Métriques kählériennes à courbure scalaire constante : unicité, stabilité
Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 938, p. 1-32
Un des problèmes les plus intéressants de la géométrie différentielle complexe consiste à comprendre les classes de Kähler de variétés complexes admettant des métriques à courbure scalaire constante. La question de l'unicité a été récemment résolue par Donaldson, Mabuchi, Chen-Tian. Des liens forts avec la stabilité algébrique des variétés ont été mis en évidence. L'exposé s'attachera à exposer les idées nouvelles qui ont mené à ces résultats.
One of the most interesting problems in complex differential geometry is to understand the Kähler classes of complex compact manifolds which admit constant scalar curvature metrics. The uniqueness question has been recently solved in the works of Donaldson, Mabuchi, Chen and Tian, and strong relations appeared between existence and the stability of algebraic varieties. The seminar explains some of the new ideas leading to these results.
Classification:  32Q15,  53D20,  53C55
Mots clés: variété kählérienne, métrique extrémale, stabilité
@incollection{SB_2004-2005__47__1_0,
     author = {Biquard, Olivier},
     title = {M\'etriques k\"ahl\'eriennes \`a courbure scalaire constante : unicit\'e, stabilit\'e},
     booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {307},
     year = {2006},
     note = {talk:938},
     pages = {1-32},
     zbl = {1142.32010},
     mrnumber = {2296414},
     language = {fr},
     url = {http://http://www.numdam.org/item/SB_2004-2005__47__1_0}
}
Biquard, Olivier. Métriques kählériennes à courbure scalaire constante : unicité, stabilité, dans Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 938, pp. 1-32. http://www.numdam.org/item/SB_2004-2005__47__1_0/

[1] M. Abreu - “Kähler geometry of toric varieties and extremal metrics”, Internat. J. Math. 9 (1998), no. 6, p. 641-651. | MR 1644291 | Zbl 0932.53043

[2] T. Aubin - “Équations du type Monge-Ampère sur les variétés kähleriennes compactes”, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, p. Aiii, A119-A121. | MR 433520 | Zbl 0333.53040

[3] S. Bando & T. Mabuchi - “Uniqueness of Einstein Kähler metrics modulo connected group actions”, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, p. 11-40. | MR 946233 | Zbl 0641.53065

[4] A.L. Besse - Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10, Springer-Verlag, Berlin, 1987. | MR 867684 | Zbl 0613.53001

[5] J.-P. Bourguignon - “Métriques d'Einstein-Kähler sur les variétés de Fano : obstructions et existence (d'après Y. Matsushima, A. Futaki, S.T. Yau, A. Nadel et G. Tian)”, in Séminaire Bourbaki, 1996/97, Astérisque, vol. 245, 1997, Exp. no 830, p. 277-305. | Numdam | MR 1627115 | Zbl 0935.32019

[6] L. Boutet De Monvel & J. Sjöstrand - “Sur la singularité des noyaux de Bergman et de Szegö”, in Journées Équations aux Dérivées Partielles (Rennes, 1975), Astérisque, vol. 34-35, Paris, 1976, p. 123-164. | MR 590106 | Zbl 0344.32010

[7] D. Burns & P. De Bartolomeis - “Stability of vector bundles and extremal metrics”, Invent. Math. 92 (1988), no. 2, p. 403-407. | MR 936089 | Zbl 0645.53037

[8] E. Calabi - “Extremal Kähler metrics”, in Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, p. 259-290. | MR 645743 | Zbl 0487.53057

[9] -, “Extremal Kähler metrics. II”, in Differential geometry and complex analysis, Springer, Berlin, 1985, p. 95-114. | Zbl 0574.58006

[10] E. Calabi & X.X. Chen - “The space of Kähler metrics. II”, J. Differential Geom. 61 (2002), no. 2, p. 173-193. | MR 1969662 | Zbl 1067.58010

[11] D.M.J. Calderbank & M.A. Singer - “Einstein metrics and complex singularities”, Invent. Math. 156 (2004), no. 2, p. 405-443. | MR 2052611 | Zbl 1061.53026

[12] D. Catlin - “The Bergman kernel and a theorem of Tian”, in Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, p. 1-23. | MR 1699887 | Zbl 0941.32002

[13] X.X. Chen - “The space of Kähler metrics”, J. Differential Geom. 56 (2000), no. 2, p. 189-234. | MR 1863016 | Zbl 1041.58003

[14] X.X. Chen & G. Tian - “Geometry of Kähler metrics and holomorphic foliation by discs”, arXiv : math.DG/0409433.

[15] X. Dai, K. Liu & X. Ma - “On the asymptotic expansion of Bergman kernel”, J. Differential Geom. 72 (2006), no. 1, p. 1-41. | MR 2215454 | Zbl 1099.32003

[16] S.K. Donaldson - “Infinite determinants, stable bundles and curvature”, Duke Math. J. 54 (1987), no. 1, p. 231-247. | MR 885784 | Zbl 0627.53052

[17] -, “Remarks on gauge theory, complex geometry and 4-manifold topology”, in Fields Medallists' lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publishing, River Edge, NJ, 1997, p. 384-403. | MR 1622931

[18] -, “Symmetric spaces, Kähler geometry and Hamiltonian dynamics”, in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, p. 13-33.

