Harmonic measures of perforated domains
Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), pp. 273-316.
@article{RSMUP_1997__98__273_0,
     author = {Malusa, Annalisa},
     title = {Harmonic measures of perforated domains},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {273--316},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {98},
     year = {1997},
     zbl = {0893.31004},
     mrnumber = {1492982},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1997__98__273_0/}
}
TY  - JOUR
AU  - Malusa, Annalisa
TI  - Harmonic measures of perforated domains
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1997
DA  - 1997///
SP  - 273
EP  - 316
VL  - 98
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1997__98__273_0/
UR  - https://zbmath.org/?q=an%3A0893.31004
UR  - https://www.ams.org/mathscinet-getitem?mr=1492982
LA  - en
ID  - RSMUP_1997__98__273_0
ER  - 
Malusa, Annalisa. Harmonic measures of perforated domains. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), pp. 273-316. http://www.numdam.org/item/RSMUP_1997__98__273_0/

[1] G. Buttazzo - G. DAL MASO - U. Mosco, A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal., 71 (1987), pp. 263-278. | MR 880980 | Zbl 0622.28006

[2] D. Cioranescu - F. Murat, Un terme étrange venu d'ailleurs, I-II, in Nonlinear PDE's and Their Applications, Collège de France Seminar, Vols. II and III (H. Brezis - J. L. Lions eds.), Research Notes in Mathematics, Pitman, London, Vol. 60 (1982), pp. 98-138, Vol. 70 (1983), pp. 154-178. | Zbl 0498.35034

[3] G. Dal Maso - A. DEFRANCESCHI, A Kellogg property for μ-capacities, Boll. Un. Mat. Ital., 7 (1988), pp. 127-135. | Zbl 0659.31009

[4] G. Dal Maso - A. GARRONI, New results on the asymptotic behaviour of Dirichlet problems in perforated domains, Math. Mod. Meth. Appl. Sci., 4 (1994), pp. 373-407. | MR 1282241 | Zbl 0804.47050

[5] G. Dal Maso - A. Garroni, Capacitary methods for the study of asymptotic Dirichlet problems, to appear. | Zbl 0902.35016

[6] G. Dal Maso - U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95, n. 4 (1986), pp. 345-387. | MR 853783 | Zbl 0634.35033

[7] G. Dal Maso - U. Mosco, Wiener criterion and Γ-convergence, Appl. Math. Optim., 15 (1987), pp. 15-63. | Zbl 0644.35033

[8] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, Berlin (1972). | MR 731258 | Zbl 0990.31001

[9] J.L. Doob, Measure Theory, Springer-Verlag, Berlin (1994). | MR 1253752 | Zbl 0791.28001

[10] J. Frehse, Capacitary methods in the theory of partial differential equations, Jahresber. Deutsch. Math. Verein, 84 (1982), pp. 1-44. | MR 644068 | Zbl 0486.35002

[11] A. Garroni, A Wiener estimate for relaxed Dirichlet problems in dimension N ≽ 2, Diff. Integral Eq., 8 (1995), pp. 849-866. | Zbl 0815.35013

[12] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations, Springer-Verlag, Berlin (1983). | MR 737190 | Zbl 0562.35001

[13] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin (1972). | MR 350027 | Zbl 0253.31001

[14] W. Littman - G. Stampacchia - H.F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. S.N.S. Pisa, 17 (1963), pp. 45-79. | Numdam | MR 161019 | Zbl 0116.30302

[15] A. Malusa, Asymptotic behaviour of Dirichlet problems with measure data in perforated domains, Preprint SISSA (1995). | MR 1399195 | Zbl 0861.35009

[16] A. Malusa - L. ORSINA, Existence and regularity results for relaxed Dirichlet problems with measure data, Ann. Mat. Pura Appl., 170 (1996), pp. 57-87. | MR 1441614 | Zbl 0882.35037

[17] G. Stampacchia, Le problème de Dirichtet pour les èquations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, n. 1 (1965), pp. 189-258. | Numdam | MR 192177 | Zbl 0151.15401

[18] N. Wiener, The Dirichlet problem, J. Math. Phys., 4 (1924), pp. 127-146. | JFM 51.0361.01

[19] W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin (1989). | MR 1014685 | Zbl 0692.46022