A disjointness property of l p n sequences in L p
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz"), (1978-1979), Exposé no. 21, p. 1-13
@article{SAF_1978-1979____A18_0,
     author = {Schechtman, Gideon},
     title = {A disjointness property of $l^n\_p$ sequences in $L\_p$},
     journal = {S\'eminaire Analyse fonctionnelle (dit "Maurey-Schwartz")},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1978-1979},
     note = {talk:21},
     pages = {1-13},
     language = {en},
     url = {http://http://www.numdam.org/item/SAF_1978-1979____A18_0}
}
Schechtman, G. A disjointness property of $l^n_p$ sequences in $L_p$. Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz"),  (1978-1979), Exposé no. 21, pp. 1-13. http://www.numdam.org/item/SAF_1978-1979____A18_0/

(1) L.E. Dor, On projections in L1, Ann of Math. 102 (1975), 463 -474. | MR 420244 | Zbl 0314.46027

(2) P. Enflo and H.P. Rosenthal, Some results concerning Lp(μ) spaces, J. Funct. Anal. 14(1973), 325-348. | Zbl 0265.46032

(3) G. Schechtman, Almost isometric Lp subspaces of Lp(0,1), to appear in the J. of the London Math. Soc. | Zbl 0415.46029