Abelian groups in which every pure subgroup is an isotype subgroup
Rendiconti del Seminario Matematico della Università di Padova, Volume 62 (1980), pp. 129-136.
@article{RSMUP_1980__62__129_0,
     author = {Be\v{c}v\'a\v{r}, Jind\v{r}ich},
     title = {Abelian groups in which every pure subgroup is an isotype subgroup},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {129--136},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {62},
     year = {1980},
     mrnumber = {582946},
     zbl = {0436.20035},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1980__62__129_0/}
}
TY  - JOUR
AU  - Bečvář, Jindřich
TI  - Abelian groups in which every pure subgroup is an isotype subgroup
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1980
SP  - 129
EP  - 136
VL  - 62
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1980__62__129_0/
LA  - en
ID  - RSMUP_1980__62__129_0
ER  - 
%0 Journal Article
%A Bečvář, Jindřich
%T Abelian groups in which every pure subgroup is an isotype subgroup
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1980
%P 129-136
%V 62
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1980__62__129_0/
%G en
%F RSMUP_1980__62__129_0
Bečvář, Jindřich. Abelian groups in which every pure subgroup is an isotype subgroup. Rendiconti del Seminario Matematico della Università di Padova, Volume 62 (1980), pp. 129-136. http://www.numdam.org/item/RSMUP_1980__62__129_0/

[1] K. Benabdallah - J. M. IRWIN, On quasi-essential subgroups of primary abelian groups, Can. J. Math., 22 (1970), pp. 1176-1184. | MR | Zbl

[2] L. Fuchs, Infinite Abelian Groups I, II, Acad. Press, 1970, 1973. | Zbl

[3] L. Fuchs - A. Kertész - T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. | MR | Zbl

[4] J.M. Irwin - E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. | Numdam | MR | Zbl

[5] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. | MR | Zbl

[6] A. Kfrtész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. | MR | Zbl

[7] L. Ja. KULIKOV, Obobščennye primarnye gruppy, Trudy Moskov. Mat. Obšč., 1 (1952), pp. 247-326. | MR | Zbl

[8] R.C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. | MR | Zbl

[9] C. Megibben, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. | MR | Zbl

[10] R.S. Pierce, Centers of purity in abelian groups, Pacific J. Math., 13 (1963), pp. 215-219. | MR | Zbl

[11] K.M. Rangaswamy, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. | MR | Zbl

[12] K.M. Rangaswamy, Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526. | MR | Zbl

[13] F. Richman - C.P. Walker, On a certain purification problem for primary abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210. | EuDML | Numdam | MR | Zbl

[14] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. | MR | Zbl

[15] S.N. Černikov, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.