Nous démontrons que pour tout entier supérieur à une constante effectivement calculable, la distance de à l’entier le plus proche est minorée par .
We prove that, for all integers exceeding some effectively computable number , the distance from to the nearest integer is greater than .
@article{JTNB_2007__19_1_311_0, author = {Zudilin, Wadim}, title = {A new lower bound for ${\Vert (3/2)^k\Vert }$}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {311--323}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.588}, mrnumber = {2332068}, zbl = {1127.11049}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.588/} }
TY - JOUR AU - Zudilin, Wadim TI - A new lower bound for ${\Vert (3/2)^k\Vert }$ JO - Journal de Théorie des Nombres de Bordeaux PY - 2007 DA - 2007/// SP - 311 EP - 323 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.588/ UR - https://www.ams.org/mathscinet-getitem?mr=2332068 UR - https://zbmath.org/?q=an%3A1127.11049 UR - https://doi.org/10.5802/jtnb.588 DO - 10.5802/jtnb.588 LA - en ID - JTNB_2007__19_1_311_0 ER -
Zudilin, Wadim. A new lower bound for ${\Vert (3/2)^k\Vert }$. Journal de Théorie des Nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 311-323. doi : 10.5802/jtnb.588. http://www.numdam.org/articles/10.5802/jtnb.588/
[1] A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. | MR 360480 | Zbl 0298.10018
[2] M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. | MR 1230126 | Zbl 0791.11030
[3] M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. | MR 1276984 | Zbl 0793.11026
[4] F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. | MR 611281 | Zbl 0466.10030
[5] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. | MR 566655 | Zbl 0434.10023
[6] F. Delmer, J.-M. Deshouillers, The computation of in Waring’s problem. Math. Comp. 54 (1990), 885–893. | Zbl 0701.11043
[7] A. K. Dubickas, A lower bound for the quantity . Russian Math. Surveys 45 (1990), 163–164. | MR 1075396 | Zbl 0712.11037
[8] L. Habsieger, Explicit lower bounds for . Acta Arith. 106 (2003), 299–309. | MR 1957111 | Zbl 01927454
[9] J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to . Math. Comp. 55 (1990), 815–820. | Zbl 0725.11051
[10] K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. | MR 93509 | Zbl 0208.31002
[11] L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. | MR 201688 | Zbl 0135.28101
[12] R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. | MR 1435742 | Zbl 0868.11046
[13] W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of . Mat. Sb. 196:7 (2005), 51–66. | MR 2188369 | Zbl 02238203
Cité par Sources :