[19] -, “Scalar curvature and projective embeddings. I”, J. Differential Geom. 59 (2001), no. 3, p. 479-522. | MR 1916953 | Zbl 1052.32017

[20] -, “Holomorphic discs and the complex Monge-Ampère equation”, J. Symplectic Geom. 1 (2002), no. 2, p. 171-196. | MR 1959581 | Zbl 1035.53102

[21] -, “Scalar curvature and stability of toric varieties”, J. Differential Geom. 62 (2002), no. 2, p. 289-349. | MR 1988506 | Zbl 1074.53059

[22] -, “Interior estimates for solutions of Abreu's equation”, Collect. Math. 56 (2005), no. 2, p. 103-142. | MR 2154300 | Zbl 1085.53063

[23] -, “Scalar curvature and projective embeddings, II”, Q. J. Math. 56 (2005), no. 3, p. 345-356. | MR 2161248 | Zbl 1159.32012

[24] S.K. Donaldson & P. B. Kronheimer - The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1990, Oxford Science Publications. | MR 1079726 | Zbl 0904.57001

[25] A. Futaki - “An obstruction to the existence of Einstein Kähler metrics”, Invent. Math. 73 (1983), no. 3, p. 437-443. | MR 718940 | Zbl 0506.53030

[26] P. Gauduchon - Calabi's extremal Kähler metrics : an elementary introduction. | Zbl 0487.53057

[27] D. Gieseker - “Global moduli for surfaces of general type”, Invent. Math. 43 (1977), no. 3, p. 233-282. | MR 498596 | Zbl 0389.14006

[28] D. Guan - “On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles”, Math. Res. Lett. 6 (1999), no. 5-6, p. 547-555. | MR 1739213 | Zbl 0968.53050

[29] G. Kempf & L. Ness - “The length of vectors in representation spaces”, in Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lect. Notes in Math., vol. 732, Springer, Berlin, 1979, p. 233-243. | MR 555701 | Zbl 0407.22012

[30] J. Kim, C. Lebrun & M. Pontecorvo - “Scalar-flat Kähler surfaces of all genera”, J. Reine Angew. Math. 486 (1997), p. 69-95. | MR 1450751 | Zbl 0876.53044

[31] C. Lebrun - “Scalar-flat Kähler metrics on blown-up ruled surfaces.”, J. Reine Angew. Math. 420 (1991), p. 161-177. | MR 1124569 | Zbl 0727.53067

[32] -, “Polarized 4-manifolds, extremal Kähler metrics, and Seiberg-Witten theory”, Math. Res. Lett. 2 (1995), no. 5, p. 653-662. | MR 1359969 | Zbl 0874.53051

[33] C. Lebrun & M. Singer - “Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces”, Invent. Math. 112 (1993), no. 2, p. 273-313. | MR 1213104 | Zbl 0793.53067

[34] A. Lichnerowicz - “Sur les transformations analytiques des variétés kählériennes compactes”, C. R. Acad. Sci. Paris 244 (1957), p. 3011-3013. | MR 94479 | Zbl 0080.37501

[35] Z. Lu - “On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch”, Amer. J. Math. 122 (2000), no. 2, p. 235-273. | MR 1749048 | Zbl 0972.53042

[36] H. Luo - “Geometric criterion for Gieseker-Mumford stability of polarized manifolds”, J. Differential Geom. 49 (1998), no. 3, p. 577-599. | MR 1669716 | Zbl 1006.32022

[37] T. Mabuchi - K-energy maps integrating Futaki invariants”, Tohoku Math. J. (2) 38 (1986), no. 4, p. 575-593. | MR 867064 | Zbl 0619.53040

[38] -, “Some symplectic geometry on compact Kähler manifolds. I”, Osaka J. Math. 24 (1987), no. 2, p. 227-252. | MR 909015 | Zbl 0645.53038

[39] -, “Stability of extremal Kähler metrics”, Osaka J. Math. 41 (2004), no. 3.

[40] -, “Uniqueness of extremal Kähler metrics for an integral Kähler class”, Internat. J. Math. 15 (2004), no. 6, p. 531-546. | MR 2078878 | Zbl 1058.32017

[41] -, “An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I”, Invent. Math. 159 (2005), no. 2, p. 225-243. | MR 2116275 | Zbl 1118.53047

[42] -, “An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, II”, J. Differential Geom. (à paraître). | Zbl 1209.53032

[43] Y. Matsushima - “Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne”, Nagoya Math. J. 11 (1957), p. 145-150. | MR 94478 | Zbl 0091.34803

[44] D. Mumford - “Stability of projective varieties”, Enseignement Math. (2) 23 (1977), no. 1-2, p. 39-110. | MR 450272 | Zbl 0363.14003

[45] D. Mumford, J. Fogarty & F. Kirwan - Geometric invariant theory, 3e 'ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34, Springer-Verlag, Berlin, 1994. | MR 1304906 | Zbl 0797.14004

[46] S.T. Paul & G. Tian - “Algebraic and analytic K-stability”, arXiv : math.DG/0405530.

