A reduced basis element method for the steady Stokes problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) no. 3, pp. 529-552.

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into a series of subdomains that are deformations of a few reference domains (or generic computational parts). Associated with each reference domain are precomputed solutions corresponding to the same governing partial differential equation, but solved for different choices of deformations of the reference subdomains and mapped onto the reference shape. The approximation corresponding to a new shape is then taken to be a linear combination of the precomputed solutions, mapped from the generic computational part to the actual computational part. We extend earlier work in this direction to solve incompressible fluid flow problems governed by the steady Stokes equations. Particular focus is given to satisfying the inf-sup condition, to a posteriori error estimation, and to “gluing” the local solutions together in the multidomain case.

DOI : https://doi.org/10.1051/m2an:2006021
Classification : 65C20,  65N15,  65N30,  65N35,  76D07,  93A30
Mots clés : Stokes flow, reduced basis, reduced order model, domain decomposition, mortar method, output bounds, a posteriori error estimators
@article{M2AN_2006__40_3_529_0,
author = {L{\o}vgren, Alf Emil and Maday, Yvon and R{\o}nquist, Einar M.},
title = {A reduced basis element method for the steady {Stokes} problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
pages = {529--552},
publisher = {EDP-Sciences},
volume = {40},
number = {3},
year = {2006},
doi = {10.1051/m2an:2006021},
zbl = {1129.76036},
mrnumber = {2245320},
language = {en},
url = {http://www.numdam.org/articles/10.1051/m2an:2006021/}
}
TY  - JOUR
AU  - Løvgren, Alf Emil
AU  - Rønquist, Einar M.
TI  - A reduced basis element method for the steady Stokes problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2006
DA  - 2006///
SP  - 529
EP  - 552
VL  - 40
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2006021/
UR  - https://zbmath.org/?q=an%3A1129.76036
UR  - https://www.ams.org/mathscinet-getitem?mr=2245320
UR  - https://doi.org/10.1051/m2an:2006021
DO  - 10.1051/m2an:2006021
LA  - en
ID  - M2AN_2006__40_3_529_0
ER  - 
Løvgren, Alf Emil; Maday, Yvon; Rønquist, Einar M. A reduced basis element method for the steady Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 40 (2006) no. 3, pp. 529-552. doi : 10.1051/m2an:2006021. http://www.numdam.org/articles/10.1051/m2an:2006021/

[1] R. Aris, Vectors, tensors and the basic equations of fluid mechanics. Dover Publications (1989). | Zbl 1158.76300

[2] I. Babuska, Error-bounds for finite element method. Numer. Math. 16 (1971) 322-333. | EuDML 132037 | Zbl 0214.42001

[3] B.F. Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114

[4] B.F. Belgacem, C. Bernardi, N. Chorfi and Y. Maday, Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257-281. | Zbl 0955.65088

[5] C. Bernardi and Y. Maday, Polynomial approximation of some singular functions. Appl. Anal. 42 (1992) 1-32. | Zbl 0701.41009

[6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. 8 (1974) 129-151. | EuDML 193255 | Numdam | Zbl 0338.90047

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag (1991). | MR 1115205 | Zbl 0788.73002

[8] J.P. Fink and W.C. Rheinboldt, On the error behavior of the reduced basis technique in nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21-28. | Zbl 0533.73071

[9] W.J. Gordon and C.A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation. Int. J. Numer. Meth. Eng. 7 (1973) 461-477. | Zbl 0271.65062

[10] Y. Maday and A.T. Patera, Spectral element methods for the Navier-Stokes equations. In Noor A. Ed., State of the Art Surveys in Computational Mechanics (1989) 71-143. | Zbl 0661.65107

[11] Y. Maday and E.M. Rønquist, A reduced-basis element method. J. Sci. Comput. 17 (2002) 447-459. | Zbl 1014.65119

[12] Y. Maday and E.M. Rønquist, The reduced-basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240-258. | Zbl 1077.65120

[13] Y. Maday, A.T. Patera, and E.M. Rønquist, The ${P}_{N}×{P}_{N-2}$ method for the approximation of the Stokes problem. Technical Report No. 92009, Department of Mechanical Engineering, Massachusetts Institute of Technology (1992).

[14] Y. Maday, D. Meiron, A.T. Patera and E.M. Rønquist, Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Stat. Comp. (1993) 310-337. | Zbl 0769.76047

[15] A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 19 (1980) 455-462.

[16] C. Prud'Homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced basis output bound methods. J. Fluid Eng. 124 (2002) 70-80.

[17] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methodes, Lec. Notes Math. 606 I. Galligani and E. Magenes Eds., Springer-Verlag (1977). | MR 483555 | Zbl 0362.65089

[18] D.V. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (October 2002).

[19] K. Veroy, C. Prud'Homme, D.V. Rovas and A.T. Patera, A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847), in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (June 2003).

Cité par Sources :