Improved lower bounds to the travelling salesman problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 12 (1978) no. 4, pp. 369-382.
@article{RO_1978__12_4_369_0,
     author = {d'Atri, Gianfranco},
     title = {Improved lower bounds to the travelling salesman problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {369--382},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {1978},
     zbl = {0399.90094},
     mrnumber = {516515},
     language = {en},
     url = {http://www.numdam.org/item/RO_1978__12_4_369_0/}
}
d'Atri, Gianfranco. Improved lower bounds to the travelling salesman problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 12 (1978) no. 4, pp. 369-382. http://www.numdam.org/item/RO_1978__12_4_369_0/

1. M. Bellmore and J. C. Malone, Palhology of the Travelling Salesman Subtour Elimination Algorithms, Ops. Res, Vol. 19, 1971, pp. 278-307. | MR 391976 | Zbl 0219.90032

2. M. Bellmore and G. L. Nemhauser, The Travelling Salesman Problem : a Survey, Ops. Res., Vol. 16, 1968, p. 538-558. | MR 234711 | Zbl 0213.44604

3.N. Christofides, Graph Theory : an Algorithmic Approach, 1975, Academic Press, N.Y., pp. 236-280. | MR 429612 | Zbl 0321.94011

4.G. D'Atri, Lagrangean Relaxation in Integer Programming, IXth Symposium on Mathematical Programming, 1976, Budapest.

5.E. W. Dijkistra, A Note on Two Problems in Connection with Graphs, Numerische Math., Vol. 1, 1959, pp. 269-173. | MR 107609 | Zbl 0092.16002

6.J. Edmonds, Some Well Solved Problems in Combinatorial Optimization in Combinatorial Programming : Methods and Applications, 1975, B. ROY, éd., Reidel Pub. Co., pp. 285-311. | MR 401136 | Zbl 0312.90037

7.J. Edmonds and E. Johnson, Matching : a Well Solved Class of Integer Linear Programs in Combinatorial Structures and their Applications, 1970, Gordon and Breach, N.Y., pp. 89-92. | MR 267898 | Zbl 0258.90032

8. M. L. Fisher, W. D. Northup and J. F. Shapiro, Using Duality to Solve Discrete Optimization Problems : Theory and Computational Experience, Math. Prog. Study, Vol. 3, 1975, pp. 56-94. | MR 444006 | Zbl 0367.90087

9. A. M. Geoffrion, Lagrangean Relaxation for Integer Programming, Math. Prog. Study, Vol. 2, 1974, pp. 82-114. | MR 439172 | Zbl 0395.90056

10. M. Held. P. Wolfe and H. P. Crowder, Validation of Subgradiant Optimization, Math. Prog., Vol. 6, 1974, pp. 62-88. | MR 341863 | Zbl 0284.90057

11. M. Gondran and J. L. Laurière, Un Algorithme pour les Problèmes de Recouvrements, R.A.I.R.O., Vol. 2, 1975, pp. 33-51. | Numdam | MR 456455 | Zbl 0325.90043

12. M. Held and R. M. Karp, The Travelling Salesman Problem and Minimum Spanning Trees, Ops. Res., Vol. 18, 1970, pp. 1138-1162. | MR 278710 | Zbl 0226.90047

13. M. Held and R. M. Karp, The Travelling Salesman Problem and Minimum Spanning Trees, II, Math. Prog., Vol. 1, 1971, pp. 6-25. | MR 289119 | Zbl 0232.90038

14. K. Helbig Hansen and J. Krarup, Improvements of the Held-Karp Algorithm for the Symmetric Travelling Salesman Problem, Math. Prog., Vol. 7, 1974, pp. 87-96. | MR 359322 | Zbl 0285.90055

15. J. B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Travelling Salesman Problem, Proc. Amer. Math. Soc., Vol. 2, 1956, pp. 48-50. | MR 78686 | Zbl 0070.18404

16. S. Lin, Computer Solutions of the Travelling Salesman Problem, Bell System Techn. J., Vol. 44, 1965, pp. 2245-2269. | MR 189224 | Zbl 0136.14705

17. S. Lin and B. W. Kernighan, An Effective Heuristic Algorithm for the Travelling Salesman Problem, Ops. Res., Vol. 21, 1973, pp. 498-516. | MR 359742 | Zbl 0256.90038

18. J. D. Little et al., An Algorithm for the Travelling Sales Man Problem, Ops. Res., Vol. 11, 1963, pp. 972-989. | Zbl 0161.39305

19. P. Miliotis, Integer Programming Approaches to the Travelling Salesman Problem, Math Prog., Vol. 10, 1976, pp. 367-378. | MR 441337 | Zbl 0337.90041

20. C. Yao, An O (|E| log log |V|) Algorithm for finding Minimum Spanning Trees, Inf. Proc. Letters, Vol. 4, September 1975, pp. 21-23. | Zbl 0307.68028