Recent results on Lieb-Thirring inequalities
Journées équations aux dérivées partielles, (2000), article no. 20, 14 p.

We give a survey of results on the Lieb-Thirring inequalities for the eigenvalue moments of Schrödinger operators. In particular, we discuss the optimal values of the constants therein for higher dimensions. We elaborate on certain generalisations and some open problems as well.

@article{JEDP_2000____A20_0,
     author = {Laptev, Ari and Weidl, Timo},
     title = {Recent results on Lieb-Thirring inequalities},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Universit\'e de Nantes},
     year = {2000},
     mrnumber = {2001j:81064},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2000____A20_0}
}
Laptev, Ari; Weidl, Timo. Recent results on Lieb-Thirring inequalities. Journées équations aux dérivées partielles,  (2000), article  no. 20, 14 p. http://www.numdam.org/item/JEDP_2000____A20_0/

[1] Aizenman M. and Lieb E.H.: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett. 66A, 427-429 (1978) | MR 81m:81020

[2] Benguria R and Loss M.: A simple proof of a theorem by Laptev and Weidl. Preprint (1999). | Zbl 0963.34077

[3] Berezin F.A.: Covariant and contravariant symbols of operators. [English Translation] Math. USSR, 6, 1117-1151 (1972) | MR 50 #2996 | Zbl 0259.47004

[4] Birman M.S.: The spectrum of singular boundary problems. (Russian) Mat. Sb. (N.S.) 55 (97), 125-174 (1961). (English) Amer. Math. Soc. Transl. 53, 23-80 (1966) | MR 26 #463 | Zbl 0174.42502

[5] Birman M. S. and Laptev A.: The negative discrete spectrum of a two-dimensional Schrödinger operator. Comm. Pure and Appl. Math., XLIX, 967-997 (1996) | MR 97i:35131 | Zbl 0864.35080

[6] Blanchard Ph. and Stubbe J.: Bound states for Schrödinger Hamiltonians: Phase Space Methods and Applications. Rev. Math. Phys., 35, 504-547 (1996) | Zbl 0859.35101

[7] Buslaev V.S. and Faddeev L.D: Formulas for traces for a singular Sturm-Liouville differential operator. [English translation], Dokl. AN SSSR, 132, 451-454 (1960) | MR 22 #11171 | Zbl 0129.06501

[8] Cwikel M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Trans. AMS, 224, 93-100 (1977) | MR 57 #13242 | Zbl 0362.47006

[9] De La Bretèche R.: Preuve de la conjecture de Lieb-Thirring dans le cas des potentiels quadratiques strictement convexes. Ann. Inst. H. Poincaré Phys. théor., 70, 369-380 (1999) | Numdam | MR 2000e:81035 | Zbl 0938.35148

[10] Egorov Yu. V. and Kontrat'Ev V.A.: On spectral theory of elliptic operators. Operator Theory: Advances and Applications, 89, Birkhäuser Verlag, Basel, 1996. x+328 pp. | MR 97m:35189 | Zbl 0855.35001

[11] Faddeev L.D. and Zakharov V.E.: Korteweg-de Vries equation: A completely integrable hamiltonian system. Func. Anal. Appl., 5, 18-27 (1971) | Zbl 0257.35074

[12] Glaser V., Grosse H. and Martin A.: Bounds on the number of eigenvalues of the Schrödinger operator. Commun. Math. Phys., 59, 197-212 (1978) | MR 81a:35081 | Zbl 0373.35050

[13] Helffer B. and Robert D.: Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture I, II. I -Jour. Asymp. Anal., 3, 91-103 (1990), II - Ann. de l'Inst. H. Poincare, 53 (2), 139-147 (1990) | Numdam | MR 91h:35241 | Zbl 0717.35062

[14] Hundertmark D., Laptev A. and Weidl T.: New bounds on the Lieb-Thirring constants. to appear in Inventiones mathematicae. | Zbl 1074.35569

[15] Hundertmark D., Lieb E.H. and Thomas L.E.: A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator. Adv. Theor. Math. Phys. 2, 719-731 (1998) | MR 2000c:81062 | Zbl 0929.34076

[16] Laptev A.: Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces. J. Func. Anal., 151, 531-545 (1997) | MR 99a:35027 | Zbl 0892.35115

[17] Laptev A.: On the Lieb-Thirring conjecture for a class of potentials. Operator Theory: Adv. and Appl., 110, 227-234 (1999) | MR 2001c:35174 | Zbl 0938.35112

[18] Laptev A., Weidl T.: Sharp Lieb-Thirring inequalities in high dimensions. Acta Mathematica, 184, 87-111 (2000) | MR 2001c:35173 | Zbl 01541221

[19] Li P. and Yau S.-T.: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys., 88, 309-318 (1983) | MR 84k:58225 | Zbl 0554.35029

[20] Lieb, E.H.: The number of bound states of one body Schrödinger operators and the Weyl problem. Bull. Amer. Math. Soc., 82, 751-753 (1976) | Zbl 0329.35018

[21] Lieb, E.H.: Lieb-Thirring Inequalities. Preprint mp-arc 00-132 (2000)

[22] Lieb E.H. and Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann., Princeton, 269-303 (1976) | Zbl 0342.35044

[23] Netrusov Y. and Weidl T.: On Lieb-Thirring inequalities for higher order operators with critical and subcritical powers. Comm. Math. Phys., 182 (1), 355-370 (1996) | MR 98d:47103 | Zbl 0865.47033

[24] Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Dokl. AN SSSR, 202, 1012-1015 (1972), Izv. VUZov, Matematika, 1, 75-86 (1976) | MR 45 #4216 | Zbl 0249.35069

[25] Ruelle D.: Large volume limit of the distribution of characteristic exponents in turbulence. Comm. Math. Phys., 87, 287-302 (1982) | MR 85c:76046 | Zbl 0546.76083

[26] Y.Schwinger: On the bound states for a given potential. Proc. Nat. Acad. Sci. U.S.A., 47, 122-129 (1961) | MR 23 #B2833

[27] B. Simon: The bound state of weakly coupled Schrödinger operators on one and two dimensions. Ann. Physics, 97 (2), 279-288, (1976) | MR 53 #8646 | Zbl 0325.35029

[28] Weidl, T.: On the Lieb-Thirring constants Lγ,1 for γ ≥ 1/2. Comm. Math. Phys., 178, 135-146 (1996) | MR 97c:81039 | Zbl 0858.34075

[29] Weidl, T.: Remarks on virtual bound states for semi-bounded operators. Comm. Part. Diff. Equ., 24 (1&2), 25-60, (1999) | MR 2000a:47031 | Zbl 0926.47009