3 O)
-+ 2 /2 5

0z dwd=* ' dy dyd= T 9z 9=

2 /2

20 920 ERVENEG LRV 220
.z:d_} dx 03 ()y():((—);/Tz +7;7>]

A m(()v 030 Iv 03¢ AN 03@)

0z dxdy 05 | Jdy dy*ds | 9z 952 dy

B B S LS S I,
= M0 dyor T ozox\0= T

g (00 OV 90 P 00 PO
T2\ 0z 92705 T dy dzdyds T 0= ;wx)’

e e <om PV PV (70 oY
= "\ \0z 95 9509y T azay o?*W)J

o /2 IV PV +Qﬁ) LRV +()\‘> 23V
T2 \0% 0z dy T dy 9y* ox 05 dwdydz)’

Peut-il se faire qu’en un point du champ la quantité $2R? soit négative
pour tous les déplacements virtuels possibles Sx, 8y, 852 Pour cela, il serait
nécessaire, en premier lieu, que I'on eiit

A <o, B<o, C<o

et, par conséquent,

] A+B+C<o.
Oron a

. RV 920\ 2 d2 0\ 2 J2V \2 J20 \? a2V 2
A = - fronad h2 —_ —+ | — —_— _ _—
ArBet=en [<o¢> +<dy2> 7= ) “(asoy) “(oras) “( )]

o0 dy
oV oy | gV AN av
o gpa (o) 5 2 (5)- 5= (%))
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Mais, en tout point du champ, on a

AV=o0
et, par conséquent,

Q
e
©

AV —o.

ASANE SN
A(ﬁ)—()—x-A\_)——O,
v 0
- — H —
A(w)‘avy“' —o,
9
Js

A( >:

La quantité A + B + C se réduit donc & une somme de carrés et ne peut
jamais étre négative. Il est donc bien démontré que la valeur absolue de
la force ne peut jamais, dans un champ magnétique, présenter de maximum.
Elle peut au contraire présenter des minima; Sir W. Thomson en a donné
un exemple dans le passage que nous citions tout a I'heure.

(~%
%)

5. La proposition énoncée par Sir W. Thomson sur la possibilité des
maxima ou des minima de la valeur absolue de la force en un point d'un
champ magnétique étant démontrée vraie, 'explication de la contradic-
tion entre les résultats auxquels il est parvenu relativement a la stabilité de
I'équilibre d’'une masse diamagnétique en présence d’aimants permanents
et ceux que nous avons obtenus doit étre cherchée dans I'examen de la loi
sur laquelle 1l fait reposer son analyse.

Cette loi, énoncée par Faraday, puis précisée et démontrée par Sir W,
Thomson, est la suivante :

Un corps magnétique trés pelit placé sans vitesse initiale dans un
champ magnétique se déplace dans un sens tel que la valeur absolue de
la force du champ soit plus grande au point ot il se rend qu’au point
ot il se trouvait; Uinverse a lieu pour un corps diamagnétique.

Si cette loi était exacte, la proposition de Sir W. Thomson sur la stabi-
lité de I'équilibre d’une masse diamagnétique en présence d’aimants per-
manents en résulterait nécessairement. Comme nous avons vu directement
que cette proposition ne pouvait étre exacte, la loi de IFaraday ne peut
I'étre non plus. Examinons donc en quel point péche la démonstration (ui
en est donnée.

Pour que le petit corps considéré puisse subir une translation sz, 2y, 23,
1. — Fac. de T. L.io
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durant laquelle les composantes de I'aimantation varient de S, Cwb, 22, il
faut que le potentiel thermodynamique diminue durant I'accomplissement
de cette modification.

Or la variation du potentiel thermodynamique a pour valeur

N N 020, g2 Vs 0202
Oj puent h Oxf<zfl-)o 2 =+ by d ().l'; + & ) d"g

dx? T2 9z, 0x,
N () [ W 02 Va2 o) 02'(‘)2 \
+Iloyf<c1)2 d 0)’ —+ ’)2—5)7)— + o 052 d‘)/2> d‘g

9>, 00, = 9705

+ hds f(m, 91205, -+ by 9y, 053 + &, =1 >0(2
—|—/ef 0 (0t 1) s~ (09 ©y) Sy - (o‘+@2)aez] de,
()‘v2 2 2 ¥ ()yz 2 2 2 052 2 2

F (I
+fam c’l.()ll 2) (4, Bty Wy Sby 4 S5 52,) .

Mais, I'équilibre magnétique étant établi sur le corps, on a

1 dF ()
M,  dI,

aJ
@192—1--/Ld—x—2 (Vs + ®;)=o,

1 dF(IN, )

m—————daltz Wy + A ——('Oz‘l“@o)—-o

1 dFO,) 4 —
m———————dane vz—l—/ld—;:—z('oz—%—@g)——o)
ce (fui peut encore s’écrire
Ve — A F(OT,) =2 ¢ ©®
Aoy = — 5 (9-1‘2 Vs + 2))
W, =— A F(I,) i (02 + W)
()y2 20

2,=— hF(I, ) (024—\%)-

Moyennant ces diverses égalités, I'égalité précédente devient
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e frons (2 () - (8) o
- o [eom g (52) + (57) + (52) ]«
e o (92 () (2o

oW, 9’0, 0, 0°0, oW, ()‘!m) .
_/zafo(:m?) e R R ot AR S e o L

N[99 0’0, oW, 00, d@ 0°0, )
—h a)’ fF(:)]L‘l)(o—x; dl’z ()_}’2 + dyg ())'I' ()do (),¢2 0_) 2> d‘

0®, 02t 0®, 020, IP, 920V
— ks f F(:)M)(——dx; 0@%‘;9 + —d): v BN (;22 o:L;) de,.

Le corps est jusqu'ici de forme quelconque. Supposons-le infiniment
petit. Soit R la force au point (x,, ¥, 5,) du champ ou il se trouve placé.

Nous aurons
[110) Jv\? dv\?
2—— - —
RE=a de> +<0y> - 05)]

et par conséquent I'égalité précédente deviendra

2h ;)_5;8 +()y 6‘},“}—()M

' oW, 90y | 0V, 0*0, 0®W, 020V,
_hfF(:)TLZ)[ 8x<0.7c2 ox? - 9y, 0y, 0x, + 03, 052()1’2)

()@2 0202 gggdz'oz 0@2 0202
+ 3y (dx2 drdys "y, a3 T 0m, o.,-goya)

0w, 0°0 oW, 020, oW, 9*v
) L S S A I L y
+os (dx2 0xs 03, + 0ys 0y> 03, - J3, 052 >] dr

5F —— F(9,) (()R” oR? IR? 6~> do,

Sir W. Thomson a admis que, grice a l'infinie petitesse du corps, on
avait dans tout 'espace

©y,=o,
et, par conséquent,
oWs _ 0w, _ oW, _
dxrs dvy, DENE

L’égalité précédente devenait alors simplement

F( I, /OR? JIR? JoR? |
oxr —+ 9, S

Y ()r’ + ()\"2 ‘1-—'_— NER Oud(*i.)

N
oF —
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Pour que la transformation soit possible, il faut que 'on ait

0F < o

F(91,) <‘)R b -+ ’3)—1;' 3y -+ % a:) >o.

ou

Pour les corps magnétiques, F(o1,) est positif et Pinégalité précédente
devient

OR? . IR oR?

- Jy + oz 83 > o.

Pour les corps dlamaonet1ques F'(o10,) est négatif, et I'inégalité préceé-

dente devient
JIR? JR? JR?
%-01?-'{—@ }’+'a—‘6~’<0
Ces deux inégalités sont bien I'expression algebrlque de laloide FFaraday
qui se trouverait ainsi démontrée.
Mais il est aisé¢ de voir que I'on ne peut poser en un point du corps ai-
manté trés petit
oY, o 0®, o 0,
dr, — 7’ dys ~ das

_— 0.

