Some optimal control problems of multistate equations appearing in fluid mechanics
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 2, p. 223-247
@article{M2AN_1993__27_2_223_0,
     author = {Abergel, Frederic and Casas, Eduardo},
     title = {Some optimal control problems of multistate equations appearing in fluid mechanics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {27},
     number = {2},
     year = {1993},
     pages = {223-247},
     zbl = {0769.49002},
     mrnumber = {1211617},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1993__27_2_223_0}
}
Abergel, Frederic; Casas, Eduardo. Some optimal control problems of multistate equations appearing in fluid mechanics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 2, pp. 223-247. http://www.numdam.org/item/M2AN_1993__27_2_223_0/

[1] Abergel and R. Temam, 1990, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1, 303-325. | Zbl 0708.76106

[2] F. Abergel and R. Temam, 1992, Optimal control of turbulent flows, in Optimal control of viscous flows, S. S. Sritharan ed., Frontiers in Applied Mathematics Series, SIAM, Philadelphia. | MR 1632423

[3] E. Casas and L. Fernandez, 1989, A Green's formula for quasilinear elliptic operators, J. of Math. Anal. & Appl., 142, 62-72. | MR 1011409 | Zbl 0704.35047

[4] H. Choi, J. Kim, P. Moin, R. Temam, à paraître, Methods of feedback controlfor distributed Systems and applications to Burgers equations.

[5] M. Gaultier and M. Lezaun, 1989, Equations de Navier-Stokes couplées à des équations de la chaleur : résolution par une méthode de point fixe endimension infinie, Ann. Sc. Math. Québec, 13, 1-17. | MR 1006500 | Zbl 0716.35064

[6] M. Gunzburger, L. Hou and T. Svobodny, 1991, Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet conditions, M2AN, 25, 711-748. | Numdam | MR 1135991 | Zbl 0737.76045

[7] M. Gunzburger, L. Hou and T. Svobodny, 1991, Boundary velocity controlof incompressible flow with an application to viscous drag reduction, SIAM J. on Control & Optimization. | Zbl 0756.49004

[8] A. Ioffe and V. Tikhomorov, 1979, Extremal Problems, North-Holland, Amsterdam.

[9] J. Lions, 1968, Contrôle de Systèmes Gouvernés pat des Equations aux Dérivées Partielles, Dunod, Paris. | Zbl 0179.41801

[10] J. Lions, 1969, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris. | Zbl 0189.40603

[11] J. Nečas, 1967, Les Méthodes Directes en Théorie des Equations Elliptiques, Editeurs Academia, Prague. | MR 227584

[12] P. Rabinowitz, 1968, Existence and nonuniqueness of rectangular solutions of the Benard problem, Arch Rational Mech. Anal., 29, 32-57. | MR 233557 | Zbl 0164.28704

[13] R. Temam, 1979, Navier-Stokes Equations, North-Holland, Amsterdam. | MR 603444 | Zbl 0426.35003