Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes
RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 153-171.

A single-server queueing system with a batch markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.

DOI : https://doi.org/10.1051/ro:2004017
Mots clés : negative arrivals, BMAP/SM/1 queue, markovian arrival process of disasters, operation modes
@article{RO_2004__38_2_153_0,
     author = {Semenova, Olga V.},
     title = {Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {153--171},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/ro:2004017},
     zbl = {1092.90018},
     mrnumber = {2081835},
     language = {en},
     url = {http://www.numdam.org/item/RO_2004__38_2_153_0/}
}
Semenova, Olga V. Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 153-171. doi : 10.1051/ro:2004017. http://www.numdam.org/item/RO_2004__38_2_153_0/

[1] J. Artalejo, G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | MR 1785793 | Zbl 0971.90007

[2] A. Chen and E. Renshaw, The M/M/1 queue with mass exodus and mass arrivals when empty. J. Appl. Prob. 34 (1997) 192-207. | MR 1429066 | Zbl 0876.60079

[3] A.N. Dudin, Optimal control for a M x /G/1 queue with two operation modes. Prob. Eng. Inform. Sci. 11 (1997) 225-265. | MR 1437805 | Zbl 1096.90515

[4] A.N. Dudin and S. Nishimura, Optimal control for a BMAP/G/1 queue with two service modes. Math. Prob. Eng. 5 (1999) 255-273. | EuDML 48631 | Zbl 0954.60084

[5] A.N. Dudin and A.V. Karolik, BMAP/SM/1 queue with Markovian input of disasters and non-instantaneous recovery. Perform. Eval. 45 (2001) 19-32. | Zbl 1013.68035

[6] A.N. Dudin and S. Nishimura, A BMAP/SM/1 queueing system with Markovian arrival of disasters. J. Appl. Prob. 36 (1999) 868-881. | MR 1737059 | Zbl 0949.60100

[7] A.N. Dudin and S. Nishimura, Embedded stationary distribution for the BMAP/SM/1/N queue with disasters, Queues: Flows Syst. Networks 14 (1998) 92-97.

[8] H.R. Gail, S.L. Hantler, M. Sidi and B.A. Taylor, Linear independence of root equations for M/G/1 type of Markov chains. Queue. Syst. 20 (1995) 321-339. | MR 1356880 | Zbl 0847.60076

[9] H.R. Gail, S.L. Hantler and B.A. Taylor, Spectral analysis of M/G/1 and G/M/1 type Markov chains. Adv. Appl. Prob. 28 (1996) 114-165. | MR 1372333 | Zbl 0845.60092

[10] E. Gelenbe, Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. C. R. Acad. Sci. Paris II 309 (1989) 979-982. | MR 1029869

[11] E. Gelenbe, Random neural networks with positive and negative signals and product form solution. Neural Comput. 1 (1989) 502-510.

[12] E. Gelenbe, Réseaux neuronaux aléatoires stables. C. R. Acad. Sci. 310 (1990) 177-180. | MR 1053298

[13] E. Gelenbe, Stable random neural networks. Neural Comput. 2 (1990) 239-247. | MR 1053298

[14] E. Gelenbe, Queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 655-663. | MR 1123837 | Zbl 0741.60091

[15] E. Gelenbe, P. Glynn and K. Sigman, Queues with negative arrivals. J. Appl. Prob. 28 (1991) 245-250. | MR 1090463 | Zbl 0744.60110

[16] E. Gelenbe and S. Tucci, Performances d’un systeme informatique duplique ´. C. R. Acad. Sci. Paris II 312 (1991) 27-30.

[17] E. Gelenbe and M. Schassberger, Stability of product form G-networks. Proba Eng. Inform. Sci. 6 (1992) 271-276. | Zbl 1134.60396

[18] E. Gelenbe, G-networks with instantaneous customer movement. J. Appl. Prob. 30 (1993) 742-748. | MR 1232750 | Zbl 0781.60088

[19] E. Gelenbe, G-networks with signals and batch removal. Prob. Eng. Inform. Sci. 7 (1993) 335-342.

[20] E. Gelenbe, G-networks: An unifying model for queueing networks and neural networks. Ann. oper. Res. 48, (1994) 141-156. | MR 1264694 | Zbl 0803.90058

[21] J.M. Fourneau, E. Gelenbe and R. Suros, G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci. 155 (1996) 141-156. | MR 1379069 | Zbl 0873.68010

[22] E. Gelenbe and A. Labed, G-networks with multiple classes of signal and positive customers. Eur. J. Oper. Res. 108 (1998) 293-305. | Zbl 0954.90009

[23] A. Graham, Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK (1981). | MR 640865 | Zbl 0497.26005

[24] P.G. Harrison and E. Pitel, The M/G/1 queue with negative customers. Adv. Appl. Prob. 28 (1996) 540-566. | MR 1387890 | Zbl 0861.60088

[25] G. Jain and K. Sigman, A Pollaczeck-Khinchine formula for M/G/1 queues with disasters. J. Appl. Prob. 33 (1996) 1191-1200. | Zbl 0867.60082

[26] D.M. Lucantoni, New results on the single server queue with a batch Markovian arrival processes. Stoch. Mod. 7 (1991) 1-46. | MR 1102528 | Zbl 0733.60115

[27] D.M. Lucantoni and M.F. Neuts, Some steady-state distributions for the BMAP/SM/1 queue. Stoch. Mod. 10 (1994) 575-598. | MR 1284553 | Zbl 0804.60086

[28] M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type Applications. Marcel Dekker, New York (1989). | MR 1010040 | Zbl 0695.60088

[29] S. Nishimura and J. Jiang, An M/G/1 vacation model with two service modes. Prob. Eng. Inform. Sci. 9 (1995) 355-374. | MR 1365266

[30] R.D. Nobel, A regenerative approach for an M X /G/1 queue with two service modes. Automat. Control Comput. Sci. 32 (1998) 3-14.

[31] R.D. Nobel and H. Tijms, Optimal control for a M X /G/1 queue with two service modes. Eur. J. Oper. Res. 113 (1999) 610-619. | Zbl 0947.90028

[32] X. Skorokhod, Probability Theory and Random Process. High School, Kiev (1980).

[33] H. Tijms, On the optimality of a switch-over with exponential controlling the queue size in a M/G/1 queue with variable service rate. Lect. Notes Comput. Sci. (1976). | Zbl 0333.60096