Ces inégalités ne sont exactes que pour les points extérieurs au corps et
situés & distance finie de ce corps.

Considérons en effet un point de la surface de notre petit corps. En ce
point, nous avons

oW, 0W, . - .
N, —+ N, = =47 [A; cos(N;, ) + b,y cos (N, YY)+ S;5c08(Ny, 5)]

ou bien

IQ, 9w, ()o,
[1+ 47h F(O,)] 0‘\' 0“\ +ATRF () 52 =o,

d@; ()lﬁ?D2 0@,
0 ()yo 0.v

voisinage du corps des quantités de l’ordre de IF(or, ) > et par consé-

sont en général au

condition qui ne peut étre ré

quent que si le terme supprimé par Sir W. Thomson est du meéme ordre de
grandeur que cclui qu'il a conservé
On voit, par conséquent, que la démonstration de laloi énoncée par Fa-
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raday est insuffisante, et ce que nous avons dit nous oblige a rejeter cette
loi.

6. Les calculs que nous venons de faire peuvent nous servir presque im-
médiatement a la discussion d'une méthode proposée par Jamin pour 1'étude
de la distribution du magnétisme sur un aimant permanent.

On sait que la partie expérimentale de cette ¢tude revient & déterminer

) . . .
la valeur de ()T(?aux divers points de la surface de cet aimant permanecnt.
Ne

Voici comment Jamin s’y prenait pour déterminer cette quantité.
Une petite masse de fer doux était placée au point de la surface de l'ai-

mant ot 'on voulait déterminer gx‘? - On déterminait la force qu’il fallait
e

lui appliquer pour Parracher dans la direction de la normale a la surface.
Jamin pensait que la force ainsi déterminée était proportionnelle &
()
ON, :
Pour justifier cette maniére de voir, il admettait trois hypotheéses :
1° Le contact du morceau de fer doux ne modifie pas sensiblement la
distribution sur ’aimant étudié.
2° Dans les conditions ot I'on opére, on peut négliger pour le fer doux
la variation de F(on,) avec aw,.

3° L’aimantation de la particule de fer doux est donnée par les équa-
tions

00,
Aog = — /30 dl‘; 5

)(‘)-’
Wy,—=— A F :)_)’2‘,

00,
Sy=—~nF ():2‘ .

Admettons sans discussion les deux premieéres hypotheses.
La troisi¢éme est en tous cas inacceptable. On a en effet

J
f_lsz':— IIF TLZ (t)z—‘l— K\;)g),

Jd .
()}_,2 (.U?_*_ \i?)ﬂ)’

“]')2:_ IhF

~

;;2:—/IF —(?_— (O, += W, ).
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et nous venons de voir que 1'on ne pouvait poser

()@z —o d\g‘)g —o dk@g —0o
o0z, O ay, ds

Acceptons toutefois pour un instant cette hypothese.

Soit T la force normale nécessaire pour arracher la particule magnétique
suivant la normale; sous I'action de la force T, cette particule peut subir
un déplacement infiniment petit ¢N, suivant la normale extéricure a l'ai-
mant étudié. On a donc, lorsque SN, est positif,

T oN,— 0F > o.

Mais, d’aprés les hypothéses faites, on peut écrire
. F /OR*_  OR oR? .
= (G dr Gy, 0 G, 820)
On a d’ailleurs
o0ry= 0N, cos(N,, x),
0y2= 0N, cos(N,, ),
035, = 0N, cos(N,, 5)
el, par conséquent,
FoRe
2h ON,

0F =— dv, ON,,

et I'inégalité précédente devient

F JR?
oh ()T‘e d02> o.

T +

La plus petite force qui puisse produire I'arrachement aurait alors pour
valeur
.. F oRe

= — —2—]; (—)T\.—e' d"g.

& 2
2

~ . 2 . .
Elle mesurerait donc non pas (g—g> > comme le pensait Jamin, mais 3—5—
B4 Ve

9 [<()02>2+ 005 \? d0,\ 2
IN, | \dx, dy, + 03, )
Ainsi 'une au moins des hypothéses admises par Jamin pour justifier

I'emploi de la méthode d’arrachement dans I’étude de la distribution ma-
gnétique est inacceptable. D’ailleurs, méme en admettant cette hypothése,

ou, si 'on préfére,
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on voit que la méthode ne peut servir a déterminer la quantité que Jamin
pensait mesurer.

§ IV. — Comparaison des corps magnétiques et des corps diamagnétiques.

7. La forme la plus précise adoptée pour distinguer les corps magné-
tiques des corps diamagnétiques était fournie par la loi de Faraday : en un
champ magnétique, un corps magnétique tres petit tend a se déplacer dans
le sens ot la valeur absolue de la force croit, et un corps diamagnétique
dans le sens ou cette force décroit. La discussion précédente, en nous for-
cant de rejeter cette loi, nous oblige a chercher ailleurs un critérium qui
distingue les corps magnétiques des corps diamagnéticues. '

La question que nous nous proposons de résoudre maintenant peut s’é-
noncer brievement ainsi : une masse dénuée de force cocrcitive est-clle
attirée ou repoussée par des aimants permanents?

Commencons par préciser le sens de cette question.

Supposons une masse magnétique mise en présence d’aimants et soumise
a l'action d'une pression normale et uniforme, scule force extéricure cui
agisse sur elle.

Placons-la d’abord & une distance trés grande et comme infinie des ai-
mants permanents. Le potentiel thermodynamique interne du systéme a
alors une valeur §,.

Supposons ensuite qu'on 'améne a une distance finie des aimants perma-
nents et que, la maintenant dans cette position, on laisse prendre a l'ai-
mantation sa distribution d’¢quilibre. Le potentiel thermodynamique in-
terne du systeme aura alors une certaine valeur .

Si §,— & est positif, le passage de la masse de la position infiniment
éloignée a la position située a distance finie sera, au point de vue de la
Thermodynamique, un phénomeéne possible. Le phénomeéne inverse sera
impossible. Nous dirons alors qu'une masse magnétique tres ¢loignée dai-
mantls permanents cst af{irée par ces aimants.

Si §, — & est au contraire négatif, nous dirons que la masse trés ¢loignée
d’aimants permanents est repoussée par ces aimants. Clest dans ce sens
seulement que, dans ce quiva suivre, doivent étre pris les mots attraction et
répulsion.

Or lesigne de 3 — 7, est facile & trouver. On voit aisément en effet que
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cette quantité peut s’écrire

2
F—Fo= //(qu do"~ Wb, 002 do)dc»z
20y, 3,
h d@g \ d@a o) ()@2 f y
+;f<°%, Iz —+ b, 7 + &, EN dyy+ F(IMy) dys.
Mais on a

¢L2:_hF(3112)d—({93;'f—21@—2),

‘Ubg:—/lF(mLQ)-d(—md—;_—K@L))

0(024—@2)

Sq=— AF (M) =

en sorte que 'on a
2 I3 0@, aQ, 0@,
”""Pf[d(‘m )~ FOR, )] fvs _Ef@’? az, TGy, TS g, )‘“

Mais un calcul analogue a celui que nous avons fait au commencement
du Chapitre III nous donne

oW, | , 0@, 0@,
f<¢l'>2 o -+ by dyg + &, o5 >d2

IS rCCASNECAC A Y

=5 S1(50) + (5 = (52) ]

la seconde intégrale triple s’étendant a tout 'espace.
D’autre part, I'égalité

IV
2 F(OIL)
I

I

c = JIL

g(é)ll.):f = 4O,
? ,  FQOR)

ou, en désignant par w une valeur de a1 comprise entre o et ,,

F(O)=

donne

I 2

j(:mf,):m.

