Groups which are isomorphic to their nonabelian subgroups
Rendiconti del Seminario Matematico della Università di Padova, Volume 97 (1997), pp. 7-16.
@article{RSMUP_1997__97__7_0,
     author = {Smith, Howard and Wiegold, James},
     title = {Groups which are isomorphic to their nonabelian subgroups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {7--16},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {97},
     year = {1997},
     mrnumber = {1476158},
     zbl = {0887.20012},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1997__97__7_0/}
}
TY  - JOUR
AU  - Smith, Howard
AU  - Wiegold, James
TI  - Groups which are isomorphic to their nonabelian subgroups
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1997
SP  - 7
EP  - 16
VL  - 97
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1997__97__7_0/
LA  - en
ID  - RSMUP_1997__97__7_0
ER  - 
%0 Journal Article
%A Smith, Howard
%A Wiegold, James
%T Groups which are isomorphic to their nonabelian subgroups
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1997
%P 7-16
%V 97
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1997__97__7_0/
%G en
%F RSMUP_1997__97__7_0
Smith, Howard; Wiegold, James. Groups which are isomorphic to their nonabelian subgroups. Rendiconti del Seminario Matematico della Università di Padova, Volume 97 (1997), pp. 7-16. http://www.numdam.org/item/RSMUP_1997__97__7_0/

[1] B. Bruno - R.E. Phillips, Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. | MR | Zbl

[2] P.H. Kropholler, On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. | MR | Zbl

[3] J.C. Lennox - H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. | MR | Zbl

[4] G.A. Miller - H.C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. | JFM | MR

[5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). | MR | Zbl

[6] A. Yu. OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). | MR | Zbl

[7] D. Segal, Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). | MR | Zbl

[8] H. Smith, On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. | Numdam | MR | Zbl

[9] I.N. Stewart - D.O. Tall, Algebraic Number Theory, second edition, Chap-man and Hall (1987). | MR | Zbl