@article{PMIHES_1973__42__5_0, author = {Friedlander, Eric M.}, title = {Fibrations in etale homotopy theory}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--46}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {42}, year = {1973}, mrnumber = {366929}, zbl = {0351.55011}, language = {en}, url = {http://www.numdam.org/item/PMIHES_1973__42__5_0/} }
Friedlander, Eric M. Fibrations in etale homotopy theory. Publications Mathématiques de l'IHÉS, Volume 42 (1973), pp. 5-46. http://www.numdam.org/item/PMIHES_1973__42__5_0/
[1] On the groups J(X), I, Topology, 2 (1963), 181-195. | MR | Zbl
,[2] Grothendieck Topologies, Harvard Seminar Notes, 1962. | Zbl
,[3] Séminaire de géométrie algébrique ; Cohomologie étale des schémas, 1963-1964, notes miméographiées, I.H.E.S.
, and ,[4] Etale Homotopy, Lecture notes in mathematics, n° 100, Springer, 1969. | MR | Zbl
and ,[5] Cohomology theories, Ann. of Math., 75 (1962), 467-484. | MR | Zbl
,[6] Partitions of unity in the theory of fibrations, Ann. of Math., 78 (1963), 223-255. | MR | Zbl
,[7] Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik, vol. 34, Springer, 1967. | MR | Zbl
and ,[8] Lecture notes in mathematics, n° 224, Springer, 1971. | Zbl
, Séminaire de géométrie algébrique du Bois-Marie 1960/1961, SGA 1,[9] The generalized Whitney sum, Quart. J. Math. (2), 16 (1965), 360-384. | MR | Zbl
,[10] On c.s.s. complexes, Amer. J. Math., 79 (1957), 449-476. | MR | Zbl
,[11] On spaces having the homotopy type of a C-W complex, Trans. A.M.S., 90 (1959), 272-280. | MR | Zbl
,[12] The geometric realization of a Kan fibration is a Serre fibration, Proc. A.M.S., 19 (1968), 1499-1500. | MR | Zbl
,[13] Some remarks on etale homotopy theory and a conjecture of Adams, Topology, 7 (1968), 111-116. | MR | Zbl
,[14] Geometric Topology, part I, M.I.T. Notes, 1970.
,[15] A proof of the comparison theorem for spectral sequences, Proc. Camb. Phil. Soc., 53 (1957), 57-62. | MR | Zbl
,[16] Simplicial objects in algebraic topology, D. Van Nostrand, 1967. | MR | Zbl
,