On a donc finalement

5= st = ) e [+ (2 (22 )




DE L’AIMANTATION PAR INFLUENCE. L.31

Le second terme est assurément négatif : quant au premier, si la valeur
absolue du coefficient d’aimantation diminue, demeure constante ou croit
assez faiblement pour ne jamais varier du simple au double lorsque I'aiman-
tation croit, il sera certainement de signe contraire a IF(or, ); par consé-
quent, pour les corps magnétiques § — F, est sirement négatif; son signe
est inconnu pour les corps diamagnétiques et ne peut étre fixé que si 'on

possede certains renscignements complémentaires. On peut donc énoncer
la proposition suivante :

Toute substance magnétique dénuée de force coercitive et placée a
grande distance d’aimants permanents est attirée par ces aimants; on
ne peut prévoir le signe du moucement d’une masse diamagnétique.

8. La proposition que nous venons d’obtenir ne suffit point & différencier
les corps magnétiques d’avec les corps diamagnétiques; dans les actions
exercées par les aimants permanents, peut-on marquer une opposition entre
le role joué par ces deux sortes de corps? Celte opposition résultera de
deux propositions extrémement simples, que nous allons démontrer.

L’expérience classique qui sert & distinguer les corps diamagnétiques des
corps magnétiques consiste dans I'observation de la position d’¢quilibre
qu’ils prennent lorsqu’on les suspend par un fil entre les deux poles d’un
puissant électro-aimant. En réalité, le poids du corps est, pour tous les corps
diamagnétiques et pour la plupart des corps magnétiques, si grand par rap-
port aux actions que le corps subit de la part de I'¢lectro-aimant, que le fil
n’est pas sensiblement dévié de la verticale, en sorte que I'on peut regarder
le phénomene comme étant le méme que si le corps était assujelti & se mou-
voir autour d’un axe vertical.

Considérons donc un corps magnétique ou diamagnétique mobile autour
d’un axe vertical OZ dans un champ magnétique. Lorsqu’on fait exécuter au
corps un tour complet autour de I'axe OZ, le potenticl thermodynamique
interne du systéme, qui en général a varié¢ pendant le mouvement, reprend
sa valeur primitive. Il a donc passé par un certain nombre de maxima et
un certain nombre de minima ; en d’autres termes, le corps a passé par un
certain nombre de positions d’équilibre alternativement stables et instables.

Prenons I'une de ces positions d’¢quilibre. Soient, toujours suivant
notre notation, ©, la fonction potentielle des aimants permanents en un

point du corps ¢tudié et @, la fonction potentielle au méme point du ma-
gnétisme distribué sur ce corps.

II. — Fac. de T. L.ll
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En chaque point du corps, on a

- 9(0y+ Wy)
b=—FOR, o, 3,...) =—5,—
(13) W =—FN, a3 ...) d(&g—;_@?—)’
9V, —+
S =—F(I, 2, 5’ ) %—@—2).
On a de plus
»o, 020, - 0>,
(16) f[ (As dwt)ﬂy-i—wo ay*? +v050)’>x
020, 0?0, | o 00, =
—<°1° gz W d}'dvv_‘_vdsdw)‘)]dv—o’

I'intégration s’étendant au corps considéré.

Supposons que le corps soit trés faiblement magnétique ou tres faiblement
diamagnétique; F (o, o, B, ...) est alors une quantité trés petite; d'aprés
les égalités (15), ., W, © sont en général des quantités trés petites du
méme ordre; la quantité ©,, définie par I'égalité

/< d;: d;‘ 01)
= Qo —— b e —
W, = 8 97 —+ )/ + e 9z dy,

dans laquelle I'intégration s’étend & tout le corps magnétique, cst encore
une quantité trés petite du méme ordre, et il en est de méme de ses dérivées
partielles. On peut donc, en négligeant les quantités trés petites du second
ordre, écrire

b= F (I, 3, . )‘3)‘;’,

1‘5:~F(SIL; 23] .3) ~-~) Clt;‘;__?)

e =—F(N, 2,3, ..‘)%L—?i',

-ou encore

. 0V, J0), 01,\2] 00,
= [ (52) () ()] 52
o el ()%
’ ‘ T\ 0= dy

(° L [(200) - (22 ) (22)] 22
= ' Jde i Jdy 03 05

la fonction A ¢tant définie par I'égalité (6) du Chapitre II.
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Moyennant ces égalités, la condition d’équilibre (16) devient

3 d0,\? (dog 2+ (dﬁ)]
f‘ dx ) "\ oy E
[(0& 020, | 00, 3°1), N 9V, r)*m)
dxr dxdy = dy 9y? 93 0sdy
<amg 020,  JV, 920V, | IV, 021‘)2> ]
— ylde=o.

Pz 9xf Ty dydw 03 0sox

<

Cette équation suffit a déterminer les positions d’équilibre du corps. Or
il est aisé de voir que, si elle est vérifiée pour un corps, correspondant a
unc fonction A que nous désignerons par A,, c’est-d-dire & unc certaine
fonction F(o10) que nous désignerons par I, elle I'est encore pour un corps
de méme forme ct de méme position, correspondant a une fonction A iden-
tique & — A,, c’est-a-dire & une fonction I'(on) identique & — I, ce qu’on
peut énoncer de la maniére suivante :

Dans les conditions que nous avons indiguces, deux corps, lun trés peu
magnétique, Uautre trés peu diamagnétique, ayant méme forme et des
JSonctions magnétisantes égales en valeur absolue, ont les mémes posi-
tions d’équilibre.

Considérons maintenant Pexpression de ¢2F donnée par P'égalité (7) et

remplacons-y &, ¥, € par leurs valeurs tirées des égalités (17). Nous ver-
rons aisément que ¢*J change de signe en méme temps que

3 01, \?2 00, 2+ gp_ 2
~ <7rx‘ oy s ) |

en sorte que le théoréme précédent peut étre complété de la maniere sui-
vante :

Les positions d’équilibre stable de Uun des deux corps sont les posi-
tions d’équilibre instable de Uautre.

Si, par exemple, unc aiguille allongée d'un corps paramagnétique, sus-
pendue entre les deux pdles d’un électro-aimant, s'oriente dans la direction
de ces deux poles, une aiguille diamagnétique se mettra en croix avec cette
direction.

Les théoremes précédents, que l'on peut démontrer quelles ¢ue soient
les liaisons qui assujettissent le corps magnétique, marquent 'opposition
qui existe entre les corps magnétiques et les corps diamagnétiques.

———
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CHAPITRE V.

METHODES DE DETERMINATION DE LA FONCTION MAGNETISANTE.

§ I. — Méthode fondée sur Pemploi des équations de Poisson.

1. L’intégration des équations différentielles d'un probléme quelconque
d’aimantation par influence implique évidemment la connaissance de la
valeur de la fonction

A Ge) - () () oo

pour toute valeur du paramétre

(5 (-2
[ \ox (a y 0:) |
ou, ce qui revient au méme, de la valeur de la fonction

FOI, a, B, ...).

Ces deux déterminations sont corrélatives. Nous avons vu, en effet, au
Chapitre II, comment, de la connaissance de la fonction I, on déduisait la
fonction A. Siinversement on sc donne la fonction A, les équations de I'in-
duction magnétique permettront d’éerire

=il (55) - () () oo ALG) = () + () )

Cette équation, résolue par rapport a
(o2)+ (%)~ (%)
dw dy <0; ’
IO\ QONT (00N

)-['*'H(")K’ a, ﬁ’ R 2 T dJ=— LF (O, 2,

+

donnera

et l'on aura

3,0,

De la fonction A on aura ainsi déduit la fonction F.
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2. Il existe deux types de méthodes pour déterminer la fonetion 2: 1'un
et l'autre ont ¢été sommairement indiqués par G. Kirchhoff; le présent
Chapitre aura donc sculement pour but de développer les vues de I'illustre
physicien.

