Complexity results for prefix grammars
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 39 (2005) no. 2, pp. 391-401.

Resolving an open problem of Ravikumar and Quan, we show that equivalence of prefix grammars is complete in PSPACE. We also show that membership for these grammars is complete in P (it was known that this problem is in P) and characterize the complexity of equivalence and inclusion for monotonic grammars. For grammars with several premises we show that membership is complete in EXPTIME and hard for PSPACE for monotonic grammars.

DOI: 10.1051/ita:2005024
Classification: 03D03, 68Q17, 68Q42, 68Q45
Keywords: rewriting systems, regular languages, computational complexity
@article{ITA_2005__39_2_391_0,
     author = {Lohrey, Markus and Petersen, Holger},
     title = {Complexity results for prefix grammars},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {391--401},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {2},
     year = {2005},
     doi = {10.1051/ita:2005024},
     mrnumber = {2142119},
     zbl = {1133.68357},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2005024/}
}
TY  - JOUR
AU  - Lohrey, Markus
AU  - Petersen, Holger
TI  - Complexity results for prefix grammars
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2005
SP  - 391
EP  - 401
VL  - 39
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2005024/
DO  - 10.1051/ita:2005024
LA  - en
ID  - ITA_2005__39_2_391_0
ER  - 
%0 Journal Article
%A Lohrey, Markus
%A Petersen, Holger
%T Complexity results for prefix grammars
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2005
%P 391-401
%V 39
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2005024/
%R 10.1051/ita:2005024
%G en
%F ITA_2005__39_2_391_0
Lohrey, Markus; Petersen, Holger. Complexity results for prefix grammars. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 39 (2005) no. 2, pp. 391-401. doi : 10.1051/ita:2005024. http://www.numdam.org/articles/10.1051/ita:2005024/

[1] J.R. Büchi, Regular canonical systems. Archiv Math. Logik und Grundlagenforschung 6 (1964) 91-111. | Zbl

[2] J.R. Büchi, Finite Automata, their Algebras and Grammars. Springer, Berlin-Heidelberg-New York (1989). | MR | Zbl

[3] J.R. Büchi and W.H. Hosken, Canonical systems which produce periodic sets. Math. Syst. Theor. 4 (1970) 81-90. | Zbl

[4] D. Caucal, On the regular structure of prefix rewriting. Theor. Comput. Sci. 106 (1992) 61-86. | Zbl

[5] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation. J. Association Computing Machinery 28 (2981) 114-133. | Zbl

[6] J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon, Efficient algorithms for model checking pushdown systems, in Proc. of 12th International Conference on Computer Aided Verification (CAV), edited by E.A. Emerson and A.P. Sistla (Springer). Lect. Notes Comput. Sci. 1855 (2000) 232-247. | Zbl

[7] J. Esparza, A. Kucera and S. Schwoon, Model checking LTL with regular valuations for pushdown systems. Inform. Comput. 186 (2003) 355-376. | Zbl

[8] M. Frazier and C.D. Page Jr, Prefix grammars: An alternative characterization of the regular languages. Inform. Process. Lett. 51 (1994) 67-71. | Zbl

[9] S.A. Greibach, A note on pushdown store automata and regular systems, in Proc. of the AMS 18 (1967) 263-268. | Zbl

[10] J.E. Hopcroft and R.M. Karp, A linear algorithm for testing the equivalence of finite automata. Report TR 71-114, Department of Computer Science, Cornell University (1971).

[11] N.D. Jones and W.T. Laaser, Complete problems for deterministic polynomial time. Theor. Comput. Sci. 3 (1977) 105-117. | Zbl

[12] M. Kratko, Formal post calculi and finite automata. Problemy Kibernet. 17 (1966) 41-65. In Russian. | Zbl

[13] R.E. Ladner, R.J. Lipton and L.J. Stockmeyer, Alternating pushdown and stack automata. SIAM J. Comput. 13 (1984) 135-155. | Zbl

[14] A.R. Meyer and L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, in Proc. of the 13th Annual IEEE Symposium on Switching and Automata Theory, College Park (Maryland) (1972) 125-129.

[15] C.H. Papadimitriou, Computational Complexity. Addison Wesley (1994). | MR | Zbl

[16] H. Petersen, Prefix rewriting and descriptional complexity. J. Autom. Lang. Comb. 5 (2000) 245-254. | Zbl

[17] B. Ravikumar and L. Quan, Efficient algorithms for prefix grammars. Available at http://www.cs.sonoma.edu/~ravi (2002).

[18] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time, in Proc. of the 5th ACM Symposium on Theory of Computing (STOC'73), Austin (Texas) (1973) 1-9. | Zbl

[19] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser (1994). | MR | Zbl

Cited by Sources: