A single-server queueing system with a batch markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.
Mots clés : negative arrivals, BMAP/SM/1 queue, markovian arrival process of disasters, operation modes
@article{RO_2004__38_2_153_0, author = {Semenova, Olga V.}, title = {Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {153--171}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/ro:2004017}, zbl = {1092.90018}, mrnumber = {2081835}, language = {en}, url = {www.numdam.org/item/RO_2004__38_2_153_0/} }
Semenova, Olga V. Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 153-171. doi : 10.1051/ro:2004017. http://www.numdam.org/item/RO_2004__38_2_153_0/
[1] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | MR 1785793 | Zbl 0971.90007
,[2] The queue with mass exodus and mass arrivals when empty. J. Appl. Prob. 34 (1997) 192-207. | MR 1429066 | Zbl 0876.60079
and ,[3] Optimal control for a queue with two operation modes. Prob. Eng. Inform. Sci. 11 (1997) 225-265. | MR 1437805 | Zbl 1096.90515
,[4] Optimal control for a queue with two service modes. Math. Prob. Eng. 5 (1999) 255-273. | EuDML 48631 | Zbl 0954.60084
and ,[5] queue with Markovian input of disasters and non-instantaneous recovery. Perform. Eval. 45 (2001) 19-32. | Zbl 1013.68035
and ,[6] A queueing system with Markovian arrival of disasters. J. Appl. Prob. 36 (1999) 868-881. | MR 1737059 | Zbl 0949.60100
and ,[7] Embedded stationary distribution for the queue with disasters, Queues: Flows Syst. Networks 14 (1998) 92-97.
and ,[8] Linear independence of root equations for type of Markov chains. Queue. Syst. 20 (1995) 321-339. | MR 1356880 | Zbl 0847.60076
, , and ,[9] Spectral analysis of and type Markov chains. Adv. Appl. Prob. 28 (1996) 114-165. | MR 1372333 | Zbl 0845.60092
, and ,[10] Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. C. R. Acad. Sci. Paris II 309 (1989) 979-982. | MR 1029869
,[11] Random neural networks with positive and negative signals and product form solution. Neural Comput. 1 (1989) 502-510.
,[12] Réseaux neuronaux aléatoires stables. C. R. Acad. Sci. 310 (1990) 177-180. | MR 1053298
,[13] Stable random neural networks. Neural Comput. 2 (1990) 239-247. | MR 1053298
,[14] Queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 655-663. | MR 1123837 | Zbl 0741.60091
,[15] Queues with negative arrivals. J. Appl. Prob. 28 (1991) 245-250. | MR 1090463 | Zbl 0744.60110
, and ,[16] Performances d’un systeme informatique dupliqu. C. R. Acad. Sci. Paris II 312 (1991) 27-30.
and ,[17] Stability of product form G-networks. Proba Eng. Inform. Sci. 6 (1992) 271-276. | Zbl 1134.60396
and ,[18] G-networks with instantaneous customer movement. J. Appl. Prob. 30 (1993) 742-748. | MR 1232750 | Zbl 0781.60088
,[19] G-networks with signals and batch removal. Prob. Eng. Inform. Sci. 7 (1993) 335-342.
,[20] G-networks: An unifying model for queueing networks and neural networks. Ann. oper. Res. 48, (1994) 141-156. | MR 1264694 | Zbl 0803.90058
,[21] G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci. 155 (1996) 141-156. | MR 1379069 | Zbl 0873.68010
, and ,[22] G-networks with multiple classes of signal and positive customers. Eur. J. Oper. Res. 108 (1998) 293-305. | Zbl 0954.90009
and ,[23] Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK (1981). | MR 640865 | Zbl 0497.26005
,[24] The queue with negative customers. Adv. Appl. Prob. 28 (1996) 540-566. | MR 1387890 | Zbl 0861.60088
and ,[25] A Pollaczeck-Khinchine formula for queues with disasters. J. Appl. Prob. 33 (1996) 1191-1200. | Zbl 0867.60082
and ,[26] New results on the single server queue with a batch Markovian arrival processes. Stoch. Mod. 7 (1991) 1-46. | MR 1102528 | Zbl 0733.60115
,[27] Some steady-state distributions for the queue. Stoch. Mod. 10 (1994) 575-598. | MR 1284553 | Zbl 0804.60086
and ,[28] Structured Stochastic Matrices of Type Applications. Marcel Dekker, New York (1989). | MR 1010040 | Zbl 0695.60088
,[29] An vacation model with two service modes. Prob. Eng. Inform. Sci. 9 (1995) 355-374. | MR 1365266
and ,[30] A regenerative approach for an queue with two service modes. Automat. Control Comput. Sci. 32 (1998) 3-14.
,[31] Optimal control for a queue with two service modes. Eur. J. Oper. Res. 113 (1999) 610-619. | Zbl 0947.90028
and ,[32] Probability Theory and Random Process. High School, Kiev (1980).
,[33] On the optimality of a switch-over with exponential controlling the queue size in a queue with variable service rate. Lect. Notes Comput. Sci. (1976). | Zbl 0333.60096
,