La premiére méthode consiste & déduire la connaissance de la fonction A
des expériences faites en supposant, conformément a la théorie de Poisson,
que A est une constante, en vue de déterminer la valeur de cette constante.

Dans cette théorie de Poisson, si I'on désigne par w la constante par la-

quelle on remplace la fonction A, les ¢quations de 1'¢quilibre magnétique
deviennent

AN

c\;)— ‘(7;)

o

(1) w.)—H‘())_},
- oV

Lo =5

La fonction © est déterminée par les conditions suivantes :
1° Al'intérieur des aimants permanents, on a la méme équation différen-

tielle que dans la théorie développée dans le présent Mémoire; cette ¢qua-
tion est I’équation (g bis) du Chapitre 1I,

(2) AV =—4f7mp(x, ¥, 5).
2° En tout autre point de 'espace, sauf aux surfaces de séparation des

divers corps, on a, en supposant homogenes les divers corps dénués de
force coercitive,

(3) AV =o.

3° A la surface de séparation d'un aimant permanent ct d'un milicu non
magnétique, on a, comme dans la théorie actuelle [Chapitre 11, égalité (r1)],

, 29 90
(1)

N TN =—47s(x, y, 5).

4° A la surface de séparation d'unc substance dénuée de force coercitive
et d’'un milieu non magnétique, on a

, av v
U adm0) o8, TN, = ©

(3)
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5° A l'infini, on a
(6) Vv =o.

Ces conditions déterminent la fonction ¢ lorsqu’on connait la forme du
corps soumis a 'aimantation et la valeur du coefficient w. Si I'on intégre
ces équations pour un corps dont la forme et la position sont données, mais
dont le coefficient w est laissé indéterminé, on trouvera pour  une expres-
sion de la forme

V=f(x, 5,5, ).

Il suffira alors, lorsqu’on voudra déterminer la valeur du coefficient w
pour unc substance, de former avec cette substance un corps de la forme
que 'on considére, ct de déterminer expérimentalement la valeur en un
point d'une quantité dont I'expression puisse se déduire de celle de ©.

Si l'onapplique cette méthode a une substance pour laquelle on ne puisse
pas regarder u. comme constant, pour laquelle le coefficient y doive étre

B 9\ 2 < 2 < 2 . .
remplacé par la fonction A [<%> —+ (3—;) 4~ <%> ], quelle sera la signi-

fication des nombres, variables avec I'intensité du champ magnétique, que
I'on obtiendra ainsi, au lieu du nombre constant qui devrait représenter u.?
Si le corps mis en expérience est un ellipsoide et si le champ magnétique
constitu¢ par les aimants permanents est un champ uniforme, le corps s’ai-
mante uniformément, cn sorte que la quantité (%9>2+ <?E>2+ (0—0>2 a,
z dy dz
en tout point de ce corps, la méme valeur. G. Kirchhoff a montré qu’alors
les nombres variables obtenus par la méthode que nous venons d’indiquer
représentaient précisément la quantité

3 JON? dV\? UANANS
G+ () =G )
etil a fait usage de cette remarque pour déduire d'expériences de Weber

quelques déterminations de la fonction A propre au fer doux.

Cette proposition de G. Kirchhoff peut se généraliser de la maniére
sulvante :

Turorive 1. — Si un corps homogéne, possédant une fonction rhagné-
tisante déterminée, s’aimante uniformément dans des conditions déter-
mindes, la fonction magndétisante a alors une méme valeur M en tous les
potints du corps; un corps de méme forme, ayant un coefficient d’aiman-
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tation wu. constant et égal a M, prendra la méme aimantation uniforme
que le précédent.

11 nous suffit pour cela de démontrer que la fonction ©, qui intégre les
équations différentielles du premier probléme, intégre aussi les équations
différentielles du second ; car, cctte proposition une fois démontrée, 'aiman-
tation en un point sera, dans le premier probléme, déterminée par les équa-

tions
v () (22 ()] 2
=4 \0z) T \y 0:) | ox’
wy — A (.)_\2 2_|_ E)E 2+ B)i] 2}(_)
° ox dy 03 dy’
o o [(F9V . (09N, (99\*] 0¥
2= (&)~ (%)~ (G) ] %=

ct, dans le second probléme, par les équations

av
@%———H(ﬁ’
ﬂb:p%—;,
@:H%ﬁ)

qui conduisent aux mémes valeurs de by U, S, puisque . et
FONT | (OONT (99N
[(Ge) (%) + (%)

Or il est aisé de voir que les deux problemes conduisent & la méme
fonction © (x, y, ).

En effet, les équations (2), (4) et (6) sont communes aux deux pro-
blémes; dans chacun des deux problemes, la fonction © vérific I'équation

ont la méme valeur M.

A\‘)—_—,o

en tout point du milieu non magnétique.

Dans le premier probléeme, en tout point du corps dénué de force coerci-
tive, la fonction © vérifie I'équation différentielle (g ter) du Chapitre II,
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équation qui peut s’écrire, pour un corps homogéne,

i [(5) = (5 (5) J e
0>~[’§)2+ %‘;’>+ <g>1 9O 9 [[/09\ [0\ [00\?
Loy el G )]

a9V 0 IAVAN 20\? 00\ 2
-l )+ (%) + (%) ]

GO 0 [[IO\T (90N [00\*]) _
S LY (%) () )i=-

Mais, si 'aimantation est uniforme, on a

OO\ 00\ (90N
%> + (2)3_> +<()_:_> — const.,

en sorle que I'équation précédente devient
AV =—o.

C'est aussi I'équation que, dans le second probléme, la fonction © doit
verifier a Iintéricur du corps soumis a 'aimantation.

Enfin, dans le premier probléme, a la surface de séparation du corps
soumis 4 l'aimantation et du milieu non magnétique, la fonction © vérifie
I'équation (11 Zer) du Chapitre II,

e am [0V (22) e (2222 22—
TA 9z dy Js { ON; ON, 7’
qui devient ici
a0

AN
heM) S 4 O
(1 47M) 53+ o

— o,

el coincide avee I'équation (5) dusecond probléme ou I'on donne a p la va-
leur M. '

Par unc voic analogue, on démontre la réciproque suivante :

Tutorine 1. — Considérons un cas particulier ot un corps homogéne
soumis a 'aimantation et possédant un coefficient d’aimantation . in-
dépendant de la grandeur de Uaimantation s’aimante wniformément
pour toutes les valeurs de ce coefficient; remplacons ce corps par un
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corps homogéne de méme forme correspondant é une certaine fonction
magnétisante . Ce corps prendra identiquement la méme aimantation
qu’un corps de la premiére série pour lequel le coefficient w. aurait une
valeur M déterminée de la maniére suicante :

En un point intérieur a l'un quelconque des corps de la premiére

série, nous avons
()\‘)>2 ((_9'&_)>2 A
dx dy ds (),

et M satisfait a l’équation
$(M) — M =o.

Ce théoréme entraine l'exactitude de la méthode proposée par G.
Kirchhoff pour la détermination de la fonction A. Il se peut que le cas de
I'cllipsoide placé dans un champ uniforme soit le scul cas ou un corps
de forme donnée, placé dans un champ donné, s’aimante uniformément,

quelle que soit la valeur de son coefficient d’aimantation. Dans ce cas, le
théoréme précédent se réduirait a celui de G. Kirchhoff.

§ II. — Méthode du tore.

3. Soit C une courbe ( fig. 1) qui, par sa révolution autour de I'axe ZZ/,

Fig. 1.

z

engendre un tore T, que nous supposerons formé par une certaine substance
magnétique.

II. — Fac. de T. L.t2
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Une courbe (7, infiniment voisine de la courbe C, mais extérieure a cette
courbe C, par sa révolution autour du méme axe ZZ’, engendre un second
tore B renfermant le premier dans son intérieur. Sur ce tore sont placés
n fils conducteurs, fermés sur eux-mémes, équidistants les uns des autres
(disposition qui, dans la pratique, sera remplacée par un enroulement con-
tinu, a tours asscz rapprocheés).

