Groups with subnormal subgroups of bounded defect
Rendiconti del Seminario Matematico della Università di Padova, Volume 77 (1987), pp. 177-187.
@article{RSMUP_1987__77__177_0,
     author = {Casolo, Carlo},
     title = {Groups with subnormal subgroups of bounded defect},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {177--187},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {77},
     year = {1987},
     mrnumber = {904619},
     zbl = {0621.20012},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1987__77__177_0/}
}
TY  - JOUR
AU  - Casolo, Carlo
TI  - Groups with subnormal subgroups of bounded defect
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1987
SP  - 177
EP  - 187
VL  - 77
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1987__77__177_0/
LA  - en
ID  - RSMUP_1987__77__177_0
ER  - 
%0 Journal Article
%A Casolo, Carlo
%T Groups with subnormal subgroups of bounded defect
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1987
%P 177-187
%V 77
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1987__77__177_0/
%G en
%F RSMUP_1987__77__177_0
Casolo, Carlo. Groups with subnormal subgroups of bounded defect. Rendiconti del Seminario Matematico della Università di Padova, Volume 77 (1987), pp. 177-187. http://www.numdam.org/item/RSMUP_1987__77__177_0/

[1] C. Casolo, Gruppi finiti risolubiti in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 74 (1984), pp. 257-271. | Numdam | Zbl

[2] C. Casolo, Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math., 46 (1986), pp. 1-7. | MR | Zbl

[3] W. Gaschütz: Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. | MR | Zbl

[4] P. Hall, Wreath powers and characteristically simple groups, Proc. Cambridge Phil. Soc., 58 (1962), pp. 170-184. | MR | Zbl

[5] T.O. Hawkes, Groups whose subnormal subgroups have bounded defect, Arch. Math., 43 (1984), pp. 289-294. | MR | Zbl

[6] F. Leinen, Existenziell abgeschlossene Lχ-Gruppen, Dissertation, Albert-Ludwigs Univ., Friburg i.Br., 1984.

[7] D.J. Mccaughan - S.E. Stonehewer, Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math., 35 (1980), pp. 56-60. | MR | Zbl

[8] D. Mcdougall, The subnormal structure of some classes of soluble groups, J. Austral. Math. Soc., 13 (1972), pp. 365-377. | MR | Zbl

[9] D.J.S. Robinson, On groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. | MR | Zbl

[10] D.J.S. Robinson, On the theory of subnormal subgroups, Math. Zeit., 89 (1965), pp. 30-51. | MR | Zbl

[11] D.J.S. Robinson, Wreath products and indices of subnormality, Proc. London Math. Soc., (3) 17 (1967), pp. 257-270. | MR | Zbl

[12] D.J.S. Robinson, Infinite soluble and nilpotent groups, London, Q.M.C. Math. Notes (1968). | MR

[13] D.J.S. Robinson, Finiteness conditions and generalised soluble groups, Springer, Berlin -Heidelberg-New York, 1972. | Zbl

[14] J.E. Roseblade, On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. | MR | Zbl

[15] H. Smith, Groups with the subnormal join property, Can. J. Math., 37 (1985), pp. 1-16. | MR | Zbl