[47] D.H. Phong & J. Sturm - “Stability, energy functionals, and Kähler-Einstein metrics”, Comm. Anal. Geom. 11 (2003), no. 3, p. 565-597. | MR 2015757 | Zbl 1098.32012

[48] -, “Scalar curvature, moment maps, and the Deligne pairing”, Amer. J. Math. 126 (2004), no. 3, p. 693-712. | MR 2058389 | Zbl 1077.53068

[49] Y. Rollin & M. Singer - “Non-minimal scalar-flat Kähler surfaces and parabolic stability”, Invent. Math. 162 (2005), no. 2, p. 235-270. | MR 2199006 | Zbl 1083.32021

[50] J. Ross - “Instability of polarised algebraic varieties”, PhD thesis, Imperial College, 2003.

[51] J. Ross & R. Thomas - “An obstruction to the existence of constant scalar curvature Kähler metrics”, J. Differential Geom. 72 (2006), no. 3, p. 429-466. | MR 2219940 | Zbl 1125.53057

[52] -, “A study of the Hilbert-Mumford criterion for the stability of projective varieties”, arXiv : math.AG/0412519, . | Zbl 1200.14095

[53] W.-D. Ruan - “Canonical coordinates and Bergmann metrics”, Comm. Anal. Geom. 6 (1998), no. 3, p. 589-631. | MR 1638878 | Zbl 0917.53026

[54] S. Semmes - “Complex Monge-Ampère and symplectic manifolds”, Amer. J. Math. 114 (1992), no. 3, p. 495-550. | MR 1165352 | Zbl 0790.32017

[55] C.T. Simpson - “Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization”, J. Amer. Math. Soc. 1 (1988), no. 4, p. 867-918. | MR 944577 | Zbl 0669.58008

[56] G. Tian - “On Kähler-Einstein metrics on certain Kähler manifolds with C 1 (M)>0, Invent. Math. 89 (1987), no. 2, p. 225-246. | MR 894378 | Zbl 0599.53046

[57] -, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom. 32 (1990), no. 1, p. 99-130. | MR 1064867 | Zbl 0706.53036

[58] -, “On Calabi's conjecture for complex surfaces with positive first Chern class”, Invent. Math. 101 (1990), no. 1, p. 101-172. | MR 1055713 | Zbl 0716.32019

[59] -, “The K-energy on hypersurfaces and stability”, Comm. Anal. Geom. 2 (1994), no. 2, p. 239-265. | MR 1312688 | Zbl 0846.32019

[60] -, “Kähler-Einstein metrics with positive scalar curvature”, Invent. Math. 130 (1997), no. 1, p. 1-37. | MR 1471884 | Zbl 0892.53027

[61] -, “Bott-Chern forms and geometric stability”, Discrete Contin. Dynam. Systems 6 (2000), no. 1, p. 211-220. | MR 1739924 | Zbl 1022.32009

[62] -, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000, Notes taken by Meike Akveld. | MR 1787650 | Zbl 0978.53002

[63] -, “Extremal metrics and geometric stability”, Houston J. Math. 28 (2002), no. 2, p. 411-432, Special issue for S. S. Chern. | MR 1898198

[64] K. Uhlenbeck & S.-T. Yau - “On the existence of Hermitian-Yang-Mills connections in stable vector bundles”, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., p. S257-S293, Frontiers of the mathematical sciences : 1985 (New York, 1985). | MR 861491 | Zbl 0615.58045

[65] E. Viehweg - Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 30, Springer-Verlag, Berlin, 1995. | MR 1368632 | Zbl 0844.14004

[66] S.-T. Yau - “Calabi's conjecture and some new results in algebraic geometry”, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, p. 1798-1799. | MR 451180 | Zbl 0355.32028

[67] -, “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I”, Comm. Pure Appl. Math. 31 (1978), no. 3, p. 339-411. | MR 480350 | Zbl 0369.53059

[68] -, “Open problems in geometry”, in Differential geometry : partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, p. 1-28. | MR 1216573 | Zbl 0801.53001

[69] S. Zelditch - “Szegö kernels and a theorem of Tian”, Internat. Math. Res. Notices (1998), no. 6, p. 317-331. | MR 1616718 | Zbl 0922.58082

[70] S. Zhang - “Heights and reductions of semi-stable varieties”, Compositio Math. 104 (1996), no. 1, p. 77-105. | Numdam | MR 1420712 | Zbl 0924.11055