Une troisicme courbe C”, renfermant a son intérieur les courbes C et C,
ct non infiniment voisine de ces dernicres, forme, par sa révolution autour
de I'axe ZZ/, un troisi¢éme tore B’ enfermant les deux premiers a son inté-
ricur. Sur ce tore B’ sont placés 7' fils conducteurs, fermés sur eux-mémes,
équidistants les uns des autres (disposition remplacée, dans la pratique, par
un second cnroulement continu).

Dans le tore B’ faisons passer un courant d'intensité ¢; ce courant va
aimanter le tore T. 11 est facile de préciser les lois de cette aimantation.

D’apres les lois connues de 1'Electromagnétisme, lois que nous admettons
ici sans discussion, I'action de la bobine B’ crée dans I'espace un champ
magncétique dont nous désignons par © la fonction potenticlle. En un point
(2, y, 5) extéricur a la bobine B’, on a

- v 90 _ v _
2 I Ik I P

A Tintéricur de la bobine B/, la fonction potentielle n’est plus constante.
Prenons pour coordonnées d'un point intérieur a la bobine les coordonnées
polaires g et O de sa projection sur un plan perpendiculaire a 'axe du tore,
le pole ¢tant au point ot 'axe du tore rencontre ce plan, et la hauteur 5 de
ce point au-dessus de ce plan. Nous aurons alors, en tout point intérieur a
la bobine,

90 _ ()U——o 20 _ Kn't
I | B

(7 brs)
K ¢tant une constante qui dépend du systéme d’unités choisi.

Admettons que ce champ aimante le tore magnétique suivant les mémes
lois qu'un champ créé par un aimant.

Les propositions suivantes sont évidentes, grace a la symeétrie de la figure
autour de I'axe Z7':

I'aimantation est, en chaque point du tore T, dirigée normalement au
plan passant par ce point et par 'axe ZZ’ du tore.
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En tousles points intérieurs au tore qui correspondent aux mémes valeurs
de ¢ et de 5, 'aimantation a la méme valeur.

Cela étant, sil'on désigne par © la fonction potentielle totale en un point
du tore, on aura, d’apreés les lois de I'induction magnétique,

1 1 JV\?1 gv
(8) "“—51[(5 ?ﬁ) 19

Soit @ la fonction potenticlle au point considéré de 'aimantation distri-
buée sur le tore. Nous aurons

27T P 1
r
@——S[ DR'?)‘;G)(ZQ,

w étant l'aire d'un élément de la courbe C et le signe S indiquant une

sommation qui s’étend a tous ces ¢léments.
Cette expression peut s’écrire

27 N
/o
@:Siﬂbw A md@,

et il est alors évident que

Y=o,
en tout point intérieur a I’aimant.
Dés lors 'égalité évidente
V=0+4+ W
devient, a l'intérieur de I'aimant,
YvV="0,

et, en vertu des égalités (7 bis), I’égalité (8) devient

aKn'c 2K n'i\?
M — ) [( ) ]
(9) o >

D’aprés les principes de I'Electromagnétisme, le potentiel du tore ainsi
aimanté sur un des anneaux de la bobine B, cet anneau étant supposé par-
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couru par un courant d'intensité égale a I'unité, a pour valeur
W=/4nK S M w,

o ¢tant un élément de I'aire enveloppée par la courbe C’ (ou, ce qui revient
au méme, par la courbe C) et o I'aimantation du tore en un point de cet
¢lément. Dapres I'égalité (9), cette derniére égalité devient

(10) IU:SﬁK‘Zn’iS}[<%n,i>2:I %)

Sur un des anneaux de la bobine B, parcouru par un courant supposé égal
a I'unité, la bobine B’ admet un potenticl qui a pour valeur

(r1) 11_—__2K2n'iS%-

Il en résultec que I'ensemble du tore aimanté et de la bobine B’ ont sur la
bobine B, parcourue par un courant égal a I'unité, un potentiel

. 2Kn'i\?] ) w
2 V= v W) = 2nn' 4 2.
(12) n(V+W)=2K llnlS§I+47T)\|:< 5 )]%p

Supposons que I'on ouvre la bobine B’ de facon & supprimer le courant ¢.
Le tore se désaimante; la désaimantation du tore et 'interruption du cou-
rant 7 produisent dans la bobine B un courant d’induction. Soit Q la quan-
tité d’¢lectricité que ce courant met en mouvement, quantité que l'on peut
mesurer par 'impulsion donnée a une aiguille de galvanomeétre; soit R la
résistance de la bobine B. Les lois de I'induction montrent que 1'on a

v
Q=5

ou bien, en vertu de I'égalité (12),

: _2K2nn'i L 2K21\?*] ] o
o e[|

Désignons par g, une des valeurs que prend ¢ a I'intérieur du tore.

Posons
6= po+ 7
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ct supposons que 7 soit toujours petit. Posons en outre, pour abréger,

¢ — <2Kn l>“;
p

Q pourra se développer ainsi :

2K2nn'i

(1%) Q= ——R—< oSm+P,Srm+...—|—Pm r"’w—t—.,.),

P,, P,, ..., P, ayant les valeurs suivantes :

/

P, = L[1+4n1(c>],
P, —— %—[I—JI—[;TE)\(C)]-FSMK’n’Z 2 m(c)%,
Py 0%
g 3anK2n'22 0n(%) 027“) |
AP e P [ ot 25|

m—(—x>”§ Ll 4mA(©)]

3271:K2n 22 d)\(C) d"l() L 0%
Py o T3 g e (D \$

Si, en particulier, la distance des divers points du tore a l'axe varic assez
peu pour que les intégrales

Srm, Sr’w, ce Sr"’m,

soient négligeables devant I'intégrale

Q:Sm,

ce qui arrive si le tore est unanneau infiniment délié ou un tube cwlm(h ique
infiniment mince, la formule (15) devient simplement

_ 2K2pn'iQ 2Kn'i\27 )
Q=20 §1+41r7.[< - L

¥

Cette formule, qui serait vraie, quelles que soient la forme et les dimensions
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du tore dans la théorie de Poisson, ot la fonction A est remplacée par une
constante, permet alors de déterminer expérimentalement la fonction A.
Cette méthode, nous I'avons dit, a été indiquée par G. Kirchhoff (*); elle
a ¢té employée par plusicurs expérimentateurs, notamment par M. Row-
land. )

Si I'on voulait I’employer avec un tore de dimensions quelconques et en
tenant compte des variations de 2, il faudrait supposer A({) développable
en série uniformément convergente ordonnée suivant les puissances crois-
santes de g,

2O =A0+ AL+ A0+,
el supposer aussi ses dérivées de tous les ordres développables de la méme
maniére. On en déduirait pour Q un développement de la forme suivante

s K2nn't

Q: -————E———(Bo"—BIC“*— Bg’;z-f—...),

développement dans lequel on aurait
B=ol Ag+ i A +ab Ay +.. .,

la quantité o} clle-méme étant une série de la forme

a}:,@ooSw—l—ﬁ,S)'w—l—ﬁer?m—l—...,

les quantités 3,, By, B, ... étantdes coefficients connus. Il serait impossible
d’employer un développement aussi compliqué a déterminer les coefficients
Ay, Ay, A,, ... dont dépend le développement de la quantité A({).

M. Paul Janet (*) a donné récemment une méthode de détermination de
la fonction magnétisante, qui permet, au contraire, 'emploi d'un dévelop-

pement de ce genre.

(') G. KIrRcHHOFF, Zur Theorie des in einem FEisenkérper inducirten Magnetismus
(Poggendorfl’s Annalen, Erginzungsband V, 1870. G. Kirchhoff’s gesammelte Abhand-
lungen. p. 223).

(2) Paul JANET, Sur Papplication du phénoméne de !’aimantation transversale &
létude du coefficient d’aimantation du jfer (Comptes rendus des séances de l’Aca-
démie des Sciences, t. CVI, p. 200; 16 janvier 1888).
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CHAPITRE VI

PHENOMENES THERMIQUES.

§ I. — Quantité de chaleur dégagée dans une transformation d’un systéme
qui renferme des aimants.

1. On a souvent étudié, au point de vue expérimental, les phénomeénes
thermiques qui accompagnent l'aimantation ou la désaimantation d'un
morceau de fer doux placé a I'intérieur d’une spirale parcourue par un
courant, mais il n’entre pas dans nos intentions d’¢tudier ici ces phéno-
menes, car cette étude rentre dans I'étude plus générale de 'aimantation
par les courants, que nous ne voulons point faire ici. Nous nous bornerons
donc aux phénoménes thermiques que peuvent présenter des systémes ne
renfermant que des aimants.

Rappelons, & cet égard, une relation dont nous aurons & faire un usage
constant au cours de ce Chapitre.

I’état d'un systéme est défini par la température T et par un certain
nombre de parametres «, B, .... Ces parametres sont choisis de telle sorte
que, si T varie sans qu’aucun d’eux change de valeur, les forces extérieures
n'effectuent aucun travailj c’est ce qui arrive, par exemple, lorsque 1'état
d’un systéme soumis & une pression normale et uniforme est défini par la
température ct le volume du systéme.

Le systeme considéré admet un potentiel thermodynamique interne 7,
une énergie interne Y, une entropie X; les forces extéricures qui agissent
sur lui admettent, a4 température constante, un potenticl W, en sorte que
le systéme admet un potentiel thermodynamique total Q. On a, par défini-
tion,

Q=5+ W,
()

>
s

Elevons de dT la température du systéme, en laissant constants les
autres parameétres. On a ainsi une modification réversible dans laquelle

aucun travail extéricur n’est effectué, modification dans laquelle par con-
séquent

dY =TdX,
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ce ui donne
72 0

ﬁ—Tﬁ':O.

Mais, d’autre part, les égalités (1) donnent

o —Blar —Tor —=) " o1

R o 0% $> IW
aT -

ILa comparaison de ces égalités donne

P) 05
53— 2 o_wy—_9,
SE__ S (Q—W)=— 51

(2) 05

De 14, se déduit une conséquence simple. Dans une modification isother-
mique, le corps dégage une quantité de chaleur dQ, et 'on a

dQ = — dY — —]%d\V.

D’aprés les égalités (2), cette relation peut s’écrire

(3) EdQ:——d(j+\V)—|—d<T3—§‘)-

Sile systéme était en équilibre, on aurait

d(F+W)=o
et, par conséquent,
oF

4) dQ:Ad(TaT),

A désignant, suivant I'usage, I'inverse de I’équivalent mécanique de la cha-
leur.

Ces deux relations (3) et (4) se mettent immédiatement sous forme
tinic; dans une modification isothermique, qui fait passer le systeme de
I'état (o) alétat (3), le systéme dégage une quantité de chaleur Q donnée
par la relation

9

ki - _ ()f!
l? —JB—\‘ 3+ T (),I',:‘)

|

(5) EQ=5,~W,—T

Y
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et, si la modification est réversible, par la relation
Jd - =
(6) EQ:TBT(JQ—JQ().

Nous allons appliquer ces relations aux modifications subies par des syvs-
témes qui renferment des aimants.

2. Pour un semblable systéme, nous avons
(7) F=EU —TS)+ 3 + fF(I)dy,

conformément a I’égalité (19) du Chapitre L.

Parmi les paramétres autres que l'intensité d’aimantation dont dépend
la fonction §(o1), figure la température T, ce que nous mettrons en évidence
en écrivant non plus (o), mais s(a, T).

L’état du systéme est défini par la température T et un certain nombre
d’autres parameétres. Nous supposons ces derniers choisis de telle sorte que,
lorsque T varie, ces paramétres demeurant constants, chacun des corps du
systétme garde sa forme et sa position. Il en résulte que, dans ces condi-
tions, la variation du seul paramétre T n’entraine aucun travail des forces
extérieures, comme le suppose I’établissement des équations précédentes.

Il en résulte aussi que la variation du seul parameétre T ne fait pas varier =.
On a alors

0F 0 dF (I, T)
(8) ET,_EE,—[.—(U—TS)—l-f—?)—T——dv.

D’apreés les égalités (7) et (8), Pégalité (5) devient, pour un systéme
qui renferme des aimants,

T JIT

{ > 0 - - 9 s, TY] )
_?E(Up_TSB)JerAFJp-ETﬁ(UB__Tbﬁ)+f[,«ﬁ(ant,T)—TTJ(A 2

9 EQ= E(Ufl_TSa)ﬁ'"‘Va’*‘ga“ETdi(U“—TSd)+f[ja(e‘)K,T)—TMJ dy

Posons
EQ,=E(Ux—TS8,) + W, E(Ug—TS3) — Wy

9 . N . <
._ETFF(Uan“ rS,) +ET ﬁ,(bg—Tbg)
et

9=Q—Q,.

'~

II. — Fac. de T. L.13
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L’égalité () pourra s’écrire

9

aT

—f[s-’g(:m, T) —Td%s's(;)u, T)] dy;

(10) Ed = .§1~§'3-{—f[ja(3r\,, T)—T Fo (I, T)] dy

Q, représente la quantité de chaleur qui serait dégagée si I'on faisait subir
au systéme cxactement les mémes changements d’état en le maintenant
constamment a I'état non magnd¢tique; la quantité 9 mesure donc la part
d'influence exercée sur le phénomene thermique par ’aimantation du sys-
téme ct par ses variations.

La plupart des auteurs qui se sont occupés des phénomeénes thermiques
produits au sein de systémes qui renferment des aimants ont remplacé
I'égalité (ro) par I'égalité incomplete
(1) E3=2.—p

ct ont été ainst conduits & des conclusions erronées, comme nous 1'allons
voir dans les paragraphes suivants.

§ II. — Influence de Vaimantation sur la chaleur dégagée
dans une réaction chimique.

3. Supposons qu'un fragment d'une substance aimantée entre en une
combinaison chimique. Quelle relation existera entre la quantité de cha-
leur Q dégagée par cette réaction ct la quantité de chaleur Q, dégagée par
liv méme réaction préparée au moyen d'une substance non aimantée ?

Ce probleme comprend deux cas distincts : dans le premier, le corps
aimanté est un corps dou¢ de force coercilive et le systéme ne renferme
point d’autre aimant; dans le second, le corps aimanté est dénué de force
coercitive et le systeme renferme des aimants permanents qui produisent
I’aimantation de la substance considérée.

Envisageons tout d'abord le premier cas. Supposons négligeable le ma-
gnétisme de la combinaison formée; dans ces conditions, le systéme, dans
I'état final, ne renferme plus aucun aimant, ct nous avons

53:0’

jr@,(é)llg, T) =o,
0.53(2)]13,'1‘) i

—Jr 2
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ce qui donne

(12) Q=0Q,+AF,+ Af [ja(anu, T —T "__'7*(3,’;_1’ T>] de.

L’égalité (10) du Chapitre III nous donne

~ h 00& 2 0\.‘)1 2 do 2 N
5“—%” 5 +(W) +<aT> v

I'intégration s’étendant au systéme tout entier.
D’autre part, nous avons

o T M o
F(OR, T) = f _ I o
> , FOT)

L’égalité (12) peut donc s’écrire

_ Ah ()\?a 2 ()Oa 2 ()\?d 2
Q—Q“‘s—ﬁf[(?z) +<W) +<¥> ]"”
My oL T OFL (I, TY o
+Af fo F (0K, T) [‘+Fa(mh,T) oT }d‘)‘“gd"'

Si le corps entrant en combinaison est magnétique et si son coe fficicnt
d’aimantation croit ou demeure constant lorsque la température croit,
la chaleur dégagée par la combinaison est plus grande lorsque le corps
est atmanté que lorsqu’il ne Uest pas. En tout autre cas, le signe de la

différence entre ces deur quantités de chaleur ne peut éitre prévu, a
priori, sans données numériques.

4. Envisageons maintenant le cas ou le corps entrant en combinaison
est un corps dénué de force coercitive et ol la combinaison s’effectue sous
I'influence d’aimants permanents. Réservons, suivant notre notation habi-
tuelle, I'indice (1) aux aimants permanents et l'indice (2) a la substance
dénuée de force coercitive. Soit ©, la fonction potentielle en un point des
aimants permanents du magnétisme répandu en ces aimants; soit w, la
fonction potenticlle en un point de la masse magnétique du magnétisme
répandu sur cette masse; soit enfin ©, la fonction potentielle en un point
de la masse magnétique du magnétisme répandu sur les aimants perma-
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nents. Nous aurons

Il ()@1 ‘3@1 —~ ()‘\@1
N = - 8y —— (1Y =) — *
. 2f<,{ -+ b, T + £, 0;l>dc,

0V, ~ 0V,
f< L, 22 d); +¢32"—;:>(l('2
h oW, L O0®, . 0w,
+§f<=log()I +1‘»2d : + 2, 9. de,.

Dans I'état initial («) du systéme comme dans I'état final (8), le premier
terme garde la méme valeur; les deux derniers sont nuls dans I'état final.

On a donc
o o0, 00,  _ 0V,
\1_—3'3'—_— 14 f("{gl()d.‘z +1|oa 0}2 + <y ()~2 )d(g

h qu)e N d@o ~ ()@o ,
-+ 2f<¢{9“ oz —+ Uby Ty + 2, 5, )d‘

Pour les aimants permanents, (o, T') et 517 (910, T) ont la méme va-

leur dans I'¢tat initial et dans I'état final. Pour le corps magnétique, ces

(uantités sont nulles dans I'état final, puisque la combinaison est supposée
non magnétique. On a donc

PR 0
‘/‘[Ja(é)k,f)-— de‘u(f)]L T)J
+f[fﬁ(an T)—Tddl,dp(é)l"b,T)] do
—_:f{ja(all,T)—Ta—dea(:)l‘L,T)] dps,

et I'égalité (12) devient, dans ce cas,

0V, 0V,  _ 00,
) C + :\li Ilf<:{91()l‘ -l—'l"):(d > - Ty (),,.2 >d"2

/ d 9 () 2
+ lf( Ly ()f), +n'.a_‘!“—2 —;—Oid()@ )d(’z—{—fcfa(alk,r)d(,:l

&T‘/d (m Lo

Par un calcul analogue a celui (ue nous avons effectué¢ au Chapitre TV,
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§ III, n° 5, le coefficient de A peut s’écrire

[Tt = o | = o [T(22 Y (22 (22
J L2FOMLT)  FOR,T) 8w Jx dy 03 ,

M étant compris entre o et 1L, et la derniére intégrale s’étendant & tout
I'espace.

On voit alors aisément que ce coefficient est négatif pour tous les corps
magnétiques connus, et de signe inconnu pour les corps diamagnétiques.
Quant au dernier terme du second membre de I'égalité précédente, il

peut s’écrire
r I, L IF(M,T) oo | do
f fo [F(OT, T)]? oT y o

Pour toute substance magnétique ou diamagnétique, il est positif si le coef-
ficient d’aimantation croit avec la température, négatif s’il décroit lorsque

la température croit. Par conséquent, on peut énoncer la proposition sui-
vante :

Lorsqu’une substance magnétique entre en réaction pour fournir une
combinaison chimique dont le magnétisme soit négligeable, elle dégage
une moindre quantité de chaleur lorsque la combinaison s’effectue dans
un champ magnétique que lorsque la combinaison s’effectue en dehors
du champ, pourvu que le coefficient d’aimantation diminue ou demeure
constant lorsque la température croit; si ce coefficient augmente acec la
température, on ne peut plus rien prévoir en dehors des données numc-
rigues. Il en est de méme pour tous les corps diamagnétiques.

La proposition que nous venons d’énoncer montre combien il importait
de distinguer I'un de I'autre les deux cas que nous avons examinés. Si les
variations du coefficient d’aimantation avec la température sont négligea-
bles et si le corps est magnétique, on est assuré que 'aimantation exerce,
dans les deux cas, des effets inverses sur la chaleur de combinaison (*).

L’analogie du calcul effectué au présent paragraphe avec celui que nous
avons effectué au Chapitre IV, § I1I, n° 5, ne doit pas surprendre. On au-
rait, en effet, pu obtenir le résultat précédent en supposant que I'on éloigne
a l'infini la masse dénuée de force coercitive, que I'on effectue la réaction

chimique & I'infini et que I'on raméne ensuite de l'infini la combinaison non
magnétique formée.

(1) Voir la Note a la fin du Mémoire.
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§ III. — Influence de P’aimantation sur la possibilité d’une réaction
chimique. Théorie des phénoménes observés par M. Remsen.

5. Cl’est dans le second des deux cas que nous venons d’examiner que
s'est placé M. P. Janet qui, le premier, & notre connaissance, a signalé 'in-
fluence de I'aimantation sur la chaleur de combinaison. Rappelons dans
quelles circonstances.

Decpuis fort longtemps, les physiciens ont cherché & mettre en évidence
I'influence du magnétisme sur les réactions chimiques. Apres bien des ten-
tatives infructueuses ou incertaines ('), M. Ira Remsen (?), plus heurcux
que ses prédécesseurs, parvint aux résultats suivants :

Dans une nacelle de fer mince, on place une solution de sulfate de cuivre.
Dans les conditions ordinaires, le cuivre se dépose sur cette nacelle d’une
facon uniforme; mais, si l'on place cette nacelle sur les podles d'un puissant
¢lectro-aimant, I'épaisseur du dépot devient treés irréguliére. Nulle aux
points en contact avee les poles de I'électro-aimant, elle croit au fur et a
mesure que 'on s’¢loigne de ces points, et les lignes d’égale épaisseur, qui
sont le licu des points ou la réaction chimique s’est produite avec une égale
vitesse, dessinent des formes analogues & celles des lignes équipotenticlles.
Selon M. H.-V. Jueptner, résumant les vues de M. Ira Remsen, « le phé-
nomene est facile a expliquer. L’attraction que I'aimant exerce sur le fer
du récipient met obstacle a la dissolution de ce méme fer et par suite a la
séparation du cuivre; il en résulte que la quantité de culvre séparée est
inversement proportionnelle a Pattraction magnétique. Ainsi il est évident
que, dans 'expérience précédente, Iattraction magnétique au pole méme
est supéricure a 'action des forces chimiques : le fer ne pouvant se dis-
soudre, il est impossible que le cuivre se sépare. A mesure qu’on s'é¢loigne
du pole, l'action magnétique diminue; la quantité de fer dissous augmente
avee la quantité de cuivre déposé ».

M. P. Janet (*), partant de la relation incompléte (11), a énoncé cette

(! Ces tentatives sont résumées dans G. WIEDEMANN, Die Lehre von der Elektricitdit,
t. HIL P g67.

2y Voir detion chimique dans un champ magnétique (La Lumiére électrique, t. IV,
pe 1260 1880 et IL-V. JUEPTNER, Linfluence du magnétisme sur les métaur au point de
vue dlectrolytique ( La Lumiére électrique, t. X, p. 169; 1883).

(30 'L JANET. De Uinfluence du magnétisme sur les phénoménes chimiques (Journal
de Ploysique, 2° série, t. VI, p. 286; 1887).
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proposition qui, nous l’avons vu, est soumise & certaines restrictions : La
chaleur de combinaison du fer est plus grande hors du champ magné-
tigue que dans ce champ. Si alors, conformément aux principes de la
Thermochimie, on prend pour mesure de la facilité avec laquelle une réac-
tion s’effectue la quantité de chaleur qu’elle dégage, on arrive a unc expli-
cation des phénomeénes observés par M. Remsen.

Au dernier Congres de I’Association Britannique, tenu en 1887 a Man-
chester (*), M. Rowland « a décrit quelques expériences remarcuables, soit
personnelles, soit dues & d’autres physiciens, sur I'action chimique dans un
champ magnétique. Ces expériences ont montré qu'un morccau de fer
soumis 4 une aimantation intense ¢tant dissous, dans I'acide nitrique par
exemple, les parties les plus fortement aimantées sont a demi protégées ct
sont moins rapidement attaquées que les autres. Par exemple, les angles et
les arétes se trouvent dans ces conditions protectrices, tandis que les parties
concaves et les parties planes sont dissoutes les premiéres ».

L’explication adoptée est identique a celle qu'a adoptée M. P. Janet.
« ... Il est évident que la dissolution du fer, qui se détache au voisinage
d’un poéle aimanté, produit moins de travail que si ce fer n’était point
aimanté; par conséquent, la tendance protectrice de I'aimantation était a
prévoir.... »

Nous nous sommes proposé¢ de donner des phénoménes précédents une
théorie qui ne reposat point sur 'égalité incompléte (11) et qui, surtout, ne
fit point usage des principes erronés de la Thermochimie; on sait aujour-
d’hui que la possibilité d’une réaction ne dépend point du signe de la quan-
tité de chaleur qu’elle met en jeu, mais du signe du travail non compensé
qu’elle engendre; qu’il ne faut point par conséquent prendre pour mesure
de la facilité avec laquelle une réaction se produit la grandeur du dégage-
ment calorifique quil'accompagne, mais plutdtla grandeur de la diminution

qu’elle fait subir au potentiel thermodynamique. Dans cet ordre d'idées, on
peut obtenir quelques résultats qui sont les suivants.

6. Comme dans I'étude qui a fait I'objet du paragraphe précédent, il
importe de distinguer deux cas : cclui ou le systéme ne renferme qu'une

(1) Oliver J. LobeE, Sketch of the principal electrical Papers read before Section A

during the late Meeting of the British Association at Manchester 1887 (Elecirical
Review, 23 septembre 1887).
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masse magnétique douée de force coercitive et soumise 4 une action chi-
mique, et celui ot la masse soumise a I'action chimique est une masse
dénuce de force coercitive et soumise a I'action d’aimants permanents.

Commencons par donner une relation générale qui s’applique également
a ces deux cas.

Supposons qu'une particule superficielle de la masse magnétique ayant
pour volume dx dy ds, dont 'aimantation 9 a pour composantes <, W, &,
se dissolve de manicre a donner un liquide non magnétique et soit rem-
placée par une particule non magnétique. Si ¥ désigne la fonction poten-
tielle magnétique en un point (x, y, z) de la particule dr dy dz, il est aisé
de voir que le potentiel thermodynamique du systéme subira la variation
sutvante :
dQ =Ed(U —T3) 4 dW — h<¢l.>f)£ 0 2™ drdyds— FON) de dy ds.

dx ay ds

Si le systéme n’était pas aimanté, la méme réaction lui ferait subir la

variation
d,Q = Ed(U—TS) +dW.
On a donc

(13) dQ —d Q — — [lz (da g%) —+ b g—;—) + < %) —I—J:(S)Il)] dx dy ds.

Dans le cas ot le corps dissous est un corps doué de force coercitive, il
est impossible de préciser le signe du second membre. Mais, si le corps est
formé avec 'une quelconque des substances magnétiques ou diamagné-
tiques dénuées de force coercitive, on peut démontrer, comme nous 1’allons
voir, que le second membre est positif pour les substances magnétiques et
négatif pour les substances diamagnéticues, ce qui permet d’énoncer la
proposition suivante :

La dissolution dans un réactif d’une masse magnétique dénuée de
Jorce coercitive et placée dans un champ magnétique entraine une
moindre diminution de potenticl thermodynamique que si cetle masse
w'eétait pas aimantée. Lincerse a liew pour une masse diamagnétique.

Démontrons la proposition pour une masse magnétique; la démonstra-
tion est analogue pour une masse diamagnétique.
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Les équations de I'induction magnétique

C{Q:»-/zF(an)‘;—i,
/AN

U= —AF(O) -——,
dy
@:—/zF(é)ll)?;_)

permettent de donner a I'égalité (13) la forme suivante :

o L
(14) dQ—dIQ:[F(;)K)——J(Dlu)]davdga’.~.

L’ altération que Uaimantation de la particule dissoute fait subir a la
variation éprouvée par le potentiel thermodynamique du systéme dépend
uniquement de Uintensité d’aimantation de cette particule.

L’égalité

I
() =—=
JINL
nous permet d’écrire, en observant que o et (o) ont des signes con-
stants,
L L2
FOR) = S5y
- étant compris entre o et 9iL. On a alors, au licu de I'égalité (14),

dx dy ds.

T T
5 @ —dQ@=oe| 1
(15) Q —d, N [F(OIL) 21*‘(;.;)]
On voit alors directement que (dQ — d, ) sera certainement positif, si,
pour toute valeur de p. comprise entre o et 91U, on a

2F () > F(IN),

ce qui aura lieu pour toutes les substances magnéliques connues, puisque,
pour toutes ces substances, lorsque l'aimantation croit, le coefficient
d’aimantation croit faiblement, décroit ou demeure constant. La méme
quantité sera négative sil'on a

2F (@) < F (10,

II. — Fac. de T. L. 14
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ce qui a licu pour toutes les substances diamagnétiques pour lesquelles la
fonction magnétisante est indépendante de 'aimantation ou décroit en va-
leur absolue lorsque aimantation croit; ou bien encore pour celles pour
lesquelles elle croitrait en valeur absolue avec 'aimantation, mais pas assez
rapidement pour passer du simple au double.

L.a proposition ue nous avons ¢noncée toul a 'heure est done démon-
1rée.

'

On voit de plus que, si Fon néglige l'influence de 'aimantation sur le

o

cocfficient d'aimantation, on aura sensiblement

AL

2 F

dQ— d,Q =

dr (ly dsz.

La diminution que subit le potenticl thermodynamique parla dissolution
de la particule atmantée est d’autant moindre que Uaimantation de la
particule est plus énergique; la quantité dont cette aimantation varie
est sensiblement proportionnelle aw carré de Uintensité d’aimantation
de la particule.

Ces diverses propositions donnent la thiorie des phénomenes observes
par M. Remsen et par M. Rowland.

Supposons que £ soit négatif, ¢’est-d-dire que la sabstance considérée
puisse se dissoudre dans le liquide considéré, lorsque cette substance n’est’
pas almantée. '

Aimantons maintenant la substance. Silaimantation est assez énergique,
dQ pourra, aux points ot I'intensité d’aimantation est assez grande, de-
venir positif; en ces points, la dissolution de la substance magnétique sera
impossible; dans Uexpérience de M. Remsen, le cuivre ne se déposera pas
en ces points; ¢'est ce qui arrive au voisinage des poles d'un ¢lectro-aimant
énergique. Siélectro-aimant est plus faible, dQ demeurera négatif en tout
point, et, comme 'a constaté M. Remsen, le cuivee pourra partout se dé-
[H)SCI‘.

Sl existe des régions ot dQ est positif, ¢’est-a-dire oi le cuivre ne peut
se déposer, elles seront séparées des régions o dQ est négatif et ot I'on
peut observer un dépot de cuivree, par une ligne le long de laquelle on
aura

dL = o,
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